Mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved Gliricidia
ABSTRACT: This study examined the use of the Gompertz, Groot, monomolecular, Richards and two-compartment-logistic mathematical models to investigate the kinetics of in vitro gas production of diets composed of combinations of Gliricidia hay or silage. In addition, the effects of Gliricidia hay or s...
Ausführliche Beschreibung
Autor*in: |
Antonio Leandro Chaves Gurgel [verfasserIn] Jucileia Aparecida da Silva Morais [verfasserIn] Juliana Caroline Santos Santana [verfasserIn] Gelson dos Santos Difante [verfasserIn] João Virgínio Emerenciano Neto [verfasserIn] Luís Carlos Vinhas Ítavo [verfasserIn] Camila Celeste Brandão Ferreira Ítavo [verfasserIn] Vinícius da Silva Oliveira [verfasserIn] Maria Juciara Silva Teles Rodrigues [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Portugiesisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ciência Rural - Universidade Federal de Santa Maria, 2004, 51(2021), 11 |
---|---|
Übergeordnetes Werk: |
volume:51 ; year:2021 ; number:11 |
Links: |
---|
DOI / URN: |
10.1590/0103-8478cr20200993 |
---|
Katalog-ID: |
DOAJ017602793 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ017602793 | ||
003 | DE-627 | ||
005 | 20230310092424.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1590/0103-8478cr20200993 |2 doi | |
035 | |a (DE-627)DOAJ017602793 | ||
035 | |a (DE-599)DOAJ3b55cd65be324f9b97831c1f07682f38 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a por | ||
050 | 0 | |a S1-972 | |
100 | 0 | |a Antonio Leandro Chaves Gurgel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved Gliricidia |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a ABSTRACT: This study examined the use of the Gompertz, Groot, monomolecular, Richards and two-compartment-logistic mathematical models to investigate the kinetics of in vitro gas production of diets composed of combinations of Gliricidia hay or silage. In addition, the effects of Gliricidia hay or silage inclusion on the in vitro cumulative gas production of these diets were evaluated. Rumen fermentation kinetics were analyzed by the in vitro cumulative gas production methodology. The model parameters were estimated using the Gauss Newton method, with the exception of the Richards model, which was used by Marquardt’s algorithm. Model fit was assessed using the determination coefficient, F test for parameters identity, concordance correlation coefficient, root mean square error of prediction, and decomposition of mean square error of prediction into mean error, systematic bias and random error. The models were compared for accuracy (pairwise mean square error of prediction) and precision (delta Akaike’s information criterion). All model evaluation and comparison statistics were calculated using Model Evaluation System software version 3.2.2. The Groot and Richards models did not differ from each other (P<0.05) and were the most precise and accurate (P<0.05). Therefore, the Groot model was selected due to its better accuracy and precision and easier access to the parameters. The inclusion of Gliricidia silage in the diet resulted in an increase in the time to obtain the maximum rate of degradation and in the time after incubation when half of the asymptotic level was reached. The Groot model is recommended to estimate the average curve. Dietary inclusion of Gliricidia silage alters the gas production curve due to the longer time required for the diet to reach the maximum rate of degradation, this can increase the time the diet remains in rumen and promote a reduction in the consumption. | ||
650 | 4 | |a fermentation kinetics | |
650 | 4 | |a Groot model | |
650 | 4 | |a hay | |
650 | 4 | |a non-linear functions | |
650 | 4 | |a silage | |
653 | 0 | |a Agriculture | |
653 | 0 | |a S | |
653 | 0 | |a Agriculture (General) | |
700 | 0 | |a Jucileia Aparecida da Silva Morais |e verfasserin |4 aut | |
700 | 0 | |a Juliana Caroline Santos Santana |e verfasserin |4 aut | |
700 | 0 | |a Gelson dos Santos Difante |e verfasserin |4 aut | |
700 | 0 | |a João Virgínio Emerenciano Neto |e verfasserin |4 aut | |
700 | 0 | |a Luís Carlos Vinhas Ítavo |e verfasserin |4 aut | |
700 | 0 | |a Camila Celeste Brandão Ferreira Ítavo |e verfasserin |4 aut | |
700 | 0 | |a Vinícius da Silva Oliveira |e verfasserin |4 aut | |
700 | 0 | |a Maria Juciara Silva Teles Rodrigues |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ciência Rural |d Universidade Federal de Santa Maria, 2004 |g 51(2021), 11 |w (DE-627)320649970 |w (DE-600)2025834-3 |x 16784596 |7 nnns |
773 | 1 | 8 | |g volume:51 |g year:2021 |g number:11 |
856 | 4 | 0 | |u https://doi.org/10.1590/0103-8478cr20200993 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3b55cd65be324f9b97831c1f07682f38 |z kostenfrei |
856 | 4 | 0 | |u http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782021001100654&tlng=en |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1678-4596 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 51 |j 2021 |e 11 |
author_variant |
a l c g alcg j a d s m jadsm j c s s jcss g d s d gdsd j v e n jven l c v í lcví c c b f í ccbfí v d s o vdso m j s t r mjstr |
---|---|
matchkey_str |
article:16784596:2021----::ahmtcloesoduthprmtroivtouuaieapoutoodes |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
S |
publishDate |
2021 |
allfields |
10.1590/0103-8478cr20200993 doi (DE-627)DOAJ017602793 (DE-599)DOAJ3b55cd65be324f9b97831c1f07682f38 DE-627 ger DE-627 rakwb eng por S1-972 Antonio Leandro Chaves Gurgel verfasserin aut Mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved Gliricidia 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT: This study examined the use of the Gompertz, Groot, monomolecular, Richards and two-compartment-logistic mathematical models to investigate the kinetics of in vitro gas production of diets composed of combinations of Gliricidia hay or silage. In addition, the effects of Gliricidia hay or silage inclusion on the in vitro cumulative gas production of these diets were evaluated. Rumen fermentation kinetics were analyzed by the in vitro cumulative gas production methodology. The model parameters were estimated using the Gauss Newton method, with the exception of the Richards model, which was used by Marquardt’s algorithm. Model fit was assessed using the determination coefficient, F test for parameters identity, concordance correlation coefficient, root mean square error of prediction, and decomposition of mean square error of prediction into mean error, systematic bias and random error. The models were compared for accuracy (pairwise mean square error of prediction) and precision (delta Akaike’s information criterion). All model evaluation and comparison statistics were calculated using Model Evaluation System software version 3.2.2. The Groot and Richards models did not differ from each other (P<0.05) and were the most precise and accurate (P<0.05). Therefore, the Groot model was selected due to its better accuracy and precision and easier access to the parameters. The inclusion of Gliricidia silage in the diet resulted in an increase in the time to obtain the maximum rate of degradation and in the time after incubation when half of the asymptotic level was reached. The Groot model is recommended to estimate the average curve. Dietary inclusion of Gliricidia silage alters the gas production curve due to the longer time required for the diet to reach the maximum rate of degradation, this can increase the time the diet remains in rumen and promote a reduction in the consumption. fermentation kinetics Groot model hay non-linear functions silage Agriculture S Agriculture (General) Jucileia Aparecida da Silva Morais verfasserin aut Juliana Caroline Santos Santana verfasserin aut Gelson dos Santos Difante verfasserin aut João Virgínio Emerenciano Neto verfasserin aut Luís Carlos Vinhas Ítavo verfasserin aut Camila Celeste Brandão Ferreira Ítavo verfasserin aut Vinícius da Silva Oliveira verfasserin aut Maria Juciara Silva Teles Rodrigues verfasserin aut In Ciência Rural Universidade Federal de Santa Maria, 2004 51(2021), 11 (DE-627)320649970 (DE-600)2025834-3 16784596 nnns volume:51 year:2021 number:11 https://doi.org/10.1590/0103-8478cr20200993 kostenfrei https://doaj.org/article/3b55cd65be324f9b97831c1f07682f38 kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782021001100654&tlng=en kostenfrei https://doaj.org/toc/1678-4596 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 51 2021 11 |
spelling |
10.1590/0103-8478cr20200993 doi (DE-627)DOAJ017602793 (DE-599)DOAJ3b55cd65be324f9b97831c1f07682f38 DE-627 ger DE-627 rakwb eng por S1-972 Antonio Leandro Chaves Gurgel verfasserin aut Mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved Gliricidia 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT: This study examined the use of the Gompertz, Groot, monomolecular, Richards and two-compartment-logistic mathematical models to investigate the kinetics of in vitro gas production of diets composed of combinations of Gliricidia hay or silage. In addition, the effects of Gliricidia hay or silage inclusion on the in vitro cumulative gas production of these diets were evaluated. Rumen fermentation kinetics were analyzed by the in vitro cumulative gas production methodology. The model parameters were estimated using the Gauss Newton method, with the exception of the Richards model, which was used by Marquardt’s algorithm. Model fit was assessed using the determination coefficient, F test for parameters identity, concordance correlation coefficient, root mean square error of prediction, and decomposition of mean square error of prediction into mean error, systematic bias and random error. The models were compared for accuracy (pairwise mean square error of prediction) and precision (delta Akaike’s information criterion). All model evaluation and comparison statistics were calculated using Model Evaluation System software version 3.2.2. The Groot and Richards models did not differ from each other (P<0.05) and were the most precise and accurate (P<0.05). Therefore, the Groot model was selected due to its better accuracy and precision and easier access to the parameters. The inclusion of Gliricidia silage in the diet resulted in an increase in the time to obtain the maximum rate of degradation and in the time after incubation when half of the asymptotic level was reached. The Groot model is recommended to estimate the average curve. Dietary inclusion of Gliricidia silage alters the gas production curve due to the longer time required for the diet to reach the maximum rate of degradation, this can increase the time the diet remains in rumen and promote a reduction in the consumption. fermentation kinetics Groot model hay non-linear functions silage Agriculture S Agriculture (General) Jucileia Aparecida da Silva Morais verfasserin aut Juliana Caroline Santos Santana verfasserin aut Gelson dos Santos Difante verfasserin aut João Virgínio Emerenciano Neto verfasserin aut Luís Carlos Vinhas Ítavo verfasserin aut Camila Celeste Brandão Ferreira Ítavo verfasserin aut Vinícius da Silva Oliveira verfasserin aut Maria Juciara Silva Teles Rodrigues verfasserin aut In Ciência Rural Universidade Federal de Santa Maria, 2004 51(2021), 11 (DE-627)320649970 (DE-600)2025834-3 16784596 nnns volume:51 year:2021 number:11 https://doi.org/10.1590/0103-8478cr20200993 kostenfrei https://doaj.org/article/3b55cd65be324f9b97831c1f07682f38 kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782021001100654&tlng=en kostenfrei https://doaj.org/toc/1678-4596 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 51 2021 11 |
allfields_unstemmed |
10.1590/0103-8478cr20200993 doi (DE-627)DOAJ017602793 (DE-599)DOAJ3b55cd65be324f9b97831c1f07682f38 DE-627 ger DE-627 rakwb eng por S1-972 Antonio Leandro Chaves Gurgel verfasserin aut Mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved Gliricidia 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT: This study examined the use of the Gompertz, Groot, monomolecular, Richards and two-compartment-logistic mathematical models to investigate the kinetics of in vitro gas production of diets composed of combinations of Gliricidia hay or silage. In addition, the effects of Gliricidia hay or silage inclusion on the in vitro cumulative gas production of these diets were evaluated. Rumen fermentation kinetics were analyzed by the in vitro cumulative gas production methodology. The model parameters were estimated using the Gauss Newton method, with the exception of the Richards model, which was used by Marquardt’s algorithm. Model fit was assessed using the determination coefficient, F test for parameters identity, concordance correlation coefficient, root mean square error of prediction, and decomposition of mean square error of prediction into mean error, systematic bias and random error. The models were compared for accuracy (pairwise mean square error of prediction) and precision (delta Akaike’s information criterion). All model evaluation and comparison statistics were calculated using Model Evaluation System software version 3.2.2. The Groot and Richards models did not differ from each other (P<0.05) and were the most precise and accurate (P<0.05). Therefore, the Groot model was selected due to its better accuracy and precision and easier access to the parameters. The inclusion of Gliricidia silage in the diet resulted in an increase in the time to obtain the maximum rate of degradation and in the time after incubation when half of the asymptotic level was reached. The Groot model is recommended to estimate the average curve. Dietary inclusion of Gliricidia silage alters the gas production curve due to the longer time required for the diet to reach the maximum rate of degradation, this can increase the time the diet remains in rumen and promote a reduction in the consumption. fermentation kinetics Groot model hay non-linear functions silage Agriculture S Agriculture (General) Jucileia Aparecida da Silva Morais verfasserin aut Juliana Caroline Santos Santana verfasserin aut Gelson dos Santos Difante verfasserin aut João Virgínio Emerenciano Neto verfasserin aut Luís Carlos Vinhas Ítavo verfasserin aut Camila Celeste Brandão Ferreira Ítavo verfasserin aut Vinícius da Silva Oliveira verfasserin aut Maria Juciara Silva Teles Rodrigues verfasserin aut In Ciência Rural Universidade Federal de Santa Maria, 2004 51(2021), 11 (DE-627)320649970 (DE-600)2025834-3 16784596 nnns volume:51 year:2021 number:11 https://doi.org/10.1590/0103-8478cr20200993 kostenfrei https://doaj.org/article/3b55cd65be324f9b97831c1f07682f38 kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782021001100654&tlng=en kostenfrei https://doaj.org/toc/1678-4596 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 51 2021 11 |
allfieldsGer |
10.1590/0103-8478cr20200993 doi (DE-627)DOAJ017602793 (DE-599)DOAJ3b55cd65be324f9b97831c1f07682f38 DE-627 ger DE-627 rakwb eng por S1-972 Antonio Leandro Chaves Gurgel verfasserin aut Mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved Gliricidia 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT: This study examined the use of the Gompertz, Groot, monomolecular, Richards and two-compartment-logistic mathematical models to investigate the kinetics of in vitro gas production of diets composed of combinations of Gliricidia hay or silage. In addition, the effects of Gliricidia hay or silage inclusion on the in vitro cumulative gas production of these diets were evaluated. Rumen fermentation kinetics were analyzed by the in vitro cumulative gas production methodology. The model parameters were estimated using the Gauss Newton method, with the exception of the Richards model, which was used by Marquardt’s algorithm. Model fit was assessed using the determination coefficient, F test for parameters identity, concordance correlation coefficient, root mean square error of prediction, and decomposition of mean square error of prediction into mean error, systematic bias and random error. The models were compared for accuracy (pairwise mean square error of prediction) and precision (delta Akaike’s information criterion). All model evaluation and comparison statistics were calculated using Model Evaluation System software version 3.2.2. The Groot and Richards models did not differ from each other (P<0.05) and were the most precise and accurate (P<0.05). Therefore, the Groot model was selected due to its better accuracy and precision and easier access to the parameters. The inclusion of Gliricidia silage in the diet resulted in an increase in the time to obtain the maximum rate of degradation and in the time after incubation when half of the asymptotic level was reached. The Groot model is recommended to estimate the average curve. Dietary inclusion of Gliricidia silage alters the gas production curve due to the longer time required for the diet to reach the maximum rate of degradation, this can increase the time the diet remains in rumen and promote a reduction in the consumption. fermentation kinetics Groot model hay non-linear functions silage Agriculture S Agriculture (General) Jucileia Aparecida da Silva Morais verfasserin aut Juliana Caroline Santos Santana verfasserin aut Gelson dos Santos Difante verfasserin aut João Virgínio Emerenciano Neto verfasserin aut Luís Carlos Vinhas Ítavo verfasserin aut Camila Celeste Brandão Ferreira Ítavo verfasserin aut Vinícius da Silva Oliveira verfasserin aut Maria Juciara Silva Teles Rodrigues verfasserin aut In Ciência Rural Universidade Federal de Santa Maria, 2004 51(2021), 11 (DE-627)320649970 (DE-600)2025834-3 16784596 nnns volume:51 year:2021 number:11 https://doi.org/10.1590/0103-8478cr20200993 kostenfrei https://doaj.org/article/3b55cd65be324f9b97831c1f07682f38 kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782021001100654&tlng=en kostenfrei https://doaj.org/toc/1678-4596 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 51 2021 11 |
allfieldsSound |
10.1590/0103-8478cr20200993 doi (DE-627)DOAJ017602793 (DE-599)DOAJ3b55cd65be324f9b97831c1f07682f38 DE-627 ger DE-627 rakwb eng por S1-972 Antonio Leandro Chaves Gurgel verfasserin aut Mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved Gliricidia 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT: This study examined the use of the Gompertz, Groot, monomolecular, Richards and two-compartment-logistic mathematical models to investigate the kinetics of in vitro gas production of diets composed of combinations of Gliricidia hay or silage. In addition, the effects of Gliricidia hay or silage inclusion on the in vitro cumulative gas production of these diets were evaluated. Rumen fermentation kinetics were analyzed by the in vitro cumulative gas production methodology. The model parameters were estimated using the Gauss Newton method, with the exception of the Richards model, which was used by Marquardt’s algorithm. Model fit was assessed using the determination coefficient, F test for parameters identity, concordance correlation coefficient, root mean square error of prediction, and decomposition of mean square error of prediction into mean error, systematic bias and random error. The models were compared for accuracy (pairwise mean square error of prediction) and precision (delta Akaike’s information criterion). All model evaluation and comparison statistics were calculated using Model Evaluation System software version 3.2.2. The Groot and Richards models did not differ from each other (P<0.05) and were the most precise and accurate (P<0.05). Therefore, the Groot model was selected due to its better accuracy and precision and easier access to the parameters. The inclusion of Gliricidia silage in the diet resulted in an increase in the time to obtain the maximum rate of degradation and in the time after incubation when half of the asymptotic level was reached. The Groot model is recommended to estimate the average curve. Dietary inclusion of Gliricidia silage alters the gas production curve due to the longer time required for the diet to reach the maximum rate of degradation, this can increase the time the diet remains in rumen and promote a reduction in the consumption. fermentation kinetics Groot model hay non-linear functions silage Agriculture S Agriculture (General) Jucileia Aparecida da Silva Morais verfasserin aut Juliana Caroline Santos Santana verfasserin aut Gelson dos Santos Difante verfasserin aut João Virgínio Emerenciano Neto verfasserin aut Luís Carlos Vinhas Ítavo verfasserin aut Camila Celeste Brandão Ferreira Ítavo verfasserin aut Vinícius da Silva Oliveira verfasserin aut Maria Juciara Silva Teles Rodrigues verfasserin aut In Ciência Rural Universidade Federal de Santa Maria, 2004 51(2021), 11 (DE-627)320649970 (DE-600)2025834-3 16784596 nnns volume:51 year:2021 number:11 https://doi.org/10.1590/0103-8478cr20200993 kostenfrei https://doaj.org/article/3b55cd65be324f9b97831c1f07682f38 kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782021001100654&tlng=en kostenfrei https://doaj.org/toc/1678-4596 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 51 2021 11 |
language |
English Portuguese |
source |
In Ciência Rural 51(2021), 11 volume:51 year:2021 number:11 |
sourceStr |
In Ciência Rural 51(2021), 11 volume:51 year:2021 number:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
fermentation kinetics Groot model hay non-linear functions silage Agriculture S Agriculture (General) |
isfreeaccess_bool |
true |
container_title |
Ciência Rural |
authorswithroles_txt_mv |
Antonio Leandro Chaves Gurgel @@aut@@ Jucileia Aparecida da Silva Morais @@aut@@ Juliana Caroline Santos Santana @@aut@@ Gelson dos Santos Difante @@aut@@ João Virgínio Emerenciano Neto @@aut@@ Luís Carlos Vinhas Ítavo @@aut@@ Camila Celeste Brandão Ferreira Ítavo @@aut@@ Vinícius da Silva Oliveira @@aut@@ Maria Juciara Silva Teles Rodrigues @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320649970 |
id |
DOAJ017602793 |
language_de |
englisch portugiesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ017602793</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310092424.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1590/0103-8478cr20200993</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ017602793</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3b55cd65be324f9b97831c1f07682f38</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">por</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S1-972</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Antonio Leandro Chaves Gurgel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved Gliricidia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">ABSTRACT: This study examined the use of the Gompertz, Groot, monomolecular, Richards and two-compartment-logistic mathematical models to investigate the kinetics of in vitro gas production of diets composed of combinations of Gliricidia hay or silage. In addition, the effects of Gliricidia hay or silage inclusion on the in vitro cumulative gas production of these diets were evaluated. Rumen fermentation kinetics were analyzed by the in vitro cumulative gas production methodology. The model parameters were estimated using the Gauss Newton method, with the exception of the Richards model, which was used by Marquardt’s algorithm. Model fit was assessed using the determination coefficient, F test for parameters identity, concordance correlation coefficient, root mean square error of prediction, and decomposition of mean square error of prediction into mean error, systematic bias and random error. The models were compared for accuracy (pairwise mean square error of prediction) and precision (delta Akaike’s information criterion). All model evaluation and comparison statistics were calculated using Model Evaluation System software version 3.2.2. The Groot and Richards models did not differ from each other (P<0.05) and were the most precise and accurate (P<0.05). Therefore, the Groot model was selected due to its better accuracy and precision and easier access to the parameters. The inclusion of Gliricidia silage in the diet resulted in an increase in the time to obtain the maximum rate of degradation and in the time after incubation when half of the asymptotic level was reached. The Groot model is recommended to estimate the average curve. Dietary inclusion of Gliricidia silage alters the gas production curve due to the longer time required for the diet to reach the maximum rate of degradation, this can increase the time the diet remains in rumen and promote a reduction in the consumption.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fermentation kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groot model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hay</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-linear functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silage</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jucileia Aparecida da Silva Morais</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juliana Caroline Santos Santana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gelson dos Santos Difante</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">João Virgínio Emerenciano Neto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luís Carlos Vinhas Ítavo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Camila Celeste Brandão Ferreira Ítavo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vinícius da Silva Oliveira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Juciara Silva Teles Rodrigues</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ciência Rural</subfield><subfield code="d">Universidade Federal de Santa Maria, 2004</subfield><subfield code="g">51(2021), 11</subfield><subfield code="w">(DE-627)320649970</subfield><subfield code="w">(DE-600)2025834-3</subfield><subfield code="x">16784596</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1590/0103-8478cr20200993</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3b55cd65be324f9b97831c1f07682f38</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782021001100654&tlng=en</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1678-4596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2021</subfield><subfield code="e">11</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Antonio Leandro Chaves Gurgel |
spellingShingle |
Antonio Leandro Chaves Gurgel misc S1-972 misc fermentation kinetics misc Groot model misc hay misc non-linear functions misc silage misc Agriculture misc S misc Agriculture (General) Mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved Gliricidia |
authorStr |
Antonio Leandro Chaves Gurgel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320649970 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
S1-972 |
illustrated |
Not Illustrated |
issn |
16784596 |
topic_title |
S1-972 Mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved Gliricidia fermentation kinetics Groot model hay non-linear functions silage |
topic |
misc S1-972 misc fermentation kinetics misc Groot model misc hay misc non-linear functions misc silage misc Agriculture misc S misc Agriculture (General) |
topic_unstemmed |
misc S1-972 misc fermentation kinetics misc Groot model misc hay misc non-linear functions misc silage misc Agriculture misc S misc Agriculture (General) |
topic_browse |
misc S1-972 misc fermentation kinetics misc Groot model misc hay misc non-linear functions misc silage misc Agriculture misc S misc Agriculture (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ciência Rural |
hierarchy_parent_id |
320649970 |
hierarchy_top_title |
Ciência Rural |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320649970 (DE-600)2025834-3 |
title |
Mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved Gliricidia |
ctrlnum |
(DE-627)DOAJ017602793 (DE-599)DOAJ3b55cd65be324f9b97831c1f07682f38 |
title_full |
Mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved Gliricidia |
author_sort |
Antonio Leandro Chaves Gurgel |
journal |
Ciência Rural |
journalStr |
Ciência Rural |
callnumber-first-code |
S |
lang_code |
eng por |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Antonio Leandro Chaves Gurgel Jucileia Aparecida da Silva Morais Juliana Caroline Santos Santana Gelson dos Santos Difante João Virgínio Emerenciano Neto Luís Carlos Vinhas Ítavo Camila Celeste Brandão Ferreira Ítavo Vinícius da Silva Oliveira Maria Juciara Silva Teles Rodrigues |
container_volume |
51 |
class |
S1-972 |
format_se |
Elektronische Aufsätze |
author-letter |
Antonio Leandro Chaves Gurgel |
doi_str_mv |
10.1590/0103-8478cr20200993 |
author2-role |
verfasserin |
title_sort |
mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved gliricidia |
callnumber |
S1-972 |
title_auth |
Mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved Gliricidia |
abstract |
ABSTRACT: This study examined the use of the Gompertz, Groot, monomolecular, Richards and two-compartment-logistic mathematical models to investigate the kinetics of in vitro gas production of diets composed of combinations of Gliricidia hay or silage. In addition, the effects of Gliricidia hay or silage inclusion on the in vitro cumulative gas production of these diets were evaluated. Rumen fermentation kinetics were analyzed by the in vitro cumulative gas production methodology. The model parameters were estimated using the Gauss Newton method, with the exception of the Richards model, which was used by Marquardt’s algorithm. Model fit was assessed using the determination coefficient, F test for parameters identity, concordance correlation coefficient, root mean square error of prediction, and decomposition of mean square error of prediction into mean error, systematic bias and random error. The models were compared for accuracy (pairwise mean square error of prediction) and precision (delta Akaike’s information criterion). All model evaluation and comparison statistics were calculated using Model Evaluation System software version 3.2.2. The Groot and Richards models did not differ from each other (P<0.05) and were the most precise and accurate (P<0.05). Therefore, the Groot model was selected due to its better accuracy and precision and easier access to the parameters. The inclusion of Gliricidia silage in the diet resulted in an increase in the time to obtain the maximum rate of degradation and in the time after incubation when half of the asymptotic level was reached. The Groot model is recommended to estimate the average curve. Dietary inclusion of Gliricidia silage alters the gas production curve due to the longer time required for the diet to reach the maximum rate of degradation, this can increase the time the diet remains in rumen and promote a reduction in the consumption. |
abstractGer |
ABSTRACT: This study examined the use of the Gompertz, Groot, monomolecular, Richards and two-compartment-logistic mathematical models to investigate the kinetics of in vitro gas production of diets composed of combinations of Gliricidia hay or silage. In addition, the effects of Gliricidia hay or silage inclusion on the in vitro cumulative gas production of these diets were evaluated. Rumen fermentation kinetics were analyzed by the in vitro cumulative gas production methodology. The model parameters were estimated using the Gauss Newton method, with the exception of the Richards model, which was used by Marquardt’s algorithm. Model fit was assessed using the determination coefficient, F test for parameters identity, concordance correlation coefficient, root mean square error of prediction, and decomposition of mean square error of prediction into mean error, systematic bias and random error. The models were compared for accuracy (pairwise mean square error of prediction) and precision (delta Akaike’s information criterion). All model evaluation and comparison statistics were calculated using Model Evaluation System software version 3.2.2. The Groot and Richards models did not differ from each other (P<0.05) and were the most precise and accurate (P<0.05). Therefore, the Groot model was selected due to its better accuracy and precision and easier access to the parameters. The inclusion of Gliricidia silage in the diet resulted in an increase in the time to obtain the maximum rate of degradation and in the time after incubation when half of the asymptotic level was reached. The Groot model is recommended to estimate the average curve. Dietary inclusion of Gliricidia silage alters the gas production curve due to the longer time required for the diet to reach the maximum rate of degradation, this can increase the time the diet remains in rumen and promote a reduction in the consumption. |
abstract_unstemmed |
ABSTRACT: This study examined the use of the Gompertz, Groot, monomolecular, Richards and two-compartment-logistic mathematical models to investigate the kinetics of in vitro gas production of diets composed of combinations of Gliricidia hay or silage. In addition, the effects of Gliricidia hay or silage inclusion on the in vitro cumulative gas production of these diets were evaluated. Rumen fermentation kinetics were analyzed by the in vitro cumulative gas production methodology. The model parameters were estimated using the Gauss Newton method, with the exception of the Richards model, which was used by Marquardt’s algorithm. Model fit was assessed using the determination coefficient, F test for parameters identity, concordance correlation coefficient, root mean square error of prediction, and decomposition of mean square error of prediction into mean error, systematic bias and random error. The models were compared for accuracy (pairwise mean square error of prediction) and precision (delta Akaike’s information criterion). All model evaluation and comparison statistics were calculated using Model Evaluation System software version 3.2.2. The Groot and Richards models did not differ from each other (P<0.05) and were the most precise and accurate (P<0.05). Therefore, the Groot model was selected due to its better accuracy and precision and easier access to the parameters. The inclusion of Gliricidia silage in the diet resulted in an increase in the time to obtain the maximum rate of degradation and in the time after incubation when half of the asymptotic level was reached. The Groot model is recommended to estimate the average curve. Dietary inclusion of Gliricidia silage alters the gas production curve due to the longer time required for the diet to reach the maximum rate of degradation, this can increase the time the diet remains in rumen and promote a reduction in the consumption. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11 |
title_short |
Mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved Gliricidia |
url |
https://doi.org/10.1590/0103-8478cr20200993 https://doaj.org/article/3b55cd65be324f9b97831c1f07682f38 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782021001100654&tlng=en https://doaj.org/toc/1678-4596 |
remote_bool |
true |
author2 |
Jucileia Aparecida da Silva Morais Juliana Caroline Santos Santana Gelson dos Santos Difante João Virgínio Emerenciano Neto Luís Carlos Vinhas Ítavo Camila Celeste Brandão Ferreira Ítavo Vinícius da Silva Oliveira Maria Juciara Silva Teles Rodrigues |
author2Str |
Jucileia Aparecida da Silva Morais Juliana Caroline Santos Santana Gelson dos Santos Difante João Virgínio Emerenciano Neto Luís Carlos Vinhas Ítavo Camila Celeste Brandão Ferreira Ítavo Vinícius da Silva Oliveira Maria Juciara Silva Teles Rodrigues |
ppnlink |
320649970 |
callnumber-subject |
S - General Agriculture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1590/0103-8478cr20200993 |
callnumber-a |
S1-972 |
up_date |
2024-07-04T02:14:21.750Z |
_version_ |
1803612860451913728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ017602793</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310092424.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1590/0103-8478cr20200993</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ017602793</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3b55cd65be324f9b97831c1f07682f38</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">por</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S1-972</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Antonio Leandro Chaves Gurgel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical models to adjust the parameters of in vitro cumulative gas production of diets containing preserved Gliricidia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">ABSTRACT: This study examined the use of the Gompertz, Groot, monomolecular, Richards and two-compartment-logistic mathematical models to investigate the kinetics of in vitro gas production of diets composed of combinations of Gliricidia hay or silage. In addition, the effects of Gliricidia hay or silage inclusion on the in vitro cumulative gas production of these diets were evaluated. Rumen fermentation kinetics were analyzed by the in vitro cumulative gas production methodology. The model parameters were estimated using the Gauss Newton method, with the exception of the Richards model, which was used by Marquardt’s algorithm. Model fit was assessed using the determination coefficient, F test for parameters identity, concordance correlation coefficient, root mean square error of prediction, and decomposition of mean square error of prediction into mean error, systematic bias and random error. The models were compared for accuracy (pairwise mean square error of prediction) and precision (delta Akaike’s information criterion). All model evaluation and comparison statistics were calculated using Model Evaluation System software version 3.2.2. The Groot and Richards models did not differ from each other (P<0.05) and were the most precise and accurate (P<0.05). Therefore, the Groot model was selected due to its better accuracy and precision and easier access to the parameters. The inclusion of Gliricidia silage in the diet resulted in an increase in the time to obtain the maximum rate of degradation and in the time after incubation when half of the asymptotic level was reached. The Groot model is recommended to estimate the average curve. Dietary inclusion of Gliricidia silage alters the gas production curve due to the longer time required for the diet to reach the maximum rate of degradation, this can increase the time the diet remains in rumen and promote a reduction in the consumption.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fermentation kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groot model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hay</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-linear functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silage</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jucileia Aparecida da Silva Morais</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juliana Caroline Santos Santana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gelson dos Santos Difante</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">João Virgínio Emerenciano Neto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luís Carlos Vinhas Ítavo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Camila Celeste Brandão Ferreira Ítavo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vinícius da Silva Oliveira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Juciara Silva Teles Rodrigues</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ciência Rural</subfield><subfield code="d">Universidade Federal de Santa Maria, 2004</subfield><subfield code="g">51(2021), 11</subfield><subfield code="w">(DE-627)320649970</subfield><subfield code="w">(DE-600)2025834-3</subfield><subfield code="x">16784596</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1590/0103-8478cr20200993</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3b55cd65be324f9b97831c1f07682f38</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782021001100654&tlng=en</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1678-4596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2021</subfield><subfield code="e">11</subfield></datafield></record></collection>
|
score |
7.4017544 |