Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography
Defects including inclusions and voids significantly affect the mechanical properties of the additive manufacturing materials. It is necessary to precisely capture the defects and determine their hazardous effects on material mechanical properties. In this paper, a damage model is developed to descr...
Ausführliche Beschreibung
Autor*in: |
Dianyin Hu [verfasserIn] Jinchao Pan [verfasserIn] Jianxing Mao [verfasserIn] Shuhao Hu [verfasserIn] Xi Liu [verfasserIn] Yanan Fu [verfasserIn] Rongqiao Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Materials & Design - Elsevier, 2019, 198(2021), Seite 109353- |
---|---|
Übergeordnetes Werk: |
volume:198 ; year:2021 ; pages:109353- |
Links: |
---|
DOI / URN: |
10.1016/j.matdes.2020.109353 |
---|
Katalog-ID: |
DOAJ017328918 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ017328918 | ||
003 | DE-627 | ||
005 | 20230310090832.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.matdes.2020.109353 |2 doi | |
035 | |a (DE-627)DOAJ017328918 | ||
035 | |a (DE-599)DOAJ97e9265958424c208064f4dc0bcb16c9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
100 | 0 | |a Dianyin Hu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Defects including inclusions and voids significantly affect the mechanical properties of the additive manufacturing materials. It is necessary to precisely capture the defects and determine their hazardous effects on material mechanical properties. In this paper, a damage model is developed to describe the nucleation, growth, and coalescence of voids in additive manufacturing materials, revealing the nature of true stress drop. In order to characterize the defect morphology and depict the defect evolution, an in-situ tensile test with synchrotron radiation X-ray topography (SRXT) is carried out. Statistical reconstruction of the initial voids morphology are used as input for the established damage model. Furthermore, in light of the epistemic uncertainty in the process of defect reconstruction in SRXT, Bayesian framework is adopted for parameter estimation. Finally, the above model is verified by the data form 3D defect reconstruction and the uniaxial tensile test, where the constitutive behavior as well as its scatter are well captured. This work contributes to the depiction on damage evolution and the correspondingly affected deformation performance, which can be useful in material design and defect control for additive manufactured load-bearing structures. | ||
650 | 4 | |a Additive manufacturing | |
650 | 4 | |a Synchrotron radiation X-ray topography | |
650 | 4 | |a Damage evolution | |
650 | 4 | |a Mechanical behavior | |
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
700 | 0 | |a Jinchao Pan |e verfasserin |4 aut | |
700 | 0 | |a Jianxing Mao |e verfasserin |4 aut | |
700 | 0 | |a Shuhao Hu |e verfasserin |4 aut | |
700 | 0 | |a Xi Liu |e verfasserin |4 aut | |
700 | 0 | |a Yanan Fu |e verfasserin |4 aut | |
700 | 0 | |a Rongqiao Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Materials & Design |d Elsevier, 2019 |g 198(2021), Seite 109353- |w (DE-627)32052857X |w (DE-600)2015480-X |x 18734197 |7 nnns |
773 | 1 | 8 | |g volume:198 |g year:2021 |g pages:109353- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.matdes.2020.109353 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/97e9265958424c208064f4dc0bcb16c9 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0264127520308893 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0264-1275 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 198 |j 2021 |h 109353- |
author_variant |
d h dh j p jp j m jm s h sh x l xl y f yf r w rw |
---|---|
matchkey_str |
article:18734197:2021----::ehncleairrdcinfdiieyauatrdopnnsaeodfceouinbevtob |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.1016/j.matdes.2020.109353 doi (DE-627)DOAJ017328918 (DE-599)DOAJ97e9265958424c208064f4dc0bcb16c9 DE-627 ger DE-627 rakwb eng TA401-492 Dianyin Hu verfasserin aut Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defects including inclusions and voids significantly affect the mechanical properties of the additive manufacturing materials. It is necessary to precisely capture the defects and determine their hazardous effects on material mechanical properties. In this paper, a damage model is developed to describe the nucleation, growth, and coalescence of voids in additive manufacturing materials, revealing the nature of true stress drop. In order to characterize the defect morphology and depict the defect evolution, an in-situ tensile test with synchrotron radiation X-ray topography (SRXT) is carried out. Statistical reconstruction of the initial voids morphology are used as input for the established damage model. Furthermore, in light of the epistemic uncertainty in the process of defect reconstruction in SRXT, Bayesian framework is adopted for parameter estimation. Finally, the above model is verified by the data form 3D defect reconstruction and the uniaxial tensile test, where the constitutive behavior as well as its scatter are well captured. This work contributes to the depiction on damage evolution and the correspondingly affected deformation performance, which can be useful in material design and defect control for additive manufactured load-bearing structures. Additive manufacturing Synchrotron radiation X-ray topography Damage evolution Mechanical behavior Materials of engineering and construction. Mechanics of materials Jinchao Pan verfasserin aut Jianxing Mao verfasserin aut Shuhao Hu verfasserin aut Xi Liu verfasserin aut Yanan Fu verfasserin aut Rongqiao Wang verfasserin aut In Materials & Design Elsevier, 2019 198(2021), Seite 109353- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:198 year:2021 pages:109353- https://doi.org/10.1016/j.matdes.2020.109353 kostenfrei https://doaj.org/article/97e9265958424c208064f4dc0bcb16c9 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127520308893 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 198 2021 109353- |
spelling |
10.1016/j.matdes.2020.109353 doi (DE-627)DOAJ017328918 (DE-599)DOAJ97e9265958424c208064f4dc0bcb16c9 DE-627 ger DE-627 rakwb eng TA401-492 Dianyin Hu verfasserin aut Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defects including inclusions and voids significantly affect the mechanical properties of the additive manufacturing materials. It is necessary to precisely capture the defects and determine their hazardous effects on material mechanical properties. In this paper, a damage model is developed to describe the nucleation, growth, and coalescence of voids in additive manufacturing materials, revealing the nature of true stress drop. In order to characterize the defect morphology and depict the defect evolution, an in-situ tensile test with synchrotron radiation X-ray topography (SRXT) is carried out. Statistical reconstruction of the initial voids morphology are used as input for the established damage model. Furthermore, in light of the epistemic uncertainty in the process of defect reconstruction in SRXT, Bayesian framework is adopted for parameter estimation. Finally, the above model is verified by the data form 3D defect reconstruction and the uniaxial tensile test, where the constitutive behavior as well as its scatter are well captured. This work contributes to the depiction on damage evolution and the correspondingly affected deformation performance, which can be useful in material design and defect control for additive manufactured load-bearing structures. Additive manufacturing Synchrotron radiation X-ray topography Damage evolution Mechanical behavior Materials of engineering and construction. Mechanics of materials Jinchao Pan verfasserin aut Jianxing Mao verfasserin aut Shuhao Hu verfasserin aut Xi Liu verfasserin aut Yanan Fu verfasserin aut Rongqiao Wang verfasserin aut In Materials & Design Elsevier, 2019 198(2021), Seite 109353- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:198 year:2021 pages:109353- https://doi.org/10.1016/j.matdes.2020.109353 kostenfrei https://doaj.org/article/97e9265958424c208064f4dc0bcb16c9 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127520308893 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 198 2021 109353- |
allfields_unstemmed |
10.1016/j.matdes.2020.109353 doi (DE-627)DOAJ017328918 (DE-599)DOAJ97e9265958424c208064f4dc0bcb16c9 DE-627 ger DE-627 rakwb eng TA401-492 Dianyin Hu verfasserin aut Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defects including inclusions and voids significantly affect the mechanical properties of the additive manufacturing materials. It is necessary to precisely capture the defects and determine their hazardous effects on material mechanical properties. In this paper, a damage model is developed to describe the nucleation, growth, and coalescence of voids in additive manufacturing materials, revealing the nature of true stress drop. In order to characterize the defect morphology and depict the defect evolution, an in-situ tensile test with synchrotron radiation X-ray topography (SRXT) is carried out. Statistical reconstruction of the initial voids morphology are used as input for the established damage model. Furthermore, in light of the epistemic uncertainty in the process of defect reconstruction in SRXT, Bayesian framework is adopted for parameter estimation. Finally, the above model is verified by the data form 3D defect reconstruction and the uniaxial tensile test, where the constitutive behavior as well as its scatter are well captured. This work contributes to the depiction on damage evolution and the correspondingly affected deformation performance, which can be useful in material design and defect control for additive manufactured load-bearing structures. Additive manufacturing Synchrotron radiation X-ray topography Damage evolution Mechanical behavior Materials of engineering and construction. Mechanics of materials Jinchao Pan verfasserin aut Jianxing Mao verfasserin aut Shuhao Hu verfasserin aut Xi Liu verfasserin aut Yanan Fu verfasserin aut Rongqiao Wang verfasserin aut In Materials & Design Elsevier, 2019 198(2021), Seite 109353- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:198 year:2021 pages:109353- https://doi.org/10.1016/j.matdes.2020.109353 kostenfrei https://doaj.org/article/97e9265958424c208064f4dc0bcb16c9 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127520308893 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 198 2021 109353- |
allfieldsGer |
10.1016/j.matdes.2020.109353 doi (DE-627)DOAJ017328918 (DE-599)DOAJ97e9265958424c208064f4dc0bcb16c9 DE-627 ger DE-627 rakwb eng TA401-492 Dianyin Hu verfasserin aut Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defects including inclusions and voids significantly affect the mechanical properties of the additive manufacturing materials. It is necessary to precisely capture the defects and determine their hazardous effects on material mechanical properties. In this paper, a damage model is developed to describe the nucleation, growth, and coalescence of voids in additive manufacturing materials, revealing the nature of true stress drop. In order to characterize the defect morphology and depict the defect evolution, an in-situ tensile test with synchrotron radiation X-ray topography (SRXT) is carried out. Statistical reconstruction of the initial voids morphology are used as input for the established damage model. Furthermore, in light of the epistemic uncertainty in the process of defect reconstruction in SRXT, Bayesian framework is adopted for parameter estimation. Finally, the above model is verified by the data form 3D defect reconstruction and the uniaxial tensile test, where the constitutive behavior as well as its scatter are well captured. This work contributes to the depiction on damage evolution and the correspondingly affected deformation performance, which can be useful in material design and defect control for additive manufactured load-bearing structures. Additive manufacturing Synchrotron radiation X-ray topography Damage evolution Mechanical behavior Materials of engineering and construction. Mechanics of materials Jinchao Pan verfasserin aut Jianxing Mao verfasserin aut Shuhao Hu verfasserin aut Xi Liu verfasserin aut Yanan Fu verfasserin aut Rongqiao Wang verfasserin aut In Materials & Design Elsevier, 2019 198(2021), Seite 109353- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:198 year:2021 pages:109353- https://doi.org/10.1016/j.matdes.2020.109353 kostenfrei https://doaj.org/article/97e9265958424c208064f4dc0bcb16c9 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127520308893 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 198 2021 109353- |
allfieldsSound |
10.1016/j.matdes.2020.109353 doi (DE-627)DOAJ017328918 (DE-599)DOAJ97e9265958424c208064f4dc0bcb16c9 DE-627 ger DE-627 rakwb eng TA401-492 Dianyin Hu verfasserin aut Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defects including inclusions and voids significantly affect the mechanical properties of the additive manufacturing materials. It is necessary to precisely capture the defects and determine their hazardous effects on material mechanical properties. In this paper, a damage model is developed to describe the nucleation, growth, and coalescence of voids in additive manufacturing materials, revealing the nature of true stress drop. In order to characterize the defect morphology and depict the defect evolution, an in-situ tensile test with synchrotron radiation X-ray topography (SRXT) is carried out. Statistical reconstruction of the initial voids morphology are used as input for the established damage model. Furthermore, in light of the epistemic uncertainty in the process of defect reconstruction in SRXT, Bayesian framework is adopted for parameter estimation. Finally, the above model is verified by the data form 3D defect reconstruction and the uniaxial tensile test, where the constitutive behavior as well as its scatter are well captured. This work contributes to the depiction on damage evolution and the correspondingly affected deformation performance, which can be useful in material design and defect control for additive manufactured load-bearing structures. Additive manufacturing Synchrotron radiation X-ray topography Damage evolution Mechanical behavior Materials of engineering and construction. Mechanics of materials Jinchao Pan verfasserin aut Jianxing Mao verfasserin aut Shuhao Hu verfasserin aut Xi Liu verfasserin aut Yanan Fu verfasserin aut Rongqiao Wang verfasserin aut In Materials & Design Elsevier, 2019 198(2021), Seite 109353- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:198 year:2021 pages:109353- https://doi.org/10.1016/j.matdes.2020.109353 kostenfrei https://doaj.org/article/97e9265958424c208064f4dc0bcb16c9 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127520308893 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 198 2021 109353- |
language |
English |
source |
In Materials & Design 198(2021), Seite 109353- volume:198 year:2021 pages:109353- |
sourceStr |
In Materials & Design 198(2021), Seite 109353- volume:198 year:2021 pages:109353- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Additive manufacturing Synchrotron radiation X-ray topography Damage evolution Mechanical behavior Materials of engineering and construction. Mechanics of materials |
isfreeaccess_bool |
true |
container_title |
Materials & Design |
authorswithroles_txt_mv |
Dianyin Hu @@aut@@ Jinchao Pan @@aut@@ Jianxing Mao @@aut@@ Shuhao Hu @@aut@@ Xi Liu @@aut@@ Yanan Fu @@aut@@ Rongqiao Wang @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
32052857X |
id |
DOAJ017328918 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ017328918</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310090832.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matdes.2020.109353</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ017328918</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ97e9265958424c208064f4dc0bcb16c9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dianyin Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Defects including inclusions and voids significantly affect the mechanical properties of the additive manufacturing materials. It is necessary to precisely capture the defects and determine their hazardous effects on material mechanical properties. In this paper, a damage model is developed to describe the nucleation, growth, and coalescence of voids in additive manufacturing materials, revealing the nature of true stress drop. In order to characterize the defect morphology and depict the defect evolution, an in-situ tensile test with synchrotron radiation X-ray topography (SRXT) is carried out. Statistical reconstruction of the initial voids morphology are used as input for the established damage model. Furthermore, in light of the epistemic uncertainty in the process of defect reconstruction in SRXT, Bayesian framework is adopted for parameter estimation. Finally, the above model is verified by the data form 3D defect reconstruction and the uniaxial tensile test, where the constitutive behavior as well as its scatter are well captured. This work contributes to the depiction on damage evolution and the correspondingly affected deformation performance, which can be useful in material design and defect control for additive manufactured load-bearing structures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Additive manufacturing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synchrotron radiation X-ray topography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damage evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical behavior</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinchao Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianxing Mao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuhao Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xi Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanan Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rongqiao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials & Design</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">198(2021), Seite 109353-</subfield><subfield code="w">(DE-627)32052857X</subfield><subfield code="w">(DE-600)2015480-X</subfield><subfield code="x">18734197</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:198</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:109353-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.matdes.2020.109353</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/97e9265958424c208064f4dc0bcb16c9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0264127520308893</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0264-1275</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">198</subfield><subfield code="j">2021</subfield><subfield code="h">109353-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Dianyin Hu |
spellingShingle |
Dianyin Hu misc TA401-492 misc Additive manufacturing misc Synchrotron radiation X-ray topography misc Damage evolution misc Mechanical behavior misc Materials of engineering and construction. Mechanics of materials Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography |
authorStr |
Dianyin Hu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32052857X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
18734197 |
topic_title |
TA401-492 Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography Additive manufacturing Synchrotron radiation X-ray topography Damage evolution Mechanical behavior |
topic |
misc TA401-492 misc Additive manufacturing misc Synchrotron radiation X-ray topography misc Damage evolution misc Mechanical behavior misc Materials of engineering and construction. Mechanics of materials |
topic_unstemmed |
misc TA401-492 misc Additive manufacturing misc Synchrotron radiation X-ray topography misc Damage evolution misc Mechanical behavior misc Materials of engineering and construction. Mechanics of materials |
topic_browse |
misc TA401-492 misc Additive manufacturing misc Synchrotron radiation X-ray topography misc Damage evolution misc Mechanical behavior misc Materials of engineering and construction. Mechanics of materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials & Design |
hierarchy_parent_id |
32052857X |
hierarchy_top_title |
Materials & Design |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)32052857X (DE-600)2015480-X |
title |
Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography |
ctrlnum |
(DE-627)DOAJ017328918 (DE-599)DOAJ97e9265958424c208064f4dc0bcb16c9 |
title_full |
Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography |
author_sort |
Dianyin Hu |
journal |
Materials & Design |
journalStr |
Materials & Design |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
109353 |
author_browse |
Dianyin Hu Jinchao Pan Jianxing Mao Shuhao Hu Xi Liu Yanan Fu Rongqiao Wang |
container_volume |
198 |
class |
TA401-492 |
format_se |
Elektronische Aufsätze |
author-letter |
Dianyin Hu |
doi_str_mv |
10.1016/j.matdes.2020.109353 |
author2-role |
verfasserin |
title_sort |
mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation x-ray tomography |
callnumber |
TA401-492 |
title_auth |
Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography |
abstract |
Defects including inclusions and voids significantly affect the mechanical properties of the additive manufacturing materials. It is necessary to precisely capture the defects and determine their hazardous effects on material mechanical properties. In this paper, a damage model is developed to describe the nucleation, growth, and coalescence of voids in additive manufacturing materials, revealing the nature of true stress drop. In order to characterize the defect morphology and depict the defect evolution, an in-situ tensile test with synchrotron radiation X-ray topography (SRXT) is carried out. Statistical reconstruction of the initial voids morphology are used as input for the established damage model. Furthermore, in light of the epistemic uncertainty in the process of defect reconstruction in SRXT, Bayesian framework is adopted for parameter estimation. Finally, the above model is verified by the data form 3D defect reconstruction and the uniaxial tensile test, where the constitutive behavior as well as its scatter are well captured. This work contributes to the depiction on damage evolution and the correspondingly affected deformation performance, which can be useful in material design and defect control for additive manufactured load-bearing structures. |
abstractGer |
Defects including inclusions and voids significantly affect the mechanical properties of the additive manufacturing materials. It is necessary to precisely capture the defects and determine their hazardous effects on material mechanical properties. In this paper, a damage model is developed to describe the nucleation, growth, and coalescence of voids in additive manufacturing materials, revealing the nature of true stress drop. In order to characterize the defect morphology and depict the defect evolution, an in-situ tensile test with synchrotron radiation X-ray topography (SRXT) is carried out. Statistical reconstruction of the initial voids morphology are used as input for the established damage model. Furthermore, in light of the epistemic uncertainty in the process of defect reconstruction in SRXT, Bayesian framework is adopted for parameter estimation. Finally, the above model is verified by the data form 3D defect reconstruction and the uniaxial tensile test, where the constitutive behavior as well as its scatter are well captured. This work contributes to the depiction on damage evolution and the correspondingly affected deformation performance, which can be useful in material design and defect control for additive manufactured load-bearing structures. |
abstract_unstemmed |
Defects including inclusions and voids significantly affect the mechanical properties of the additive manufacturing materials. It is necessary to precisely capture the defects and determine their hazardous effects on material mechanical properties. In this paper, a damage model is developed to describe the nucleation, growth, and coalescence of voids in additive manufacturing materials, revealing the nature of true stress drop. In order to characterize the defect morphology and depict the defect evolution, an in-situ tensile test with synchrotron radiation X-ray topography (SRXT) is carried out. Statistical reconstruction of the initial voids morphology are used as input for the established damage model. Furthermore, in light of the epistemic uncertainty in the process of defect reconstruction in SRXT, Bayesian framework is adopted for parameter estimation. Finally, the above model is verified by the data form 3D defect reconstruction and the uniaxial tensile test, where the constitutive behavior as well as its scatter are well captured. This work contributes to the depiction on damage evolution and the correspondingly affected deformation performance, which can be useful in material design and defect control for additive manufactured load-bearing structures. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography |
url |
https://doi.org/10.1016/j.matdes.2020.109353 https://doaj.org/article/97e9265958424c208064f4dc0bcb16c9 http://www.sciencedirect.com/science/article/pii/S0264127520308893 https://doaj.org/toc/0264-1275 |
remote_bool |
true |
author2 |
Jinchao Pan Jianxing Mao Shuhao Hu Xi Liu Yanan Fu Rongqiao Wang |
author2Str |
Jinchao Pan Jianxing Mao Shuhao Hu Xi Liu Yanan Fu Rongqiao Wang |
ppnlink |
32052857X |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.matdes.2020.109353 |
callnumber-a |
TA401-492 |
up_date |
2024-07-04T01:11:36.470Z |
_version_ |
1803608912272818176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ017328918</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310090832.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matdes.2020.109353</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ017328918</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ97e9265958424c208064f4dc0bcb16c9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dianyin Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Defects including inclusions and voids significantly affect the mechanical properties of the additive manufacturing materials. It is necessary to precisely capture the defects and determine their hazardous effects on material mechanical properties. In this paper, a damage model is developed to describe the nucleation, growth, and coalescence of voids in additive manufacturing materials, revealing the nature of true stress drop. In order to characterize the defect morphology and depict the defect evolution, an in-situ tensile test with synchrotron radiation X-ray topography (SRXT) is carried out. Statistical reconstruction of the initial voids morphology are used as input for the established damage model. Furthermore, in light of the epistemic uncertainty in the process of defect reconstruction in SRXT, Bayesian framework is adopted for parameter estimation. Finally, the above model is verified by the data form 3D defect reconstruction and the uniaxial tensile test, where the constitutive behavior as well as its scatter are well captured. This work contributes to the depiction on damage evolution and the correspondingly affected deformation performance, which can be useful in material design and defect control for additive manufactured load-bearing structures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Additive manufacturing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synchrotron radiation X-ray topography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damage evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical behavior</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinchao Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianxing Mao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuhao Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xi Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanan Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rongqiao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials & Design</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">198(2021), Seite 109353-</subfield><subfield code="w">(DE-627)32052857X</subfield><subfield code="w">(DE-600)2015480-X</subfield><subfield code="x">18734197</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:198</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:109353-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.matdes.2020.109353</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/97e9265958424c208064f4dc0bcb16c9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0264127520308893</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0264-1275</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">198</subfield><subfield code="j">2021</subfield><subfield code="h">109353-</subfield></datafield></record></collection>
|
score |
7.402316 |