Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation
We have investigated how the exhaust gases from a heavy-duty Euro VI engine, powered with biogas impact a vanadium-based selective catalytic reduction (SCR) catalyst in terms of performance. A full Euro VI emission control system was used and the accumulation of catalyst poisons from the combustion...
Ausführliche Beschreibung
Autor*in: |
Johanna Englund [verfasserIn] Sandra Dahlin [verfasserIn] Andreas Schaefer [verfasserIn] Kunpeng Xie [verfasserIn] Lennart Andersson [verfasserIn] Soran Shwan [verfasserIn] Per-Anders Carlsson [verfasserIn] Lars J. Pettersson [verfasserIn] Magnus Skoglundh [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Catalysts - MDPI AG, 2012, 10(2020), 5, p 552 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2020 ; number:5, p 552 |
Links: |
---|
DOI / URN: |
10.3390/catal10050552 |
---|
Katalog-ID: |
DOAJ01743131X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ01743131X | ||
003 | DE-627 | ||
005 | 20240412233731.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/catal10050552 |2 doi | |
035 | |a (DE-627)DOAJ01743131X | ||
035 | |a (DE-599)DOAJ07a4ba5502d345edbb543f87b6fe38b0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Johanna Englund |e verfasserin |4 aut | |
245 | 1 | 0 | |a Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We have investigated how the exhaust gases from a heavy-duty Euro VI engine, powered with biogas impact a vanadium-based selective catalytic reduction (SCR) catalyst in terms of performance. A full Euro VI emission control system was used and the accumulation of catalyst poisons from the combustion was investigated for the up-stream particulate filter as well as the SCR catalyst. The NO<i<<sub<x</sub<</i< reduction performance in terms of standard, fast and NO<sub<2</sub<-rich SCR was evaluated before and after exposure to exhaust from a biogas-powered engine for 900 h. The SCR catalyst retains a significant part of its activity towards NO<i<<sub<x</sub<</i< reduction after exposure to biogas exhaust, likely due to capture of catalyst poisons on the up-stream components where the deactivation of the oxidation catalyst is especially profound. At lower temperatures some deactivation of the first part of the SCR catalyst was observed which could be explained by a considerably higher surface V<sup<4+</sup</V<sup<5+</sup< ratio for this sample compared to the other samples. The higher value indicates that the reoxidation of V<sup<4+</sup< to V<sup<5+</sup< is partially hindered, blocking the redox cycle for parts of the active sites. | ||
650 | 4 | |a NH<sub<3</sub<-SCR | |
650 | 4 | |a V<sub<2</sub<O<sub<5</sub<-WO<sub<3</sub</TiO<sub<2</sub< | |
650 | 4 | |a catalyst deactivation | |
650 | 4 | |a biogas | |
650 | 4 | |a methane | |
650 | 4 | |a engine-bench | |
653 | 0 | |a Chemical technology | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Sandra Dahlin |e verfasserin |4 aut | |
700 | 0 | |a Andreas Schaefer |e verfasserin |4 aut | |
700 | 0 | |a Kunpeng Xie |e verfasserin |4 aut | |
700 | 0 | |a Lennart Andersson |e verfasserin |4 aut | |
700 | 0 | |a Soran Shwan |e verfasserin |4 aut | |
700 | 0 | |a Per-Anders Carlsson |e verfasserin |4 aut | |
700 | 0 | |a Lars J. Pettersson |e verfasserin |4 aut | |
700 | 0 | |a Magnus Skoglundh |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Catalysts |d MDPI AG, 2012 |g 10(2020), 5, p 552 |w (DE-627)71862646X |w (DE-600)2662126-5 |x 20734344 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2020 |g number:5, p 552 |
856 | 4 | 0 | |u https://doi.org/10.3390/catal10050552 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/07a4ba5502d345edbb543f87b6fe38b0 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4344/10/5/552 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4344 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2020 |e 5, p 552 |
author_variant |
j e je s d sd a s as k x kx l a la s s ss p a c pac l j p ljp m s ms |
---|---|
matchkey_str |
article:20734344:2020----::eciainfvndubsdcctlsueiaigsoeeervha |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TP |
publishDate |
2020 |
allfields |
10.3390/catal10050552 doi (DE-627)DOAJ01743131X (DE-599)DOAJ07a4ba5502d345edbb543f87b6fe38b0 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Johanna Englund verfasserin aut Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We have investigated how the exhaust gases from a heavy-duty Euro VI engine, powered with biogas impact a vanadium-based selective catalytic reduction (SCR) catalyst in terms of performance. A full Euro VI emission control system was used and the accumulation of catalyst poisons from the combustion was investigated for the up-stream particulate filter as well as the SCR catalyst. The NO<i<<sub<x</sub<</i< reduction performance in terms of standard, fast and NO<sub<2</sub<-rich SCR was evaluated before and after exposure to exhaust from a biogas-powered engine for 900 h. The SCR catalyst retains a significant part of its activity towards NO<i<<sub<x</sub<</i< reduction after exposure to biogas exhaust, likely due to capture of catalyst poisons on the up-stream components where the deactivation of the oxidation catalyst is especially profound. At lower temperatures some deactivation of the first part of the SCR catalyst was observed which could be explained by a considerably higher surface V<sup<4+</sup</V<sup<5+</sup< ratio for this sample compared to the other samples. The higher value indicates that the reoxidation of V<sup<4+</sup< to V<sup<5+</sup< is partially hindered, blocking the redox cycle for parts of the active sites. NH<sub<3</sub<-SCR V<sub<2</sub<O<sub<5</sub<-WO<sub<3</sub</TiO<sub<2</sub< catalyst deactivation biogas methane engine-bench Chemical technology Chemistry Sandra Dahlin verfasserin aut Andreas Schaefer verfasserin aut Kunpeng Xie verfasserin aut Lennart Andersson verfasserin aut Soran Shwan verfasserin aut Per-Anders Carlsson verfasserin aut Lars J. Pettersson verfasserin aut Magnus Skoglundh verfasserin aut In Catalysts MDPI AG, 2012 10(2020), 5, p 552 (DE-627)71862646X (DE-600)2662126-5 20734344 nnns volume:10 year:2020 number:5, p 552 https://doi.org/10.3390/catal10050552 kostenfrei https://doaj.org/article/07a4ba5502d345edbb543f87b6fe38b0 kostenfrei https://www.mdpi.com/2073-4344/10/5/552 kostenfrei https://doaj.org/toc/2073-4344 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 5, p 552 |
spelling |
10.3390/catal10050552 doi (DE-627)DOAJ01743131X (DE-599)DOAJ07a4ba5502d345edbb543f87b6fe38b0 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Johanna Englund verfasserin aut Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We have investigated how the exhaust gases from a heavy-duty Euro VI engine, powered with biogas impact a vanadium-based selective catalytic reduction (SCR) catalyst in terms of performance. A full Euro VI emission control system was used and the accumulation of catalyst poisons from the combustion was investigated for the up-stream particulate filter as well as the SCR catalyst. The NO<i<<sub<x</sub<</i< reduction performance in terms of standard, fast and NO<sub<2</sub<-rich SCR was evaluated before and after exposure to exhaust from a biogas-powered engine for 900 h. The SCR catalyst retains a significant part of its activity towards NO<i<<sub<x</sub<</i< reduction after exposure to biogas exhaust, likely due to capture of catalyst poisons on the up-stream components where the deactivation of the oxidation catalyst is especially profound. At lower temperatures some deactivation of the first part of the SCR catalyst was observed which could be explained by a considerably higher surface V<sup<4+</sup</V<sup<5+</sup< ratio for this sample compared to the other samples. The higher value indicates that the reoxidation of V<sup<4+</sup< to V<sup<5+</sup< is partially hindered, blocking the redox cycle for parts of the active sites. NH<sub<3</sub<-SCR V<sub<2</sub<O<sub<5</sub<-WO<sub<3</sub</TiO<sub<2</sub< catalyst deactivation biogas methane engine-bench Chemical technology Chemistry Sandra Dahlin verfasserin aut Andreas Schaefer verfasserin aut Kunpeng Xie verfasserin aut Lennart Andersson verfasserin aut Soran Shwan verfasserin aut Per-Anders Carlsson verfasserin aut Lars J. Pettersson verfasserin aut Magnus Skoglundh verfasserin aut In Catalysts MDPI AG, 2012 10(2020), 5, p 552 (DE-627)71862646X (DE-600)2662126-5 20734344 nnns volume:10 year:2020 number:5, p 552 https://doi.org/10.3390/catal10050552 kostenfrei https://doaj.org/article/07a4ba5502d345edbb543f87b6fe38b0 kostenfrei https://www.mdpi.com/2073-4344/10/5/552 kostenfrei https://doaj.org/toc/2073-4344 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 5, p 552 |
allfields_unstemmed |
10.3390/catal10050552 doi (DE-627)DOAJ01743131X (DE-599)DOAJ07a4ba5502d345edbb543f87b6fe38b0 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Johanna Englund verfasserin aut Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We have investigated how the exhaust gases from a heavy-duty Euro VI engine, powered with biogas impact a vanadium-based selective catalytic reduction (SCR) catalyst in terms of performance. A full Euro VI emission control system was used and the accumulation of catalyst poisons from the combustion was investigated for the up-stream particulate filter as well as the SCR catalyst. The NO<i<<sub<x</sub<</i< reduction performance in terms of standard, fast and NO<sub<2</sub<-rich SCR was evaluated before and after exposure to exhaust from a biogas-powered engine for 900 h. The SCR catalyst retains a significant part of its activity towards NO<i<<sub<x</sub<</i< reduction after exposure to biogas exhaust, likely due to capture of catalyst poisons on the up-stream components where the deactivation of the oxidation catalyst is especially profound. At lower temperatures some deactivation of the first part of the SCR catalyst was observed which could be explained by a considerably higher surface V<sup<4+</sup</V<sup<5+</sup< ratio for this sample compared to the other samples. The higher value indicates that the reoxidation of V<sup<4+</sup< to V<sup<5+</sup< is partially hindered, blocking the redox cycle for parts of the active sites. NH<sub<3</sub<-SCR V<sub<2</sub<O<sub<5</sub<-WO<sub<3</sub</TiO<sub<2</sub< catalyst deactivation biogas methane engine-bench Chemical technology Chemistry Sandra Dahlin verfasserin aut Andreas Schaefer verfasserin aut Kunpeng Xie verfasserin aut Lennart Andersson verfasserin aut Soran Shwan verfasserin aut Per-Anders Carlsson verfasserin aut Lars J. Pettersson verfasserin aut Magnus Skoglundh verfasserin aut In Catalysts MDPI AG, 2012 10(2020), 5, p 552 (DE-627)71862646X (DE-600)2662126-5 20734344 nnns volume:10 year:2020 number:5, p 552 https://doi.org/10.3390/catal10050552 kostenfrei https://doaj.org/article/07a4ba5502d345edbb543f87b6fe38b0 kostenfrei https://www.mdpi.com/2073-4344/10/5/552 kostenfrei https://doaj.org/toc/2073-4344 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 5, p 552 |
allfieldsGer |
10.3390/catal10050552 doi (DE-627)DOAJ01743131X (DE-599)DOAJ07a4ba5502d345edbb543f87b6fe38b0 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Johanna Englund verfasserin aut Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We have investigated how the exhaust gases from a heavy-duty Euro VI engine, powered with biogas impact a vanadium-based selective catalytic reduction (SCR) catalyst in terms of performance. A full Euro VI emission control system was used and the accumulation of catalyst poisons from the combustion was investigated for the up-stream particulate filter as well as the SCR catalyst. The NO<i<<sub<x</sub<</i< reduction performance in terms of standard, fast and NO<sub<2</sub<-rich SCR was evaluated before and after exposure to exhaust from a biogas-powered engine for 900 h. The SCR catalyst retains a significant part of its activity towards NO<i<<sub<x</sub<</i< reduction after exposure to biogas exhaust, likely due to capture of catalyst poisons on the up-stream components where the deactivation of the oxidation catalyst is especially profound. At lower temperatures some deactivation of the first part of the SCR catalyst was observed which could be explained by a considerably higher surface V<sup<4+</sup</V<sup<5+</sup< ratio for this sample compared to the other samples. The higher value indicates that the reoxidation of V<sup<4+</sup< to V<sup<5+</sup< is partially hindered, blocking the redox cycle for parts of the active sites. NH<sub<3</sub<-SCR V<sub<2</sub<O<sub<5</sub<-WO<sub<3</sub</TiO<sub<2</sub< catalyst deactivation biogas methane engine-bench Chemical technology Chemistry Sandra Dahlin verfasserin aut Andreas Schaefer verfasserin aut Kunpeng Xie verfasserin aut Lennart Andersson verfasserin aut Soran Shwan verfasserin aut Per-Anders Carlsson verfasserin aut Lars J. Pettersson verfasserin aut Magnus Skoglundh verfasserin aut In Catalysts MDPI AG, 2012 10(2020), 5, p 552 (DE-627)71862646X (DE-600)2662126-5 20734344 nnns volume:10 year:2020 number:5, p 552 https://doi.org/10.3390/catal10050552 kostenfrei https://doaj.org/article/07a4ba5502d345edbb543f87b6fe38b0 kostenfrei https://www.mdpi.com/2073-4344/10/5/552 kostenfrei https://doaj.org/toc/2073-4344 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 5, p 552 |
allfieldsSound |
10.3390/catal10050552 doi (DE-627)DOAJ01743131X (DE-599)DOAJ07a4ba5502d345edbb543f87b6fe38b0 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Johanna Englund verfasserin aut Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We have investigated how the exhaust gases from a heavy-duty Euro VI engine, powered with biogas impact a vanadium-based selective catalytic reduction (SCR) catalyst in terms of performance. A full Euro VI emission control system was used and the accumulation of catalyst poisons from the combustion was investigated for the up-stream particulate filter as well as the SCR catalyst. The NO<i<<sub<x</sub<</i< reduction performance in terms of standard, fast and NO<sub<2</sub<-rich SCR was evaluated before and after exposure to exhaust from a biogas-powered engine for 900 h. The SCR catalyst retains a significant part of its activity towards NO<i<<sub<x</sub<</i< reduction after exposure to biogas exhaust, likely due to capture of catalyst poisons on the up-stream components where the deactivation of the oxidation catalyst is especially profound. At lower temperatures some deactivation of the first part of the SCR catalyst was observed which could be explained by a considerably higher surface V<sup<4+</sup</V<sup<5+</sup< ratio for this sample compared to the other samples. The higher value indicates that the reoxidation of V<sup<4+</sup< to V<sup<5+</sup< is partially hindered, blocking the redox cycle for parts of the active sites. NH<sub<3</sub<-SCR V<sub<2</sub<O<sub<5</sub<-WO<sub<3</sub</TiO<sub<2</sub< catalyst deactivation biogas methane engine-bench Chemical technology Chemistry Sandra Dahlin verfasserin aut Andreas Schaefer verfasserin aut Kunpeng Xie verfasserin aut Lennart Andersson verfasserin aut Soran Shwan verfasserin aut Per-Anders Carlsson verfasserin aut Lars J. Pettersson verfasserin aut Magnus Skoglundh verfasserin aut In Catalysts MDPI AG, 2012 10(2020), 5, p 552 (DE-627)71862646X (DE-600)2662126-5 20734344 nnns volume:10 year:2020 number:5, p 552 https://doi.org/10.3390/catal10050552 kostenfrei https://doaj.org/article/07a4ba5502d345edbb543f87b6fe38b0 kostenfrei https://www.mdpi.com/2073-4344/10/5/552 kostenfrei https://doaj.org/toc/2073-4344 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 5, p 552 |
language |
English |
source |
In Catalysts 10(2020), 5, p 552 volume:10 year:2020 number:5, p 552 |
sourceStr |
In Catalysts 10(2020), 5, p 552 volume:10 year:2020 number:5, p 552 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
NH<sub<3</sub<-SCR V<sub<2</sub<O<sub<5</sub<-WO<sub<3</sub</TiO<sub<2</sub< catalyst deactivation biogas methane engine-bench Chemical technology Chemistry |
isfreeaccess_bool |
true |
container_title |
Catalysts |
authorswithroles_txt_mv |
Johanna Englund @@aut@@ Sandra Dahlin @@aut@@ Andreas Schaefer @@aut@@ Kunpeng Xie @@aut@@ Lennart Andersson @@aut@@ Soran Shwan @@aut@@ Per-Anders Carlsson @@aut@@ Lars J. Pettersson @@aut@@ Magnus Skoglundh @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
71862646X |
id |
DOAJ01743131X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ01743131X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412233731.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/catal10050552</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ01743131X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ07a4ba5502d345edbb543f87b6fe38b0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Johanna Englund</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We have investigated how the exhaust gases from a heavy-duty Euro VI engine, powered with biogas impact a vanadium-based selective catalytic reduction (SCR) catalyst in terms of performance. A full Euro VI emission control system was used and the accumulation of catalyst poisons from the combustion was investigated for the up-stream particulate filter as well as the SCR catalyst. The NO<i<<sub<x</sub<</i< reduction performance in terms of standard, fast and NO<sub<2</sub<-rich SCR was evaluated before and after exposure to exhaust from a biogas-powered engine for 900 h. The SCR catalyst retains a significant part of its activity towards NO<i<<sub<x</sub<</i< reduction after exposure to biogas exhaust, likely due to capture of catalyst poisons on the up-stream components where the deactivation of the oxidation catalyst is especially profound. At lower temperatures some deactivation of the first part of the SCR catalyst was observed which could be explained by a considerably higher surface V<sup<4+</sup</V<sup<5+</sup< ratio for this sample compared to the other samples. The higher value indicates that the reoxidation of V<sup<4+</sup< to V<sup<5+</sup< is partially hindered, blocking the redox cycle for parts of the active sites.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NH<sub<3</sub<-SCR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">V<sub<2</sub<O<sub<5</sub<-WO<sub<3</sub</TiO<sub<2</sub<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">catalyst deactivation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biogas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">methane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">engine-bench</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sandra Dahlin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andreas Schaefer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kunpeng Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lennart Andersson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Soran Shwan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Per-Anders Carlsson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lars J. Pettersson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Magnus Skoglundh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Catalysts</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 5, p 552</subfield><subfield code="w">(DE-627)71862646X</subfield><subfield code="w">(DE-600)2662126-5</subfield><subfield code="x">20734344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5, p 552</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/catal10050552</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/07a4ba5502d345edbb543f87b6fe38b0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4344/10/5/552</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4344</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">5, p 552</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Johanna Englund |
spellingShingle |
Johanna Englund misc TP1-1185 misc QD1-999 misc NH<sub<3</sub<-SCR misc V<sub<2</sub<O<sub<5</sub<-WO<sub<3</sub</TiO<sub<2</sub< misc catalyst deactivation misc biogas misc methane misc engine-bench misc Chemical technology misc Chemistry Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation |
authorStr |
Johanna Englund |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)71862646X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
20734344 |
topic_title |
TP1-1185 QD1-999 Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation NH<sub<3</sub<-SCR V<sub<2</sub<O<sub<5</sub<-WO<sub<3</sub</TiO<sub<2</sub< catalyst deactivation biogas methane engine-bench |
topic |
misc TP1-1185 misc QD1-999 misc NH<sub<3</sub<-SCR misc V<sub<2</sub<O<sub<5</sub<-WO<sub<3</sub</TiO<sub<2</sub< misc catalyst deactivation misc biogas misc methane misc engine-bench misc Chemical technology misc Chemistry |
topic_unstemmed |
misc TP1-1185 misc QD1-999 misc NH<sub<3</sub<-SCR misc V<sub<2</sub<O<sub<5</sub<-WO<sub<3</sub</TiO<sub<2</sub< misc catalyst deactivation misc biogas misc methane misc engine-bench misc Chemical technology misc Chemistry |
topic_browse |
misc TP1-1185 misc QD1-999 misc NH<sub<3</sub<-SCR misc V<sub<2</sub<O<sub<5</sub<-WO<sub<3</sub</TiO<sub<2</sub< misc catalyst deactivation misc biogas misc methane misc engine-bench misc Chemical technology misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Catalysts |
hierarchy_parent_id |
71862646X |
hierarchy_top_title |
Catalysts |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)71862646X (DE-600)2662126-5 |
title |
Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation |
ctrlnum |
(DE-627)DOAJ01743131X (DE-599)DOAJ07a4ba5502d345edbb543f87b6fe38b0 |
title_full |
Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation |
author_sort |
Johanna Englund |
journal |
Catalysts |
journalStr |
Catalysts |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Johanna Englund Sandra Dahlin Andreas Schaefer Kunpeng Xie Lennart Andersson Soran Shwan Per-Anders Carlsson Lars J. Pettersson Magnus Skoglundh |
container_volume |
10 |
class |
TP1-1185 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Johanna Englund |
doi_str_mv |
10.3390/catal10050552 |
author2-role |
verfasserin |
title_sort |
deactivation of a vanadium-based scr catalyst used in a biogas-powered euro vi heavy-duty engine installation |
callnumber |
TP1-1185 |
title_auth |
Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation |
abstract |
We have investigated how the exhaust gases from a heavy-duty Euro VI engine, powered with biogas impact a vanadium-based selective catalytic reduction (SCR) catalyst in terms of performance. A full Euro VI emission control system was used and the accumulation of catalyst poisons from the combustion was investigated for the up-stream particulate filter as well as the SCR catalyst. The NO<i<<sub<x</sub<</i< reduction performance in terms of standard, fast and NO<sub<2</sub<-rich SCR was evaluated before and after exposure to exhaust from a biogas-powered engine for 900 h. The SCR catalyst retains a significant part of its activity towards NO<i<<sub<x</sub<</i< reduction after exposure to biogas exhaust, likely due to capture of catalyst poisons on the up-stream components where the deactivation of the oxidation catalyst is especially profound. At lower temperatures some deactivation of the first part of the SCR catalyst was observed which could be explained by a considerably higher surface V<sup<4+</sup</V<sup<5+</sup< ratio for this sample compared to the other samples. The higher value indicates that the reoxidation of V<sup<4+</sup< to V<sup<5+</sup< is partially hindered, blocking the redox cycle for parts of the active sites. |
abstractGer |
We have investigated how the exhaust gases from a heavy-duty Euro VI engine, powered with biogas impact a vanadium-based selective catalytic reduction (SCR) catalyst in terms of performance. A full Euro VI emission control system was used and the accumulation of catalyst poisons from the combustion was investigated for the up-stream particulate filter as well as the SCR catalyst. The NO<i<<sub<x</sub<</i< reduction performance in terms of standard, fast and NO<sub<2</sub<-rich SCR was evaluated before and after exposure to exhaust from a biogas-powered engine for 900 h. The SCR catalyst retains a significant part of its activity towards NO<i<<sub<x</sub<</i< reduction after exposure to biogas exhaust, likely due to capture of catalyst poisons on the up-stream components where the deactivation of the oxidation catalyst is especially profound. At lower temperatures some deactivation of the first part of the SCR catalyst was observed which could be explained by a considerably higher surface V<sup<4+</sup</V<sup<5+</sup< ratio for this sample compared to the other samples. The higher value indicates that the reoxidation of V<sup<4+</sup< to V<sup<5+</sup< is partially hindered, blocking the redox cycle for parts of the active sites. |
abstract_unstemmed |
We have investigated how the exhaust gases from a heavy-duty Euro VI engine, powered with biogas impact a vanadium-based selective catalytic reduction (SCR) catalyst in terms of performance. A full Euro VI emission control system was used and the accumulation of catalyst poisons from the combustion was investigated for the up-stream particulate filter as well as the SCR catalyst. The NO<i<<sub<x</sub<</i< reduction performance in terms of standard, fast and NO<sub<2</sub<-rich SCR was evaluated before and after exposure to exhaust from a biogas-powered engine for 900 h. The SCR catalyst retains a significant part of its activity towards NO<i<<sub<x</sub<</i< reduction after exposure to biogas exhaust, likely due to capture of catalyst poisons on the up-stream components where the deactivation of the oxidation catalyst is especially profound. At lower temperatures some deactivation of the first part of the SCR catalyst was observed which could be explained by a considerably higher surface V<sup<4+</sup</V<sup<5+</sup< ratio for this sample compared to the other samples. The higher value indicates that the reoxidation of V<sup<4+</sup< to V<sup<5+</sup< is partially hindered, blocking the redox cycle for parts of the active sites. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 552 |
title_short |
Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation |
url |
https://doi.org/10.3390/catal10050552 https://doaj.org/article/07a4ba5502d345edbb543f87b6fe38b0 https://www.mdpi.com/2073-4344/10/5/552 https://doaj.org/toc/2073-4344 |
remote_bool |
true |
author2 |
Sandra Dahlin Andreas Schaefer Kunpeng Xie Lennart Andersson Soran Shwan Per-Anders Carlsson Lars J. Pettersson Magnus Skoglundh |
author2Str |
Sandra Dahlin Andreas Schaefer Kunpeng Xie Lennart Andersson Soran Shwan Per-Anders Carlsson Lars J. Pettersson Magnus Skoglundh |
ppnlink |
71862646X |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/catal10050552 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-04T01:34:40.363Z |
_version_ |
1803610363388755968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ01743131X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412233731.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/catal10050552</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ01743131X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ07a4ba5502d345edbb543f87b6fe38b0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Johanna Englund</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We have investigated how the exhaust gases from a heavy-duty Euro VI engine, powered with biogas impact a vanadium-based selective catalytic reduction (SCR) catalyst in terms of performance. A full Euro VI emission control system was used and the accumulation of catalyst poisons from the combustion was investigated for the up-stream particulate filter as well as the SCR catalyst. The NO<i<<sub<x</sub<</i< reduction performance in terms of standard, fast and NO<sub<2</sub<-rich SCR was evaluated before and after exposure to exhaust from a biogas-powered engine for 900 h. The SCR catalyst retains a significant part of its activity towards NO<i<<sub<x</sub<</i< reduction after exposure to biogas exhaust, likely due to capture of catalyst poisons on the up-stream components where the deactivation of the oxidation catalyst is especially profound. At lower temperatures some deactivation of the first part of the SCR catalyst was observed which could be explained by a considerably higher surface V<sup<4+</sup</V<sup<5+</sup< ratio for this sample compared to the other samples. The higher value indicates that the reoxidation of V<sup<4+</sup< to V<sup<5+</sup< is partially hindered, blocking the redox cycle for parts of the active sites.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NH<sub<3</sub<-SCR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">V<sub<2</sub<O<sub<5</sub<-WO<sub<3</sub</TiO<sub<2</sub<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">catalyst deactivation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biogas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">methane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">engine-bench</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sandra Dahlin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andreas Schaefer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kunpeng Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lennart Andersson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Soran Shwan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Per-Anders Carlsson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lars J. Pettersson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Magnus Skoglundh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Catalysts</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 5, p 552</subfield><subfield code="w">(DE-627)71862646X</subfield><subfield code="w">(DE-600)2662126-5</subfield><subfield code="x">20734344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5, p 552</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/catal10050552</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/07a4ba5502d345edbb543f87b6fe38b0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4344/10/5/552</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4344</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">5, p 552</subfield></datafield></record></collection>
|
score |
7.3993616 |