Predicting Drug-Disease Associations via Multi-Task Learning Based on Collective Matrix Factorization

Identifying drug-disease associations is integral to drug development. Computationally prioritizing candidate drug-disease associations has attracted growing attention due to its contribution to reducing the cost of laboratory screening. Drug-disease associations involve different association types,...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Feng Huang [verfasserIn]

Yang Qiu [verfasserIn]

Qiaojun Li [verfasserIn]

Shichao Liu [verfasserIn]

Fuchuan Ni [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2020

Schlagwörter:

drug-disease association

predicting association type

similarity

collective matrix factorization

multi-task learning

Übergeordnetes Werk:

In: Frontiers in Bioengineering and Biotechnology - Frontiers Media S.A., 2014, 8(2020)

Übergeordnetes Werk:

volume:8 ; year:2020

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.3389/fbioe.2020.00218

Katalog-ID:

DOAJ017784433

Nicht das Richtige dabei?

Schreiben Sie uns!