Structure and magnetic properties of W-type hexaferrites
W-type hexaferrites (WHFs) (SrMe2Fe16O27, Me = Mg, Co, Ni and Zn) are hard magnetic materials with high potential for permanent magnet applications owing to their large crystalline anisotropy and high cation tunability. However, little is known with regards to their complex structural and magnetic c...
Ausführliche Beschreibung
Autor*in: |
Mathias I. Mørch [verfasserIn] Jakob V. Ahlburg [verfasserIn] Matilde Saura-Múzquiz [verfasserIn] Anna Z. Eikeland [verfasserIn] Mogens Christensen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IUCrJ - International Union of Crystallography, 2014, 6(2019), 3, Seite 492-499 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2019 ; number:3 ; pages:492-499 |
Links: |
---|
DOI / URN: |
10.1107/S2052252519003130 |
---|
Katalog-ID: |
DOAJ017204089 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ017204089 | ||
003 | DE-627 | ||
005 | 20230502143801.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1107/S2052252519003130 |2 doi | |
035 | |a (DE-627)DOAJ017204089 | ||
035 | |a (DE-599)DOAJe7cb63f9e91e4147af672535e58d0d4d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD901-999 | |
100 | 0 | |a Mathias I. Mørch |e verfasserin |4 aut | |
245 | 1 | 0 | |a Structure and magnetic properties of W-type hexaferrites |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a W-type hexaferrites (WHFs) (SrMe2Fe16O27, Me = Mg, Co, Ni and Zn) are hard magnetic materials with high potential for permanent magnet applications owing to their large crystalline anisotropy and high cation tunability. However, little is known with regards to their complex structural and magnetic characteristics. Here, the substitution of metals (Me = Mg, Co, Ni and Zn) in WHFs is described and their crystal and magnetic structures investigated. From joined refinements of X-ray and neutron powder diffraction data, the atomic positions of the Me atoms were extracted along with the magnetic dipolar moment of the individual sites. The four types of WHFs exhibit ferrimagnetic ordering. For Mg, Ni and Zn the magnetic moments are found to be ordered colinearly and with the magnetic easy axis along the crystallographic c axis. In SrCo2Fe16O27, however, the spontaneous magnetization changes from uniaxial to planar, with the moments aligning in the crystallographic ab plane. Macromagnetic properties were measured using a vibration sample magnetometer. The measured saturation magnetization (Ms) between the different samples follows the same trend as the calculated Ms extracted from the refined magnetic moments of the neutron powder diffraction data. Given the correlation between the calculated Ms and the refined substitution degree of the different Me in specific crystallographic sites, the agreement between the measured and calculated Ms values consolidates the robustness of the structural and magnetic Rietveld model. | ||
650 | 4 | |a hexaferrites | |
650 | 4 | |a magnetic structures | |
650 | 4 | |a combined neutron and X-ray refinement | |
650 | 4 | |a W-type hexaferrites | |
653 | 0 | |a Crystallography | |
700 | 0 | |a Jakob V. Ahlburg |e verfasserin |4 aut | |
700 | 0 | |a Matilde Saura-Múzquiz |e verfasserin |4 aut | |
700 | 0 | |a Anna Z. Eikeland |e verfasserin |4 aut | |
700 | 0 | |a Mogens Christensen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IUCrJ |d International Union of Crystallography, 2014 |g 6(2019), 3, Seite 492-499 |w (DE-627)777782758 |w (DE-600)2754953-7 |x 20522525 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2019 |g number:3 |g pages:492-499 |
856 | 4 | 0 | |u https://doi.org/10.1107/S2052252519003130 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e7cb63f9e91e4147af672535e58d0d4d |z kostenfrei |
856 | 4 | 0 | |u http://scripts.iucr.org/cgi-bin/paper?S2052252519003130 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2052-2525 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2019 |e 3 |h 492-499 |
author_variant |
m i m mim j v a jva m s m msm a z e aze m c mc |
---|---|
matchkey_str |
article:20522525:2019----::tutradantcrprisftp |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
QD |
publishDate |
2019 |
allfields |
10.1107/S2052252519003130 doi (DE-627)DOAJ017204089 (DE-599)DOAJe7cb63f9e91e4147af672535e58d0d4d DE-627 ger DE-627 rakwb eng QD901-999 Mathias I. Mørch verfasserin aut Structure and magnetic properties of W-type hexaferrites 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier W-type hexaferrites (WHFs) (SrMe2Fe16O27, Me = Mg, Co, Ni and Zn) are hard magnetic materials with high potential for permanent magnet applications owing to their large crystalline anisotropy and high cation tunability. However, little is known with regards to their complex structural and magnetic characteristics. Here, the substitution of metals (Me = Mg, Co, Ni and Zn) in WHFs is described and their crystal and magnetic structures investigated. From joined refinements of X-ray and neutron powder diffraction data, the atomic positions of the Me atoms were extracted along with the magnetic dipolar moment of the individual sites. The four types of WHFs exhibit ferrimagnetic ordering. For Mg, Ni and Zn the magnetic moments are found to be ordered colinearly and with the magnetic easy axis along the crystallographic c axis. In SrCo2Fe16O27, however, the spontaneous magnetization changes from uniaxial to planar, with the moments aligning in the crystallographic ab plane. Macromagnetic properties were measured using a vibration sample magnetometer. The measured saturation magnetization (Ms) between the different samples follows the same trend as the calculated Ms extracted from the refined magnetic moments of the neutron powder diffraction data. Given the correlation between the calculated Ms and the refined substitution degree of the different Me in specific crystallographic sites, the agreement between the measured and calculated Ms values consolidates the robustness of the structural and magnetic Rietveld model. hexaferrites magnetic structures combined neutron and X-ray refinement W-type hexaferrites Crystallography Jakob V. Ahlburg verfasserin aut Matilde Saura-Múzquiz verfasserin aut Anna Z. Eikeland verfasserin aut Mogens Christensen verfasserin aut In IUCrJ International Union of Crystallography, 2014 6(2019), 3, Seite 492-499 (DE-627)777782758 (DE-600)2754953-7 20522525 nnns volume:6 year:2019 number:3 pages:492-499 https://doi.org/10.1107/S2052252519003130 kostenfrei https://doaj.org/article/e7cb63f9e91e4147af672535e58d0d4d kostenfrei http://scripts.iucr.org/cgi-bin/paper?S2052252519003130 kostenfrei https://doaj.org/toc/2052-2525 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2019 3 492-499 |
spelling |
10.1107/S2052252519003130 doi (DE-627)DOAJ017204089 (DE-599)DOAJe7cb63f9e91e4147af672535e58d0d4d DE-627 ger DE-627 rakwb eng QD901-999 Mathias I. Mørch verfasserin aut Structure and magnetic properties of W-type hexaferrites 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier W-type hexaferrites (WHFs) (SrMe2Fe16O27, Me = Mg, Co, Ni and Zn) are hard magnetic materials with high potential for permanent magnet applications owing to their large crystalline anisotropy and high cation tunability. However, little is known with regards to their complex structural and magnetic characteristics. Here, the substitution of metals (Me = Mg, Co, Ni and Zn) in WHFs is described and their crystal and magnetic structures investigated. From joined refinements of X-ray and neutron powder diffraction data, the atomic positions of the Me atoms were extracted along with the magnetic dipolar moment of the individual sites. The four types of WHFs exhibit ferrimagnetic ordering. For Mg, Ni and Zn the magnetic moments are found to be ordered colinearly and with the magnetic easy axis along the crystallographic c axis. In SrCo2Fe16O27, however, the spontaneous magnetization changes from uniaxial to planar, with the moments aligning in the crystallographic ab plane. Macromagnetic properties were measured using a vibration sample magnetometer. The measured saturation magnetization (Ms) between the different samples follows the same trend as the calculated Ms extracted from the refined magnetic moments of the neutron powder diffraction data. Given the correlation between the calculated Ms and the refined substitution degree of the different Me in specific crystallographic sites, the agreement between the measured and calculated Ms values consolidates the robustness of the structural and magnetic Rietveld model. hexaferrites magnetic structures combined neutron and X-ray refinement W-type hexaferrites Crystallography Jakob V. Ahlburg verfasserin aut Matilde Saura-Múzquiz verfasserin aut Anna Z. Eikeland verfasserin aut Mogens Christensen verfasserin aut In IUCrJ International Union of Crystallography, 2014 6(2019), 3, Seite 492-499 (DE-627)777782758 (DE-600)2754953-7 20522525 nnns volume:6 year:2019 number:3 pages:492-499 https://doi.org/10.1107/S2052252519003130 kostenfrei https://doaj.org/article/e7cb63f9e91e4147af672535e58d0d4d kostenfrei http://scripts.iucr.org/cgi-bin/paper?S2052252519003130 kostenfrei https://doaj.org/toc/2052-2525 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2019 3 492-499 |
allfields_unstemmed |
10.1107/S2052252519003130 doi (DE-627)DOAJ017204089 (DE-599)DOAJe7cb63f9e91e4147af672535e58d0d4d DE-627 ger DE-627 rakwb eng QD901-999 Mathias I. Mørch verfasserin aut Structure and magnetic properties of W-type hexaferrites 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier W-type hexaferrites (WHFs) (SrMe2Fe16O27, Me = Mg, Co, Ni and Zn) are hard magnetic materials with high potential for permanent magnet applications owing to their large crystalline anisotropy and high cation tunability. However, little is known with regards to their complex structural and magnetic characteristics. Here, the substitution of metals (Me = Mg, Co, Ni and Zn) in WHFs is described and their crystal and magnetic structures investigated. From joined refinements of X-ray and neutron powder diffraction data, the atomic positions of the Me atoms were extracted along with the magnetic dipolar moment of the individual sites. The four types of WHFs exhibit ferrimagnetic ordering. For Mg, Ni and Zn the magnetic moments are found to be ordered colinearly and with the magnetic easy axis along the crystallographic c axis. In SrCo2Fe16O27, however, the spontaneous magnetization changes from uniaxial to planar, with the moments aligning in the crystallographic ab plane. Macromagnetic properties were measured using a vibration sample magnetometer. The measured saturation magnetization (Ms) between the different samples follows the same trend as the calculated Ms extracted from the refined magnetic moments of the neutron powder diffraction data. Given the correlation between the calculated Ms and the refined substitution degree of the different Me in specific crystallographic sites, the agreement between the measured and calculated Ms values consolidates the robustness of the structural and magnetic Rietveld model. hexaferrites magnetic structures combined neutron and X-ray refinement W-type hexaferrites Crystallography Jakob V. Ahlburg verfasserin aut Matilde Saura-Múzquiz verfasserin aut Anna Z. Eikeland verfasserin aut Mogens Christensen verfasserin aut In IUCrJ International Union of Crystallography, 2014 6(2019), 3, Seite 492-499 (DE-627)777782758 (DE-600)2754953-7 20522525 nnns volume:6 year:2019 number:3 pages:492-499 https://doi.org/10.1107/S2052252519003130 kostenfrei https://doaj.org/article/e7cb63f9e91e4147af672535e58d0d4d kostenfrei http://scripts.iucr.org/cgi-bin/paper?S2052252519003130 kostenfrei https://doaj.org/toc/2052-2525 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2019 3 492-499 |
allfieldsGer |
10.1107/S2052252519003130 doi (DE-627)DOAJ017204089 (DE-599)DOAJe7cb63f9e91e4147af672535e58d0d4d DE-627 ger DE-627 rakwb eng QD901-999 Mathias I. Mørch verfasserin aut Structure and magnetic properties of W-type hexaferrites 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier W-type hexaferrites (WHFs) (SrMe2Fe16O27, Me = Mg, Co, Ni and Zn) are hard magnetic materials with high potential for permanent magnet applications owing to their large crystalline anisotropy and high cation tunability. However, little is known with regards to their complex structural and magnetic characteristics. Here, the substitution of metals (Me = Mg, Co, Ni and Zn) in WHFs is described and their crystal and magnetic structures investigated. From joined refinements of X-ray and neutron powder diffraction data, the atomic positions of the Me atoms were extracted along with the magnetic dipolar moment of the individual sites. The four types of WHFs exhibit ferrimagnetic ordering. For Mg, Ni and Zn the magnetic moments are found to be ordered colinearly and with the magnetic easy axis along the crystallographic c axis. In SrCo2Fe16O27, however, the spontaneous magnetization changes from uniaxial to planar, with the moments aligning in the crystallographic ab plane. Macromagnetic properties were measured using a vibration sample magnetometer. The measured saturation magnetization (Ms) between the different samples follows the same trend as the calculated Ms extracted from the refined magnetic moments of the neutron powder diffraction data. Given the correlation between the calculated Ms and the refined substitution degree of the different Me in specific crystallographic sites, the agreement between the measured and calculated Ms values consolidates the robustness of the structural and magnetic Rietveld model. hexaferrites magnetic structures combined neutron and X-ray refinement W-type hexaferrites Crystallography Jakob V. Ahlburg verfasserin aut Matilde Saura-Múzquiz verfasserin aut Anna Z. Eikeland verfasserin aut Mogens Christensen verfasserin aut In IUCrJ International Union of Crystallography, 2014 6(2019), 3, Seite 492-499 (DE-627)777782758 (DE-600)2754953-7 20522525 nnns volume:6 year:2019 number:3 pages:492-499 https://doi.org/10.1107/S2052252519003130 kostenfrei https://doaj.org/article/e7cb63f9e91e4147af672535e58d0d4d kostenfrei http://scripts.iucr.org/cgi-bin/paper?S2052252519003130 kostenfrei https://doaj.org/toc/2052-2525 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2019 3 492-499 |
allfieldsSound |
10.1107/S2052252519003130 doi (DE-627)DOAJ017204089 (DE-599)DOAJe7cb63f9e91e4147af672535e58d0d4d DE-627 ger DE-627 rakwb eng QD901-999 Mathias I. Mørch verfasserin aut Structure and magnetic properties of W-type hexaferrites 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier W-type hexaferrites (WHFs) (SrMe2Fe16O27, Me = Mg, Co, Ni and Zn) are hard magnetic materials with high potential for permanent magnet applications owing to their large crystalline anisotropy and high cation tunability. However, little is known with regards to their complex structural and magnetic characteristics. Here, the substitution of metals (Me = Mg, Co, Ni and Zn) in WHFs is described and their crystal and magnetic structures investigated. From joined refinements of X-ray and neutron powder diffraction data, the atomic positions of the Me atoms were extracted along with the magnetic dipolar moment of the individual sites. The four types of WHFs exhibit ferrimagnetic ordering. For Mg, Ni and Zn the magnetic moments are found to be ordered colinearly and with the magnetic easy axis along the crystallographic c axis. In SrCo2Fe16O27, however, the spontaneous magnetization changes from uniaxial to planar, with the moments aligning in the crystallographic ab plane. Macromagnetic properties were measured using a vibration sample magnetometer. The measured saturation magnetization (Ms) between the different samples follows the same trend as the calculated Ms extracted from the refined magnetic moments of the neutron powder diffraction data. Given the correlation between the calculated Ms and the refined substitution degree of the different Me in specific crystallographic sites, the agreement between the measured and calculated Ms values consolidates the robustness of the structural and magnetic Rietveld model. hexaferrites magnetic structures combined neutron and X-ray refinement W-type hexaferrites Crystallography Jakob V. Ahlburg verfasserin aut Matilde Saura-Múzquiz verfasserin aut Anna Z. Eikeland verfasserin aut Mogens Christensen verfasserin aut In IUCrJ International Union of Crystallography, 2014 6(2019), 3, Seite 492-499 (DE-627)777782758 (DE-600)2754953-7 20522525 nnns volume:6 year:2019 number:3 pages:492-499 https://doi.org/10.1107/S2052252519003130 kostenfrei https://doaj.org/article/e7cb63f9e91e4147af672535e58d0d4d kostenfrei http://scripts.iucr.org/cgi-bin/paper?S2052252519003130 kostenfrei https://doaj.org/toc/2052-2525 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2019 3 492-499 |
language |
English |
source |
In IUCrJ 6(2019), 3, Seite 492-499 volume:6 year:2019 number:3 pages:492-499 |
sourceStr |
In IUCrJ 6(2019), 3, Seite 492-499 volume:6 year:2019 number:3 pages:492-499 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hexaferrites magnetic structures combined neutron and X-ray refinement W-type hexaferrites Crystallography |
isfreeaccess_bool |
true |
container_title |
IUCrJ |
authorswithroles_txt_mv |
Mathias I. Mørch @@aut@@ Jakob V. Ahlburg @@aut@@ Matilde Saura-Múzquiz @@aut@@ Anna Z. Eikeland @@aut@@ Mogens Christensen @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
777782758 |
id |
DOAJ017204089 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ017204089</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143801.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1107/S2052252519003130</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ017204089</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe7cb63f9e91e4147af672535e58d0d4d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD901-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mathias I. Mørch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure and magnetic properties of W-type hexaferrites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">W-type hexaferrites (WHFs) (SrMe2Fe16O27, Me = Mg, Co, Ni and Zn) are hard magnetic materials with high potential for permanent magnet applications owing to their large crystalline anisotropy and high cation tunability. However, little is known with regards to their complex structural and magnetic characteristics. Here, the substitution of metals (Me = Mg, Co, Ni and Zn) in WHFs is described and their crystal and magnetic structures investigated. From joined refinements of X-ray and neutron powder diffraction data, the atomic positions of the Me atoms were extracted along with the magnetic dipolar moment of the individual sites. The four types of WHFs exhibit ferrimagnetic ordering. For Mg, Ni and Zn the magnetic moments are found to be ordered colinearly and with the magnetic easy axis along the crystallographic c axis. In SrCo2Fe16O27, however, the spontaneous magnetization changes from uniaxial to planar, with the moments aligning in the crystallographic ab plane. Macromagnetic properties were measured using a vibration sample magnetometer. The measured saturation magnetization (Ms) between the different samples follows the same trend as the calculated Ms extracted from the refined magnetic moments of the neutron powder diffraction data. Given the correlation between the calculated Ms and the refined substitution degree of the different Me in specific crystallographic sites, the agreement between the measured and calculated Ms values consolidates the robustness of the structural and magnetic Rietveld model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hexaferrites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic structures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">combined neutron and X-ray refinement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">W-type hexaferrites</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Crystallography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jakob V. Ahlburg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matilde Saura-Múzquiz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Z. Eikeland</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mogens Christensen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IUCrJ</subfield><subfield code="d">International Union of Crystallography, 2014</subfield><subfield code="g">6(2019), 3, Seite 492-499</subfield><subfield code="w">(DE-627)777782758</subfield><subfield code="w">(DE-600)2754953-7</subfield><subfield code="x">20522525</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:492-499</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1107/S2052252519003130</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e7cb63f9e91e4147af672535e58d0d4d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://scripts.iucr.org/cgi-bin/paper?S2052252519003130</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2052-2525</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="h">492-499</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Mathias I. Mørch |
spellingShingle |
Mathias I. Mørch misc QD901-999 misc hexaferrites misc magnetic structures misc combined neutron and X-ray refinement misc W-type hexaferrites misc Crystallography Structure and magnetic properties of W-type hexaferrites |
authorStr |
Mathias I. Mørch |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)777782758 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD901-999 |
illustrated |
Not Illustrated |
issn |
20522525 |
topic_title |
QD901-999 Structure and magnetic properties of W-type hexaferrites hexaferrites magnetic structures combined neutron and X-ray refinement W-type hexaferrites |
topic |
misc QD901-999 misc hexaferrites misc magnetic structures misc combined neutron and X-ray refinement misc W-type hexaferrites misc Crystallography |
topic_unstemmed |
misc QD901-999 misc hexaferrites misc magnetic structures misc combined neutron and X-ray refinement misc W-type hexaferrites misc Crystallography |
topic_browse |
misc QD901-999 misc hexaferrites misc magnetic structures misc combined neutron and X-ray refinement misc W-type hexaferrites misc Crystallography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IUCrJ |
hierarchy_parent_id |
777782758 |
hierarchy_top_title |
IUCrJ |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)777782758 (DE-600)2754953-7 |
title |
Structure and magnetic properties of W-type hexaferrites |
ctrlnum |
(DE-627)DOAJ017204089 (DE-599)DOAJe7cb63f9e91e4147af672535e58d0d4d |
title_full |
Structure and magnetic properties of W-type hexaferrites |
author_sort |
Mathias I. Mørch |
journal |
IUCrJ |
journalStr |
IUCrJ |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
492 |
author_browse |
Mathias I. Mørch Jakob V. Ahlburg Matilde Saura-Múzquiz Anna Z. Eikeland Mogens Christensen |
container_volume |
6 |
class |
QD901-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Mathias I. Mørch |
doi_str_mv |
10.1107/S2052252519003130 |
author2-role |
verfasserin |
title_sort |
structure and magnetic properties of w-type hexaferrites |
callnumber |
QD901-999 |
title_auth |
Structure and magnetic properties of W-type hexaferrites |
abstract |
W-type hexaferrites (WHFs) (SrMe2Fe16O27, Me = Mg, Co, Ni and Zn) are hard magnetic materials with high potential for permanent magnet applications owing to their large crystalline anisotropy and high cation tunability. However, little is known with regards to their complex structural and magnetic characteristics. Here, the substitution of metals (Me = Mg, Co, Ni and Zn) in WHFs is described and their crystal and magnetic structures investigated. From joined refinements of X-ray and neutron powder diffraction data, the atomic positions of the Me atoms were extracted along with the magnetic dipolar moment of the individual sites. The four types of WHFs exhibit ferrimagnetic ordering. For Mg, Ni and Zn the magnetic moments are found to be ordered colinearly and with the magnetic easy axis along the crystallographic c axis. In SrCo2Fe16O27, however, the spontaneous magnetization changes from uniaxial to planar, with the moments aligning in the crystallographic ab plane. Macromagnetic properties were measured using a vibration sample magnetometer. The measured saturation magnetization (Ms) between the different samples follows the same trend as the calculated Ms extracted from the refined magnetic moments of the neutron powder diffraction data. Given the correlation between the calculated Ms and the refined substitution degree of the different Me in specific crystallographic sites, the agreement between the measured and calculated Ms values consolidates the robustness of the structural and magnetic Rietveld model. |
abstractGer |
W-type hexaferrites (WHFs) (SrMe2Fe16O27, Me = Mg, Co, Ni and Zn) are hard magnetic materials with high potential for permanent magnet applications owing to their large crystalline anisotropy and high cation tunability. However, little is known with regards to their complex structural and magnetic characteristics. Here, the substitution of metals (Me = Mg, Co, Ni and Zn) in WHFs is described and their crystal and magnetic structures investigated. From joined refinements of X-ray and neutron powder diffraction data, the atomic positions of the Me atoms were extracted along with the magnetic dipolar moment of the individual sites. The four types of WHFs exhibit ferrimagnetic ordering. For Mg, Ni and Zn the magnetic moments are found to be ordered colinearly and with the magnetic easy axis along the crystallographic c axis. In SrCo2Fe16O27, however, the spontaneous magnetization changes from uniaxial to planar, with the moments aligning in the crystallographic ab plane. Macromagnetic properties were measured using a vibration sample magnetometer. The measured saturation magnetization (Ms) between the different samples follows the same trend as the calculated Ms extracted from the refined magnetic moments of the neutron powder diffraction data. Given the correlation between the calculated Ms and the refined substitution degree of the different Me in specific crystallographic sites, the agreement between the measured and calculated Ms values consolidates the robustness of the structural and magnetic Rietveld model. |
abstract_unstemmed |
W-type hexaferrites (WHFs) (SrMe2Fe16O27, Me = Mg, Co, Ni and Zn) are hard magnetic materials with high potential for permanent magnet applications owing to their large crystalline anisotropy and high cation tunability. However, little is known with regards to their complex structural and magnetic characteristics. Here, the substitution of metals (Me = Mg, Co, Ni and Zn) in WHFs is described and their crystal and magnetic structures investigated. From joined refinements of X-ray and neutron powder diffraction data, the atomic positions of the Me atoms were extracted along with the magnetic dipolar moment of the individual sites. The four types of WHFs exhibit ferrimagnetic ordering. For Mg, Ni and Zn the magnetic moments are found to be ordered colinearly and with the magnetic easy axis along the crystallographic c axis. In SrCo2Fe16O27, however, the spontaneous magnetization changes from uniaxial to planar, with the moments aligning in the crystallographic ab plane. Macromagnetic properties were measured using a vibration sample magnetometer. The measured saturation magnetization (Ms) between the different samples follows the same trend as the calculated Ms extracted from the refined magnetic moments of the neutron powder diffraction data. Given the correlation between the calculated Ms and the refined substitution degree of the different Me in specific crystallographic sites, the agreement between the measured and calculated Ms values consolidates the robustness of the structural and magnetic Rietveld model. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Structure and magnetic properties of W-type hexaferrites |
url |
https://doi.org/10.1107/S2052252519003130 https://doaj.org/article/e7cb63f9e91e4147af672535e58d0d4d http://scripts.iucr.org/cgi-bin/paper?S2052252519003130 https://doaj.org/toc/2052-2525 |
remote_bool |
true |
author2 |
Jakob V. Ahlburg Matilde Saura-Múzquiz Anna Z. Eikeland Mogens Christensen |
author2Str |
Jakob V. Ahlburg Matilde Saura-Múzquiz Anna Z. Eikeland Mogens Christensen |
ppnlink |
777782758 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1107/S2052252519003130 |
callnumber-a |
QD901-999 |
up_date |
2024-07-04T00:42:43.393Z |
_version_ |
1803607095009869824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ017204089</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143801.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1107/S2052252519003130</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ017204089</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe7cb63f9e91e4147af672535e58d0d4d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD901-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mathias I. Mørch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure and magnetic properties of W-type hexaferrites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">W-type hexaferrites (WHFs) (SrMe2Fe16O27, Me = Mg, Co, Ni and Zn) are hard magnetic materials with high potential for permanent magnet applications owing to their large crystalline anisotropy and high cation tunability. However, little is known with regards to their complex structural and magnetic characteristics. Here, the substitution of metals (Me = Mg, Co, Ni and Zn) in WHFs is described and their crystal and magnetic structures investigated. From joined refinements of X-ray and neutron powder diffraction data, the atomic positions of the Me atoms were extracted along with the magnetic dipolar moment of the individual sites. The four types of WHFs exhibit ferrimagnetic ordering. For Mg, Ni and Zn the magnetic moments are found to be ordered colinearly and with the magnetic easy axis along the crystallographic c axis. In SrCo2Fe16O27, however, the spontaneous magnetization changes from uniaxial to planar, with the moments aligning in the crystallographic ab plane. Macromagnetic properties were measured using a vibration sample magnetometer. The measured saturation magnetization (Ms) between the different samples follows the same trend as the calculated Ms extracted from the refined magnetic moments of the neutron powder diffraction data. Given the correlation between the calculated Ms and the refined substitution degree of the different Me in specific crystallographic sites, the agreement between the measured and calculated Ms values consolidates the robustness of the structural and magnetic Rietveld model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hexaferrites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic structures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">combined neutron and X-ray refinement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">W-type hexaferrites</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Crystallography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jakob V. Ahlburg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matilde Saura-Múzquiz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Z. Eikeland</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mogens Christensen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IUCrJ</subfield><subfield code="d">International Union of Crystallography, 2014</subfield><subfield code="g">6(2019), 3, Seite 492-499</subfield><subfield code="w">(DE-627)777782758</subfield><subfield code="w">(DE-600)2754953-7</subfield><subfield code="x">20522525</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:492-499</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1107/S2052252519003130</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e7cb63f9e91e4147af672535e58d0d4d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://scripts.iucr.org/cgi-bin/paper?S2052252519003130</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2052-2525</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="h">492-499</subfield></datafield></record></collection>
|
score |
7.3996277 |