Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance
Discrete-modulated continuous-variable quantum key distribution with homodyne detection is widely recognized for its ease of implementation, efficiency with respect to error correction, and its compatibility with modern optical communication devices. However, recent studies report that the applicati...
Ausführliche Beschreibung
Autor*in: |
Wen-Bo Liu [verfasserIn] Chen-Long Li [verfasserIn] Yuan-Mei Xie [verfasserIn] Chen-Xun Weng [verfasserIn] Jie Gu [verfasserIn] Xiao-Yu Cao [verfasserIn] Yu-Shuo Lu [verfasserIn] Bing-Hong Li [verfasserIn] Hua-Lei Yin [verfasserIn] Zeng-Bing Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
In: PRX Quantum - American Physical Society, 2021, 2(2021), 4, p 040334 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2021 ; number:4, p 040334 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1103/PRXQuantum.2.040334 |
---|
Katalog-ID: |
DOAJ017078466 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ017078466 | ||
003 | DE-627 | ||
005 | 20230310085359.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1103/PRXQuantum.2.040334 |2 doi | |
035 | |a (DE-627)DOAJ017078466 | ||
035 | |a (DE-599)DOAJa32eae5ded7f4f92a39b9cc2ee1f113c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
050 | 0 | |a QA76.75-76.765 | |
100 | 0 | |a Wen-Bo Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Discrete-modulated continuous-variable quantum key distribution with homodyne detection is widely recognized for its ease of implementation, efficiency with respect to error correction, and its compatibility with modern optical communication devices. However, recent studies report that the application of homodyne detection obtains poor tolerance to excess noise and insufficient transmission distance, hence seriously restricting the large-scale deployment of quantum secure communication networks. In this paper, we propose a homodyne detection protocol using the quadrature phase shift keying technique. By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level. Furthermore, we demonstrate that homodyne detection performs better than heterodyne detection in quaternary-modulated continuous-variable quantum key distribution under the untrusted detector noise scenario. The security is analyzed using the tight numerical method against collective attacks in the asymptotic regime. Our results imply that the current protocol can distribute keys in nearly intercity area and, thus, paves the way for constructing low-cost quantum secure communication networks. | ||
653 | 0 | |a Physics | |
653 | 0 | |a Computer software | |
700 | 0 | |a Chen-Long Li |e verfasserin |4 aut | |
700 | 0 | |a Yuan-Mei Xie |e verfasserin |4 aut | |
700 | 0 | |a Chen-Xun Weng |e verfasserin |4 aut | |
700 | 0 | |a Jie Gu |e verfasserin |4 aut | |
700 | 0 | |a Xiao-Yu Cao |e verfasserin |4 aut | |
700 | 0 | |a Yu-Shuo Lu |e verfasserin |4 aut | |
700 | 0 | |a Bing-Hong Li |e verfasserin |4 aut | |
700 | 0 | |a Hua-Lei Yin |e verfasserin |4 aut | |
700 | 0 | |a Zeng-Bing Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t PRX Quantum |d American Physical Society, 2021 |g 2(2021), 4, p 040334 |w (DE-627)1757559825 |x 26913399 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2021 |g number:4, p 040334 |
856 | 4 | 0 | |u https://doi.org/10.1103/PRXQuantum.2.040334 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a32eae5ded7f4f92a39b9cc2ee1f113c |z kostenfrei |
856 | 4 | 0 | |u http://doi.org/10.1103/PRXQuantum.2.040334 |z kostenfrei |
856 | 4 | 0 | |u http://doi.org/10.1103/PRXQuantum.2.040334 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2691-3399 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2021 |e 4, p 040334 |
author_variant |
w b l wbl c l l cll y m x ymx c x w cxw j g jg x y c xyc y s l ysl b h l bhl h l y hly z b c zbc |
---|---|
matchkey_str |
article:26913399:2021----::ooyeeetoqartrpaehfkyncniuuvralqatmedsrbt |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QC |
publishDate |
2021 |
allfields |
10.1103/PRXQuantum.2.040334 doi (DE-627)DOAJ017078466 (DE-599)DOAJa32eae5ded7f4f92a39b9cc2ee1f113c DE-627 ger DE-627 rakwb eng QC1-999 QA76.75-76.765 Wen-Bo Liu verfasserin aut Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Discrete-modulated continuous-variable quantum key distribution with homodyne detection is widely recognized for its ease of implementation, efficiency with respect to error correction, and its compatibility with modern optical communication devices. However, recent studies report that the application of homodyne detection obtains poor tolerance to excess noise and insufficient transmission distance, hence seriously restricting the large-scale deployment of quantum secure communication networks. In this paper, we propose a homodyne detection protocol using the quadrature phase shift keying technique. By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level. Furthermore, we demonstrate that homodyne detection performs better than heterodyne detection in quaternary-modulated continuous-variable quantum key distribution under the untrusted detector noise scenario. The security is analyzed using the tight numerical method against collective attacks in the asymptotic regime. Our results imply that the current protocol can distribute keys in nearly intercity area and, thus, paves the way for constructing low-cost quantum secure communication networks. Physics Computer software Chen-Long Li verfasserin aut Yuan-Mei Xie verfasserin aut Chen-Xun Weng verfasserin aut Jie Gu verfasserin aut Xiao-Yu Cao verfasserin aut Yu-Shuo Lu verfasserin aut Bing-Hong Li verfasserin aut Hua-Lei Yin verfasserin aut Zeng-Bing Chen verfasserin aut In PRX Quantum American Physical Society, 2021 2(2021), 4, p 040334 (DE-627)1757559825 26913399 nnns volume:2 year:2021 number:4, p 040334 https://doi.org/10.1103/PRXQuantum.2.040334 kostenfrei https://doaj.org/article/a32eae5ded7f4f92a39b9cc2ee1f113c kostenfrei http://doi.org/10.1103/PRXQuantum.2.040334 kostenfrei http://doi.org/10.1103/PRXQuantum.2.040334 kostenfrei https://doaj.org/toc/2691-3399 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 4, p 040334 |
spelling |
10.1103/PRXQuantum.2.040334 doi (DE-627)DOAJ017078466 (DE-599)DOAJa32eae5ded7f4f92a39b9cc2ee1f113c DE-627 ger DE-627 rakwb eng QC1-999 QA76.75-76.765 Wen-Bo Liu verfasserin aut Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Discrete-modulated continuous-variable quantum key distribution with homodyne detection is widely recognized for its ease of implementation, efficiency with respect to error correction, and its compatibility with modern optical communication devices. However, recent studies report that the application of homodyne detection obtains poor tolerance to excess noise and insufficient transmission distance, hence seriously restricting the large-scale deployment of quantum secure communication networks. In this paper, we propose a homodyne detection protocol using the quadrature phase shift keying technique. By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level. Furthermore, we demonstrate that homodyne detection performs better than heterodyne detection in quaternary-modulated continuous-variable quantum key distribution under the untrusted detector noise scenario. The security is analyzed using the tight numerical method against collective attacks in the asymptotic regime. Our results imply that the current protocol can distribute keys in nearly intercity area and, thus, paves the way for constructing low-cost quantum secure communication networks. Physics Computer software Chen-Long Li verfasserin aut Yuan-Mei Xie verfasserin aut Chen-Xun Weng verfasserin aut Jie Gu verfasserin aut Xiao-Yu Cao verfasserin aut Yu-Shuo Lu verfasserin aut Bing-Hong Li verfasserin aut Hua-Lei Yin verfasserin aut Zeng-Bing Chen verfasserin aut In PRX Quantum American Physical Society, 2021 2(2021), 4, p 040334 (DE-627)1757559825 26913399 nnns volume:2 year:2021 number:4, p 040334 https://doi.org/10.1103/PRXQuantum.2.040334 kostenfrei https://doaj.org/article/a32eae5ded7f4f92a39b9cc2ee1f113c kostenfrei http://doi.org/10.1103/PRXQuantum.2.040334 kostenfrei http://doi.org/10.1103/PRXQuantum.2.040334 kostenfrei https://doaj.org/toc/2691-3399 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 4, p 040334 |
allfields_unstemmed |
10.1103/PRXQuantum.2.040334 doi (DE-627)DOAJ017078466 (DE-599)DOAJa32eae5ded7f4f92a39b9cc2ee1f113c DE-627 ger DE-627 rakwb eng QC1-999 QA76.75-76.765 Wen-Bo Liu verfasserin aut Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Discrete-modulated continuous-variable quantum key distribution with homodyne detection is widely recognized for its ease of implementation, efficiency with respect to error correction, and its compatibility with modern optical communication devices. However, recent studies report that the application of homodyne detection obtains poor tolerance to excess noise and insufficient transmission distance, hence seriously restricting the large-scale deployment of quantum secure communication networks. In this paper, we propose a homodyne detection protocol using the quadrature phase shift keying technique. By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level. Furthermore, we demonstrate that homodyne detection performs better than heterodyne detection in quaternary-modulated continuous-variable quantum key distribution under the untrusted detector noise scenario. The security is analyzed using the tight numerical method against collective attacks in the asymptotic regime. Our results imply that the current protocol can distribute keys in nearly intercity area and, thus, paves the way for constructing low-cost quantum secure communication networks. Physics Computer software Chen-Long Li verfasserin aut Yuan-Mei Xie verfasserin aut Chen-Xun Weng verfasserin aut Jie Gu verfasserin aut Xiao-Yu Cao verfasserin aut Yu-Shuo Lu verfasserin aut Bing-Hong Li verfasserin aut Hua-Lei Yin verfasserin aut Zeng-Bing Chen verfasserin aut In PRX Quantum American Physical Society, 2021 2(2021), 4, p 040334 (DE-627)1757559825 26913399 nnns volume:2 year:2021 number:4, p 040334 https://doi.org/10.1103/PRXQuantum.2.040334 kostenfrei https://doaj.org/article/a32eae5ded7f4f92a39b9cc2ee1f113c kostenfrei http://doi.org/10.1103/PRXQuantum.2.040334 kostenfrei http://doi.org/10.1103/PRXQuantum.2.040334 kostenfrei https://doaj.org/toc/2691-3399 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 4, p 040334 |
allfieldsGer |
10.1103/PRXQuantum.2.040334 doi (DE-627)DOAJ017078466 (DE-599)DOAJa32eae5ded7f4f92a39b9cc2ee1f113c DE-627 ger DE-627 rakwb eng QC1-999 QA76.75-76.765 Wen-Bo Liu verfasserin aut Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Discrete-modulated continuous-variable quantum key distribution with homodyne detection is widely recognized for its ease of implementation, efficiency with respect to error correction, and its compatibility with modern optical communication devices. However, recent studies report that the application of homodyne detection obtains poor tolerance to excess noise and insufficient transmission distance, hence seriously restricting the large-scale deployment of quantum secure communication networks. In this paper, we propose a homodyne detection protocol using the quadrature phase shift keying technique. By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level. Furthermore, we demonstrate that homodyne detection performs better than heterodyne detection in quaternary-modulated continuous-variable quantum key distribution under the untrusted detector noise scenario. The security is analyzed using the tight numerical method against collective attacks in the asymptotic regime. Our results imply that the current protocol can distribute keys in nearly intercity area and, thus, paves the way for constructing low-cost quantum secure communication networks. Physics Computer software Chen-Long Li verfasserin aut Yuan-Mei Xie verfasserin aut Chen-Xun Weng verfasserin aut Jie Gu verfasserin aut Xiao-Yu Cao verfasserin aut Yu-Shuo Lu verfasserin aut Bing-Hong Li verfasserin aut Hua-Lei Yin verfasserin aut Zeng-Bing Chen verfasserin aut In PRX Quantum American Physical Society, 2021 2(2021), 4, p 040334 (DE-627)1757559825 26913399 nnns volume:2 year:2021 number:4, p 040334 https://doi.org/10.1103/PRXQuantum.2.040334 kostenfrei https://doaj.org/article/a32eae5ded7f4f92a39b9cc2ee1f113c kostenfrei http://doi.org/10.1103/PRXQuantum.2.040334 kostenfrei http://doi.org/10.1103/PRXQuantum.2.040334 kostenfrei https://doaj.org/toc/2691-3399 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 4, p 040334 |
allfieldsSound |
10.1103/PRXQuantum.2.040334 doi (DE-627)DOAJ017078466 (DE-599)DOAJa32eae5ded7f4f92a39b9cc2ee1f113c DE-627 ger DE-627 rakwb eng QC1-999 QA76.75-76.765 Wen-Bo Liu verfasserin aut Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Discrete-modulated continuous-variable quantum key distribution with homodyne detection is widely recognized for its ease of implementation, efficiency with respect to error correction, and its compatibility with modern optical communication devices. However, recent studies report that the application of homodyne detection obtains poor tolerance to excess noise and insufficient transmission distance, hence seriously restricting the large-scale deployment of quantum secure communication networks. In this paper, we propose a homodyne detection protocol using the quadrature phase shift keying technique. By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level. Furthermore, we demonstrate that homodyne detection performs better than heterodyne detection in quaternary-modulated continuous-variable quantum key distribution under the untrusted detector noise scenario. The security is analyzed using the tight numerical method against collective attacks in the asymptotic regime. Our results imply that the current protocol can distribute keys in nearly intercity area and, thus, paves the way for constructing low-cost quantum secure communication networks. Physics Computer software Chen-Long Li verfasserin aut Yuan-Mei Xie verfasserin aut Chen-Xun Weng verfasserin aut Jie Gu verfasserin aut Xiao-Yu Cao verfasserin aut Yu-Shuo Lu verfasserin aut Bing-Hong Li verfasserin aut Hua-Lei Yin verfasserin aut Zeng-Bing Chen verfasserin aut In PRX Quantum American Physical Society, 2021 2(2021), 4, p 040334 (DE-627)1757559825 26913399 nnns volume:2 year:2021 number:4, p 040334 https://doi.org/10.1103/PRXQuantum.2.040334 kostenfrei https://doaj.org/article/a32eae5ded7f4f92a39b9cc2ee1f113c kostenfrei http://doi.org/10.1103/PRXQuantum.2.040334 kostenfrei http://doi.org/10.1103/PRXQuantum.2.040334 kostenfrei https://doaj.org/toc/2691-3399 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 4, p 040334 |
language |
English |
source |
In PRX Quantum 2(2021), 4, p 040334 volume:2 year:2021 number:4, p 040334 |
sourceStr |
In PRX Quantum 2(2021), 4, p 040334 volume:2 year:2021 number:4, p 040334 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Physics Computer software |
isfreeaccess_bool |
true |
container_title |
PRX Quantum |
authorswithroles_txt_mv |
Wen-Bo Liu @@aut@@ Chen-Long Li @@aut@@ Yuan-Mei Xie @@aut@@ Chen-Xun Weng @@aut@@ Jie Gu @@aut@@ Xiao-Yu Cao @@aut@@ Yu-Shuo Lu @@aut@@ Bing-Hong Li @@aut@@ Hua-Lei Yin @@aut@@ Zeng-Bing Chen @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1757559825 |
id |
DOAJ017078466 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ017078466</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310085359.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PRXQuantum.2.040334</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ017078466</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa32eae5ded7f4f92a39b9cc2ee1f113c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.75-76.765</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wen-Bo Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Discrete-modulated continuous-variable quantum key distribution with homodyne detection is widely recognized for its ease of implementation, efficiency with respect to error correction, and its compatibility with modern optical communication devices. However, recent studies report that the application of homodyne detection obtains poor tolerance to excess noise and insufficient transmission distance, hence seriously restricting the large-scale deployment of quantum secure communication networks. In this paper, we propose a homodyne detection protocol using the quadrature phase shift keying technique. By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level. Furthermore, we demonstrate that homodyne detection performs better than heterodyne detection in quaternary-modulated continuous-variable quantum key distribution under the untrusted detector noise scenario. The security is analyzed using the tight numerical method against collective attacks in the asymptotic regime. Our results imply that the current protocol can distribute keys in nearly intercity area and, thus, paves the way for constructing low-cost quantum secure communication networks.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer software</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chen-Long Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuan-Mei Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chen-Xun Weng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Gu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao-Yu Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yu-Shuo Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bing-Hong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hua-Lei Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zeng-Bing Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PRX Quantum</subfield><subfield code="d">American Physical Society, 2021</subfield><subfield code="g">2(2021), 4, p 040334</subfield><subfield code="w">(DE-627)1757559825</subfield><subfield code="x">26913399</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4, p 040334</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1103/PRXQuantum.2.040334</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a32eae5ded7f4f92a39b9cc2ee1f113c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PRXQuantum.2.040334</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PRXQuantum.2.040334</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2691-3399</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2021</subfield><subfield code="e">4, p 040334</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Wen-Bo Liu |
spellingShingle |
Wen-Bo Liu misc QC1-999 misc QA76.75-76.765 misc Physics misc Computer software Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance |
authorStr |
Wen-Bo Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1757559825 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
26913399 |
topic_title |
QC1-999 QA76.75-76.765 Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance |
topic |
misc QC1-999 misc QA76.75-76.765 misc Physics misc Computer software |
topic_unstemmed |
misc QC1-999 misc QA76.75-76.765 misc Physics misc Computer software |
topic_browse |
misc QC1-999 misc QA76.75-76.765 misc Physics misc Computer software |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
PRX Quantum |
hierarchy_parent_id |
1757559825 |
hierarchy_top_title |
PRX Quantum |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1757559825 |
title |
Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance |
ctrlnum |
(DE-627)DOAJ017078466 (DE-599)DOAJa32eae5ded7f4f92a39b9cc2ee1f113c |
title_full |
Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance |
author_sort |
Wen-Bo Liu |
journal |
PRX Quantum |
journalStr |
PRX Quantum |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Wen-Bo Liu Chen-Long Li Yuan-Mei Xie Chen-Xun Weng Jie Gu Xiao-Yu Cao Yu-Shuo Lu Bing-Hong Li Hua-Lei Yin Zeng-Bing Chen |
container_volume |
2 |
class |
QC1-999 QA76.75-76.765 |
format_se |
Elektronische Aufsätze |
author-letter |
Wen-Bo Liu |
doi_str_mv |
10.1103/PRXQuantum.2.040334 |
author2-role |
verfasserin |
title_sort |
homodyne detection quadrature phase shift keying continuous-variable quantum key distribution with high excess noise tolerance |
callnumber |
QC1-999 |
title_auth |
Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance |
abstract |
Discrete-modulated continuous-variable quantum key distribution with homodyne detection is widely recognized for its ease of implementation, efficiency with respect to error correction, and its compatibility with modern optical communication devices. However, recent studies report that the application of homodyne detection obtains poor tolerance to excess noise and insufficient transmission distance, hence seriously restricting the large-scale deployment of quantum secure communication networks. In this paper, we propose a homodyne detection protocol using the quadrature phase shift keying technique. By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level. Furthermore, we demonstrate that homodyne detection performs better than heterodyne detection in quaternary-modulated continuous-variable quantum key distribution under the untrusted detector noise scenario. The security is analyzed using the tight numerical method against collective attacks in the asymptotic regime. Our results imply that the current protocol can distribute keys in nearly intercity area and, thus, paves the way for constructing low-cost quantum secure communication networks. |
abstractGer |
Discrete-modulated continuous-variable quantum key distribution with homodyne detection is widely recognized for its ease of implementation, efficiency with respect to error correction, and its compatibility with modern optical communication devices. However, recent studies report that the application of homodyne detection obtains poor tolerance to excess noise and insufficient transmission distance, hence seriously restricting the large-scale deployment of quantum secure communication networks. In this paper, we propose a homodyne detection protocol using the quadrature phase shift keying technique. By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level. Furthermore, we demonstrate that homodyne detection performs better than heterodyne detection in quaternary-modulated continuous-variable quantum key distribution under the untrusted detector noise scenario. The security is analyzed using the tight numerical method against collective attacks in the asymptotic regime. Our results imply that the current protocol can distribute keys in nearly intercity area and, thus, paves the way for constructing low-cost quantum secure communication networks. |
abstract_unstemmed |
Discrete-modulated continuous-variable quantum key distribution with homodyne detection is widely recognized for its ease of implementation, efficiency with respect to error correction, and its compatibility with modern optical communication devices. However, recent studies report that the application of homodyne detection obtains poor tolerance to excess noise and insufficient transmission distance, hence seriously restricting the large-scale deployment of quantum secure communication networks. In this paper, we propose a homodyne detection protocol using the quadrature phase shift keying technique. By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level. Furthermore, we demonstrate that homodyne detection performs better than heterodyne detection in quaternary-modulated continuous-variable quantum key distribution under the untrusted detector noise scenario. The security is analyzed using the tight numerical method against collective attacks in the asymptotic regime. Our results imply that the current protocol can distribute keys in nearly intercity area and, thus, paves the way for constructing low-cost quantum secure communication networks. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 040334 |
title_short |
Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance |
url |
https://doi.org/10.1103/PRXQuantum.2.040334 https://doaj.org/article/a32eae5ded7f4f92a39b9cc2ee1f113c http://doi.org/10.1103/PRXQuantum.2.040334 https://doaj.org/toc/2691-3399 |
remote_bool |
true |
author2 |
Chen-Long Li Yuan-Mei Xie Chen-Xun Weng Jie Gu Xiao-Yu Cao Yu-Shuo Lu Bing-Hong Li Hua-Lei Yin Zeng-Bing Chen |
author2Str |
Chen-Long Li Yuan-Mei Xie Chen-Xun Weng Jie Gu Xiao-Yu Cao Yu-Shuo Lu Bing-Hong Li Hua-Lei Yin Zeng-Bing Chen |
ppnlink |
1757559825 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1103/PRXQuantum.2.040334 |
callnumber-a |
QC1-999 |
up_date |
2024-07-04T00:14:03.505Z |
_version_ |
1803605291572396033 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ017078466</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310085359.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PRXQuantum.2.040334</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ017078466</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa32eae5ded7f4f92a39b9cc2ee1f113c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.75-76.765</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wen-Bo Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Discrete-modulated continuous-variable quantum key distribution with homodyne detection is widely recognized for its ease of implementation, efficiency with respect to error correction, and its compatibility with modern optical communication devices. However, recent studies report that the application of homodyne detection obtains poor tolerance to excess noise and insufficient transmission distance, hence seriously restricting the large-scale deployment of quantum secure communication networks. In this paper, we propose a homodyne detection protocol using the quadrature phase shift keying technique. By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level. Furthermore, we demonstrate that homodyne detection performs better than heterodyne detection in quaternary-modulated continuous-variable quantum key distribution under the untrusted detector noise scenario. The security is analyzed using the tight numerical method against collective attacks in the asymptotic regime. Our results imply that the current protocol can distribute keys in nearly intercity area and, thus, paves the way for constructing low-cost quantum secure communication networks.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer software</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chen-Long Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuan-Mei Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chen-Xun Weng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Gu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao-Yu Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yu-Shuo Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bing-Hong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hua-Lei Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zeng-Bing Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PRX Quantum</subfield><subfield code="d">American Physical Society, 2021</subfield><subfield code="g">2(2021), 4, p 040334</subfield><subfield code="w">(DE-627)1757559825</subfield><subfield code="x">26913399</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4, p 040334</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1103/PRXQuantum.2.040334</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a32eae5ded7f4f92a39b9cc2ee1f113c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PRXQuantum.2.040334</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PRXQuantum.2.040334</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2691-3399</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2021</subfield><subfield code="e">4, p 040334</subfield></datafield></record></collection>
|
score |
7.400259 |