Comparison of X-ray Fluorescence (XRF) and Atomic Absorption Spectrometry (AAS) Results for an Environmental Assessment at a Mercury Site in Kyrgyzstan
Khaidarkan, Batken Province, Kyrgyzstan is home to one of the world’s largest and last primary mercury mines. Doctors without Borders (MSF) and the Ministry of Health (MOH) of Kyrgyzstan have found that the Batken region has an elevated rate of non-communicable diseases (NCD) within the country. NCD...
Ausführliche Beschreibung
Autor*in: |
Sandra Spearman [verfasserIn] Casey Bartrem [verfasserIn] Ainash A. Sharshenova [verfasserIn] Kasiet S. Salymbekova [verfasserIn] Makhmud B. Isirailov [verfasserIn] Saparbai A. Gaynazarov [verfasserIn] Roman Gilmanov [verfasserIn] Ian H. von Lindern [verfasserIn] Margrit von Braun [verfasserIn] Gregory Möller [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 12(2022), 4, p 1943 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:4, p 1943 |
Links: |
---|
DOI / URN: |
10.3390/app12041943 |
---|
Katalog-ID: |
DOAJ01758129X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ01758129X | ||
003 | DE-627 | ||
005 | 20240414192034.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app12041943 |2 doi | |
035 | |a (DE-627)DOAJ01758129X | ||
035 | |a (DE-599)DOAJ79cd963ff7ac40a3906ea1f7e14bb295 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Sandra Spearman |e verfasserin |4 aut | |
245 | 1 | 0 | |a Comparison of X-ray Fluorescence (XRF) and Atomic Absorption Spectrometry (AAS) Results for an Environmental Assessment at a Mercury Site in Kyrgyzstan |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Khaidarkan, Batken Province, Kyrgyzstan is home to one of the world’s largest and last primary mercury mines. Doctors without Borders (MSF) and the Ministry of Health (MOH) of Kyrgyzstan have found that the Batken region has an elevated rate of non-communicable diseases (NCD) within the country. NCD can be caused by environmental pollution. A human health risk assessment was conducted to investigate heavy metal exposure. Using a hand-held X-ray fluorescence (XRF) spectrometer for soil screening is faster and less expensive than reliance on bench-scale methods. To establish a site-specific mercury conversion factor between XRF and the local MOH lab’s Atomic Absorption Spectrometry (AAS) with a Pyrolyzer attachment, soil samples were collected in Khaidarkan and surrounding villages. Samples were analyzed by XRF in three stages: in situ, ex situ-bulk, and ex situ-sieved. The ex situ-sieved samples were analyzed by AAS. Analysis results indicate that in situ readings can be used as a qualitative tool for screening, and a conversion factor of 1.7 was most appropriate for converting ex situ-bulk/ex situ-sieved and AAS results. This analysis enables the MOH laboratory and others to use XRF as a quick and cost-effective monitoring tool for Hg contamination in soil. | ||
650 | 4 | |a mercury | |
650 | 4 | |a XRF technologies | |
650 | 4 | |a environmental health | |
650 | 4 | |a risk assessment | |
650 | 4 | |a atomic absorption spectrometry | |
650 | 4 | |a soil analysis | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Casey Bartrem |e verfasserin |4 aut | |
700 | 0 | |a Ainash A. Sharshenova |e verfasserin |4 aut | |
700 | 0 | |a Kasiet S. Salymbekova |e verfasserin |4 aut | |
700 | 0 | |a Makhmud B. Isirailov |e verfasserin |4 aut | |
700 | 0 | |a Saparbai A. Gaynazarov |e verfasserin |4 aut | |
700 | 0 | |a Roman Gilmanov |e verfasserin |4 aut | |
700 | 0 | |a Ian H. von Lindern |e verfasserin |4 aut | |
700 | 0 | |a Margrit von Braun |e verfasserin |4 aut | |
700 | 0 | |a Gregory Möller |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 12(2022), 4, p 1943 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:4, p 1943 |
856 | 4 | 0 | |u https://doi.org/10.3390/app12041943 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/79cd963ff7ac40a3906ea1f7e14bb295 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/12/4/1943 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 4, p 1943 |
author_variant |
s s ss c b cb a a s aas k s s kss m b i mbi s a g sag r g rg i h v l ihvl m v b mvb g m gm |
---|---|
matchkey_str |
article:20763417:2022----::oprsnfryloecneradtmcbopinpcrmtyarslsoaevrnetls |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.3390/app12041943 doi (DE-627)DOAJ01758129X (DE-599)DOAJ79cd963ff7ac40a3906ea1f7e14bb295 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Sandra Spearman verfasserin aut Comparison of X-ray Fluorescence (XRF) and Atomic Absorption Spectrometry (AAS) Results for an Environmental Assessment at a Mercury Site in Kyrgyzstan 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Khaidarkan, Batken Province, Kyrgyzstan is home to one of the world’s largest and last primary mercury mines. Doctors without Borders (MSF) and the Ministry of Health (MOH) of Kyrgyzstan have found that the Batken region has an elevated rate of non-communicable diseases (NCD) within the country. NCD can be caused by environmental pollution. A human health risk assessment was conducted to investigate heavy metal exposure. Using a hand-held X-ray fluorescence (XRF) spectrometer for soil screening is faster and less expensive than reliance on bench-scale methods. To establish a site-specific mercury conversion factor between XRF and the local MOH lab’s Atomic Absorption Spectrometry (AAS) with a Pyrolyzer attachment, soil samples were collected in Khaidarkan and surrounding villages. Samples were analyzed by XRF in three stages: in situ, ex situ-bulk, and ex situ-sieved. The ex situ-sieved samples were analyzed by AAS. Analysis results indicate that in situ readings can be used as a qualitative tool for screening, and a conversion factor of 1.7 was most appropriate for converting ex situ-bulk/ex situ-sieved and AAS results. This analysis enables the MOH laboratory and others to use XRF as a quick and cost-effective monitoring tool for Hg contamination in soil. mercury XRF technologies environmental health risk assessment atomic absorption spectrometry soil analysis Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Casey Bartrem verfasserin aut Ainash A. Sharshenova verfasserin aut Kasiet S. Salymbekova verfasserin aut Makhmud B. Isirailov verfasserin aut Saparbai A. Gaynazarov verfasserin aut Roman Gilmanov verfasserin aut Ian H. von Lindern verfasserin aut Margrit von Braun verfasserin aut Gregory Möller verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 4, p 1943 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:4, p 1943 https://doi.org/10.3390/app12041943 kostenfrei https://doaj.org/article/79cd963ff7ac40a3906ea1f7e14bb295 kostenfrei https://www.mdpi.com/2076-3417/12/4/1943 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 1943 |
spelling |
10.3390/app12041943 doi (DE-627)DOAJ01758129X (DE-599)DOAJ79cd963ff7ac40a3906ea1f7e14bb295 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Sandra Spearman verfasserin aut Comparison of X-ray Fluorescence (XRF) and Atomic Absorption Spectrometry (AAS) Results for an Environmental Assessment at a Mercury Site in Kyrgyzstan 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Khaidarkan, Batken Province, Kyrgyzstan is home to one of the world’s largest and last primary mercury mines. Doctors without Borders (MSF) and the Ministry of Health (MOH) of Kyrgyzstan have found that the Batken region has an elevated rate of non-communicable diseases (NCD) within the country. NCD can be caused by environmental pollution. A human health risk assessment was conducted to investigate heavy metal exposure. Using a hand-held X-ray fluorescence (XRF) spectrometer for soil screening is faster and less expensive than reliance on bench-scale methods. To establish a site-specific mercury conversion factor between XRF and the local MOH lab’s Atomic Absorption Spectrometry (AAS) with a Pyrolyzer attachment, soil samples were collected in Khaidarkan and surrounding villages. Samples were analyzed by XRF in three stages: in situ, ex situ-bulk, and ex situ-sieved. The ex situ-sieved samples were analyzed by AAS. Analysis results indicate that in situ readings can be used as a qualitative tool for screening, and a conversion factor of 1.7 was most appropriate for converting ex situ-bulk/ex situ-sieved and AAS results. This analysis enables the MOH laboratory and others to use XRF as a quick and cost-effective monitoring tool for Hg contamination in soil. mercury XRF technologies environmental health risk assessment atomic absorption spectrometry soil analysis Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Casey Bartrem verfasserin aut Ainash A. Sharshenova verfasserin aut Kasiet S. Salymbekova verfasserin aut Makhmud B. Isirailov verfasserin aut Saparbai A. Gaynazarov verfasserin aut Roman Gilmanov verfasserin aut Ian H. von Lindern verfasserin aut Margrit von Braun verfasserin aut Gregory Möller verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 4, p 1943 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:4, p 1943 https://doi.org/10.3390/app12041943 kostenfrei https://doaj.org/article/79cd963ff7ac40a3906ea1f7e14bb295 kostenfrei https://www.mdpi.com/2076-3417/12/4/1943 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 1943 |
allfields_unstemmed |
10.3390/app12041943 doi (DE-627)DOAJ01758129X (DE-599)DOAJ79cd963ff7ac40a3906ea1f7e14bb295 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Sandra Spearman verfasserin aut Comparison of X-ray Fluorescence (XRF) and Atomic Absorption Spectrometry (AAS) Results for an Environmental Assessment at a Mercury Site in Kyrgyzstan 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Khaidarkan, Batken Province, Kyrgyzstan is home to one of the world’s largest and last primary mercury mines. Doctors without Borders (MSF) and the Ministry of Health (MOH) of Kyrgyzstan have found that the Batken region has an elevated rate of non-communicable diseases (NCD) within the country. NCD can be caused by environmental pollution. A human health risk assessment was conducted to investigate heavy metal exposure. Using a hand-held X-ray fluorescence (XRF) spectrometer for soil screening is faster and less expensive than reliance on bench-scale methods. To establish a site-specific mercury conversion factor between XRF and the local MOH lab’s Atomic Absorption Spectrometry (AAS) with a Pyrolyzer attachment, soil samples were collected in Khaidarkan and surrounding villages. Samples were analyzed by XRF in three stages: in situ, ex situ-bulk, and ex situ-sieved. The ex situ-sieved samples were analyzed by AAS. Analysis results indicate that in situ readings can be used as a qualitative tool for screening, and a conversion factor of 1.7 was most appropriate for converting ex situ-bulk/ex situ-sieved and AAS results. This analysis enables the MOH laboratory and others to use XRF as a quick and cost-effective monitoring tool for Hg contamination in soil. mercury XRF technologies environmental health risk assessment atomic absorption spectrometry soil analysis Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Casey Bartrem verfasserin aut Ainash A. Sharshenova verfasserin aut Kasiet S. Salymbekova verfasserin aut Makhmud B. Isirailov verfasserin aut Saparbai A. Gaynazarov verfasserin aut Roman Gilmanov verfasserin aut Ian H. von Lindern verfasserin aut Margrit von Braun verfasserin aut Gregory Möller verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 4, p 1943 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:4, p 1943 https://doi.org/10.3390/app12041943 kostenfrei https://doaj.org/article/79cd963ff7ac40a3906ea1f7e14bb295 kostenfrei https://www.mdpi.com/2076-3417/12/4/1943 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 1943 |
allfieldsGer |
10.3390/app12041943 doi (DE-627)DOAJ01758129X (DE-599)DOAJ79cd963ff7ac40a3906ea1f7e14bb295 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Sandra Spearman verfasserin aut Comparison of X-ray Fluorescence (XRF) and Atomic Absorption Spectrometry (AAS) Results for an Environmental Assessment at a Mercury Site in Kyrgyzstan 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Khaidarkan, Batken Province, Kyrgyzstan is home to one of the world’s largest and last primary mercury mines. Doctors without Borders (MSF) and the Ministry of Health (MOH) of Kyrgyzstan have found that the Batken region has an elevated rate of non-communicable diseases (NCD) within the country. NCD can be caused by environmental pollution. A human health risk assessment was conducted to investigate heavy metal exposure. Using a hand-held X-ray fluorescence (XRF) spectrometer for soil screening is faster and less expensive than reliance on bench-scale methods. To establish a site-specific mercury conversion factor between XRF and the local MOH lab’s Atomic Absorption Spectrometry (AAS) with a Pyrolyzer attachment, soil samples were collected in Khaidarkan and surrounding villages. Samples were analyzed by XRF in three stages: in situ, ex situ-bulk, and ex situ-sieved. The ex situ-sieved samples were analyzed by AAS. Analysis results indicate that in situ readings can be used as a qualitative tool for screening, and a conversion factor of 1.7 was most appropriate for converting ex situ-bulk/ex situ-sieved and AAS results. This analysis enables the MOH laboratory and others to use XRF as a quick and cost-effective monitoring tool for Hg contamination in soil. mercury XRF technologies environmental health risk assessment atomic absorption spectrometry soil analysis Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Casey Bartrem verfasserin aut Ainash A. Sharshenova verfasserin aut Kasiet S. Salymbekova verfasserin aut Makhmud B. Isirailov verfasserin aut Saparbai A. Gaynazarov verfasserin aut Roman Gilmanov verfasserin aut Ian H. von Lindern verfasserin aut Margrit von Braun verfasserin aut Gregory Möller verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 4, p 1943 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:4, p 1943 https://doi.org/10.3390/app12041943 kostenfrei https://doaj.org/article/79cd963ff7ac40a3906ea1f7e14bb295 kostenfrei https://www.mdpi.com/2076-3417/12/4/1943 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 1943 |
allfieldsSound |
10.3390/app12041943 doi (DE-627)DOAJ01758129X (DE-599)DOAJ79cd963ff7ac40a3906ea1f7e14bb295 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Sandra Spearman verfasserin aut Comparison of X-ray Fluorescence (XRF) and Atomic Absorption Spectrometry (AAS) Results for an Environmental Assessment at a Mercury Site in Kyrgyzstan 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Khaidarkan, Batken Province, Kyrgyzstan is home to one of the world’s largest and last primary mercury mines. Doctors without Borders (MSF) and the Ministry of Health (MOH) of Kyrgyzstan have found that the Batken region has an elevated rate of non-communicable diseases (NCD) within the country. NCD can be caused by environmental pollution. A human health risk assessment was conducted to investigate heavy metal exposure. Using a hand-held X-ray fluorescence (XRF) spectrometer for soil screening is faster and less expensive than reliance on bench-scale methods. To establish a site-specific mercury conversion factor between XRF and the local MOH lab’s Atomic Absorption Spectrometry (AAS) with a Pyrolyzer attachment, soil samples were collected in Khaidarkan and surrounding villages. Samples were analyzed by XRF in three stages: in situ, ex situ-bulk, and ex situ-sieved. The ex situ-sieved samples were analyzed by AAS. Analysis results indicate that in situ readings can be used as a qualitative tool for screening, and a conversion factor of 1.7 was most appropriate for converting ex situ-bulk/ex situ-sieved and AAS results. This analysis enables the MOH laboratory and others to use XRF as a quick and cost-effective monitoring tool for Hg contamination in soil. mercury XRF technologies environmental health risk assessment atomic absorption spectrometry soil analysis Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Casey Bartrem verfasserin aut Ainash A. Sharshenova verfasserin aut Kasiet S. Salymbekova verfasserin aut Makhmud B. Isirailov verfasserin aut Saparbai A. Gaynazarov verfasserin aut Roman Gilmanov verfasserin aut Ian H. von Lindern verfasserin aut Margrit von Braun verfasserin aut Gregory Möller verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 4, p 1943 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:4, p 1943 https://doi.org/10.3390/app12041943 kostenfrei https://doaj.org/article/79cd963ff7ac40a3906ea1f7e14bb295 kostenfrei https://www.mdpi.com/2076-3417/12/4/1943 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 1943 |
language |
English |
source |
In Applied Sciences 12(2022), 4, p 1943 volume:12 year:2022 number:4, p 1943 |
sourceStr |
In Applied Sciences 12(2022), 4, p 1943 volume:12 year:2022 number:4, p 1943 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
mercury XRF technologies environmental health risk assessment atomic absorption spectrometry soil analysis Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Sandra Spearman @@aut@@ Casey Bartrem @@aut@@ Ainash A. Sharshenova @@aut@@ Kasiet S. Salymbekova @@aut@@ Makhmud B. Isirailov @@aut@@ Saparbai A. Gaynazarov @@aut@@ Roman Gilmanov @@aut@@ Ian H. von Lindern @@aut@@ Margrit von Braun @@aut@@ Gregory Möller @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ01758129X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ01758129X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414192034.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app12041943</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ01758129X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ79cd963ff7ac40a3906ea1f7e14bb295</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sandra Spearman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparison of X-ray Fluorescence (XRF) and Atomic Absorption Spectrometry (AAS) Results for an Environmental Assessment at a Mercury Site in Kyrgyzstan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Khaidarkan, Batken Province, Kyrgyzstan is home to one of the world’s largest and last primary mercury mines. Doctors without Borders (MSF) and the Ministry of Health (MOH) of Kyrgyzstan have found that the Batken region has an elevated rate of non-communicable diseases (NCD) within the country. NCD can be caused by environmental pollution. A human health risk assessment was conducted to investigate heavy metal exposure. Using a hand-held X-ray fluorescence (XRF) spectrometer for soil screening is faster and less expensive than reliance on bench-scale methods. To establish a site-specific mercury conversion factor between XRF and the local MOH lab’s Atomic Absorption Spectrometry (AAS) with a Pyrolyzer attachment, soil samples were collected in Khaidarkan and surrounding villages. Samples were analyzed by XRF in three stages: in situ, ex situ-bulk, and ex situ-sieved. The ex situ-sieved samples were analyzed by AAS. Analysis results indicate that in situ readings can be used as a qualitative tool for screening, and a conversion factor of 1.7 was most appropriate for converting ex situ-bulk/ex situ-sieved and AAS results. This analysis enables the MOH laboratory and others to use XRF as a quick and cost-effective monitoring tool for Hg contamination in soil.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mercury</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">XRF technologies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">environmental health</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">risk assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atomic absorption spectrometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Casey Bartrem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ainash A. Sharshenova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kasiet S. Salymbekova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Makhmud B. Isirailov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saparbai A. Gaynazarov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roman Gilmanov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ian H. von Lindern</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Margrit von Braun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gregory Möller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 4, p 1943</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4, p 1943</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app12041943</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/79cd963ff7ac40a3906ea1f7e14bb295</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/12/4/1943</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">4, p 1943</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Sandra Spearman |
spellingShingle |
Sandra Spearman misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc mercury misc XRF technologies misc environmental health misc risk assessment misc atomic absorption spectrometry misc soil analysis misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Comparison of X-ray Fluorescence (XRF) and Atomic Absorption Spectrometry (AAS) Results for an Environmental Assessment at a Mercury Site in Kyrgyzstan |
authorStr |
Sandra Spearman |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Comparison of X-ray Fluorescence (XRF) and Atomic Absorption Spectrometry (AAS) Results for an Environmental Assessment at a Mercury Site in Kyrgyzstan mercury XRF technologies environmental health risk assessment atomic absorption spectrometry soil analysis |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc mercury misc XRF technologies misc environmental health misc risk assessment misc atomic absorption spectrometry misc soil analysis misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc mercury misc XRF technologies misc environmental health misc risk assessment misc atomic absorption spectrometry misc soil analysis misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc mercury misc XRF technologies misc environmental health misc risk assessment misc atomic absorption spectrometry misc soil analysis misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Comparison of X-ray Fluorescence (XRF) and Atomic Absorption Spectrometry (AAS) Results for an Environmental Assessment at a Mercury Site in Kyrgyzstan |
ctrlnum |
(DE-627)DOAJ01758129X (DE-599)DOAJ79cd963ff7ac40a3906ea1f7e14bb295 |
title_full |
Comparison of X-ray Fluorescence (XRF) and Atomic Absorption Spectrometry (AAS) Results for an Environmental Assessment at a Mercury Site in Kyrgyzstan |
author_sort |
Sandra Spearman |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Sandra Spearman Casey Bartrem Ainash A. Sharshenova Kasiet S. Salymbekova Makhmud B. Isirailov Saparbai A. Gaynazarov Roman Gilmanov Ian H. von Lindern Margrit von Braun Gregory Möller |
container_volume |
12 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Sandra Spearman |
doi_str_mv |
10.3390/app12041943 |
author2-role |
verfasserin |
title_sort |
comparison of x-ray fluorescence (xrf) and atomic absorption spectrometry (aas) results for an environmental assessment at a mercury site in kyrgyzstan |
callnumber |
TA1-2040 |
title_auth |
Comparison of X-ray Fluorescence (XRF) and Atomic Absorption Spectrometry (AAS) Results for an Environmental Assessment at a Mercury Site in Kyrgyzstan |
abstract |
Khaidarkan, Batken Province, Kyrgyzstan is home to one of the world’s largest and last primary mercury mines. Doctors without Borders (MSF) and the Ministry of Health (MOH) of Kyrgyzstan have found that the Batken region has an elevated rate of non-communicable diseases (NCD) within the country. NCD can be caused by environmental pollution. A human health risk assessment was conducted to investigate heavy metal exposure. Using a hand-held X-ray fluorescence (XRF) spectrometer for soil screening is faster and less expensive than reliance on bench-scale methods. To establish a site-specific mercury conversion factor between XRF and the local MOH lab’s Atomic Absorption Spectrometry (AAS) with a Pyrolyzer attachment, soil samples were collected in Khaidarkan and surrounding villages. Samples were analyzed by XRF in three stages: in situ, ex situ-bulk, and ex situ-sieved. The ex situ-sieved samples were analyzed by AAS. Analysis results indicate that in situ readings can be used as a qualitative tool for screening, and a conversion factor of 1.7 was most appropriate for converting ex situ-bulk/ex situ-sieved and AAS results. This analysis enables the MOH laboratory and others to use XRF as a quick and cost-effective monitoring tool for Hg contamination in soil. |
abstractGer |
Khaidarkan, Batken Province, Kyrgyzstan is home to one of the world’s largest and last primary mercury mines. Doctors without Borders (MSF) and the Ministry of Health (MOH) of Kyrgyzstan have found that the Batken region has an elevated rate of non-communicable diseases (NCD) within the country. NCD can be caused by environmental pollution. A human health risk assessment was conducted to investigate heavy metal exposure. Using a hand-held X-ray fluorescence (XRF) spectrometer for soil screening is faster and less expensive than reliance on bench-scale methods. To establish a site-specific mercury conversion factor between XRF and the local MOH lab’s Atomic Absorption Spectrometry (AAS) with a Pyrolyzer attachment, soil samples were collected in Khaidarkan and surrounding villages. Samples were analyzed by XRF in three stages: in situ, ex situ-bulk, and ex situ-sieved. The ex situ-sieved samples were analyzed by AAS. Analysis results indicate that in situ readings can be used as a qualitative tool for screening, and a conversion factor of 1.7 was most appropriate for converting ex situ-bulk/ex situ-sieved and AAS results. This analysis enables the MOH laboratory and others to use XRF as a quick and cost-effective monitoring tool for Hg contamination in soil. |
abstract_unstemmed |
Khaidarkan, Batken Province, Kyrgyzstan is home to one of the world’s largest and last primary mercury mines. Doctors without Borders (MSF) and the Ministry of Health (MOH) of Kyrgyzstan have found that the Batken region has an elevated rate of non-communicable diseases (NCD) within the country. NCD can be caused by environmental pollution. A human health risk assessment was conducted to investigate heavy metal exposure. Using a hand-held X-ray fluorescence (XRF) spectrometer for soil screening is faster and less expensive than reliance on bench-scale methods. To establish a site-specific mercury conversion factor between XRF and the local MOH lab’s Atomic Absorption Spectrometry (AAS) with a Pyrolyzer attachment, soil samples were collected in Khaidarkan and surrounding villages. Samples were analyzed by XRF in three stages: in situ, ex situ-bulk, and ex situ-sieved. The ex situ-sieved samples were analyzed by AAS. Analysis results indicate that in situ readings can be used as a qualitative tool for screening, and a conversion factor of 1.7 was most appropriate for converting ex situ-bulk/ex situ-sieved and AAS results. This analysis enables the MOH laboratory and others to use XRF as a quick and cost-effective monitoring tool for Hg contamination in soil. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 1943 |
title_short |
Comparison of X-ray Fluorescence (XRF) and Atomic Absorption Spectrometry (AAS) Results for an Environmental Assessment at a Mercury Site in Kyrgyzstan |
url |
https://doi.org/10.3390/app12041943 https://doaj.org/article/79cd963ff7ac40a3906ea1f7e14bb295 https://www.mdpi.com/2076-3417/12/4/1943 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Casey Bartrem Ainash A. Sharshenova Kasiet S. Salymbekova Makhmud B. Isirailov Saparbai A. Gaynazarov Roman Gilmanov Ian H. von Lindern Margrit von Braun Gregory Möller |
author2Str |
Casey Bartrem Ainash A. Sharshenova Kasiet S. Salymbekova Makhmud B. Isirailov Saparbai A. Gaynazarov Roman Gilmanov Ian H. von Lindern Margrit von Braun Gregory Möller |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app12041943 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-04T02:09:47.434Z |
_version_ |
1803612572810739712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ01758129X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414192034.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app12041943</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ01758129X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ79cd963ff7ac40a3906ea1f7e14bb295</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sandra Spearman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparison of X-ray Fluorescence (XRF) and Atomic Absorption Spectrometry (AAS) Results for an Environmental Assessment at a Mercury Site in Kyrgyzstan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Khaidarkan, Batken Province, Kyrgyzstan is home to one of the world’s largest and last primary mercury mines. Doctors without Borders (MSF) and the Ministry of Health (MOH) of Kyrgyzstan have found that the Batken region has an elevated rate of non-communicable diseases (NCD) within the country. NCD can be caused by environmental pollution. A human health risk assessment was conducted to investigate heavy metal exposure. Using a hand-held X-ray fluorescence (XRF) spectrometer for soil screening is faster and less expensive than reliance on bench-scale methods. To establish a site-specific mercury conversion factor between XRF and the local MOH lab’s Atomic Absorption Spectrometry (AAS) with a Pyrolyzer attachment, soil samples were collected in Khaidarkan and surrounding villages. Samples were analyzed by XRF in three stages: in situ, ex situ-bulk, and ex situ-sieved. The ex situ-sieved samples were analyzed by AAS. Analysis results indicate that in situ readings can be used as a qualitative tool for screening, and a conversion factor of 1.7 was most appropriate for converting ex situ-bulk/ex situ-sieved and AAS results. This analysis enables the MOH laboratory and others to use XRF as a quick and cost-effective monitoring tool for Hg contamination in soil.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mercury</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">XRF technologies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">environmental health</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">risk assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atomic absorption spectrometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Casey Bartrem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ainash A. Sharshenova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kasiet S. Salymbekova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Makhmud B. Isirailov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saparbai A. Gaynazarov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roman Gilmanov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ian H. von Lindern</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Margrit von Braun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gregory Möller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 4, p 1943</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4, p 1943</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app12041943</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/79cd963ff7ac40a3906ea1f7e14bb295</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/12/4/1943</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">4, p 1943</subfield></datafield></record></collection>
|
score |
7.402237 |