Research on Parameter Matching of the Asymmetric Pump Potential Energy Recovery System Based on Multi-Core Parallel Optimization Method
Aiming at the parameters of the different displacements and related components of the variable-displacement asymmetric axial piston pump (VAPP) required by the energy-recovery system of excavator booms of different tonnages, a rapid multi-process parallel optimization method of complex hydraulic pro...
Ausführliche Beschreibung
Autor*in: |
Lixin Wei [verfasserIn] Zhiqiang Ning [verfasserIn] Long Quan [verfasserIn] Aihong Wang [verfasserIn] Youshan Gao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Processes - MDPI AG, 2013, 10(2022), 2298, p 2298 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:2298, p 2298 |
Links: |
---|
DOI / URN: |
10.3390/pr10112298 |
---|
Katalog-ID: |
DOAJ017785316 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ017785316 | ||
003 | DE-627 | ||
005 | 20230503022559.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/pr10112298 |2 doi | |
035 | |a (DE-627)DOAJ017785316 | ||
035 | |a (DE-599)DOAJ8bc6b9fa65d74218a1c9b05dfe2288c5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Lixin Wei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Research on Parameter Matching of the Asymmetric Pump Potential Energy Recovery System Based on Multi-Core Parallel Optimization Method |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Aiming at the parameters of the different displacements and related components of the variable-displacement asymmetric axial piston pump (VAPP) required by the energy-recovery system of excavator booms of different tonnages, a rapid multi-process parallel optimization method of complex hydraulic products based on a multi-core CPU was proposed for parameter matching. The parameter matching was used to reasonably select relevant parameters so that the excavator’s boom energy-recovery and utilization system can improve operational efficiency and energy-saving efficiency under the premise of satisfying the normal working conditions of the working mechanism, and achieving the purpose of serializing VAPP products. A multi-objective optimization model was put forward according to energy-saving efficiency and operational efficiency. First, the accuracy of the acceleration method of the CVODE, a solver for stiff and non-stiff ordinary differential equation (ODE) systems, was verified by a physical prototype test. The results showed that the test and simulation results were in good agreement. A particle swarm optimization algorithm (PSO) was used to optimize the main parameters of the boom energy-recovery system to obtain the appropriate energy-saving efficiency and obtain the VAPP displacement and related component parameters required by the energy-recovery system of excavator booms of different tonnages. The simulation results showed that a motor working condition was necessary in the guaranteed descending stage, and the process of lifting–descending–lifting was completed under the condition that the total time did not exceed a certain value. The energy-saving rates of the 7-ton (7T), 12-ton (12T), 20-ton (20T), and 30-ton (30T) excavator boom energy-recovery systems reached 29.8%, 35.3%, 31.25%, and 27.88%, respectively. In the eight-core CPU workstation under the simulation conditions, compared with the Simulation X platform simulation method, the simulation efficiency of the multi-core CPU parallel method was improved by more than 80 times. | ||
650 | 4 | |a energy recovery | |
650 | 4 | |a multi-core CPU | |
650 | 4 | |a multi-process parallel | |
650 | 4 | |a serialization products | |
650 | 4 | |a VAPP | |
653 | 0 | |a Chemical technology | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Zhiqiang Ning |e verfasserin |4 aut | |
700 | 0 | |a Long Quan |e verfasserin |4 aut | |
700 | 0 | |a Aihong Wang |e verfasserin |4 aut | |
700 | 0 | |a Youshan Gao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Processes |d MDPI AG, 2013 |g 10(2022), 2298, p 2298 |w (DE-627)750371439 |w (DE-600)2720994-5 |x 22279717 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:2298, p 2298 |
856 | 4 | 0 | |u https://doi.org/10.3390/pr10112298 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8bc6b9fa65d74218a1c9b05dfe2288c5 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-9717/10/11/2298 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-9717 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 2298, p 2298 |
author_variant |
l w lw z n zn l q lq a w aw y g yg |
---|---|
matchkey_str |
article:22279717:2022----::eerhnaaeemthnotesmercupoetaeegrcvrssebsdnut |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TP |
publishDate |
2022 |
allfields |
10.3390/pr10112298 doi (DE-627)DOAJ017785316 (DE-599)DOAJ8bc6b9fa65d74218a1c9b05dfe2288c5 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Lixin Wei verfasserin aut Research on Parameter Matching of the Asymmetric Pump Potential Energy Recovery System Based on Multi-Core Parallel Optimization Method 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aiming at the parameters of the different displacements and related components of the variable-displacement asymmetric axial piston pump (VAPP) required by the energy-recovery system of excavator booms of different tonnages, a rapid multi-process parallel optimization method of complex hydraulic products based on a multi-core CPU was proposed for parameter matching. The parameter matching was used to reasonably select relevant parameters so that the excavator’s boom energy-recovery and utilization system can improve operational efficiency and energy-saving efficiency under the premise of satisfying the normal working conditions of the working mechanism, and achieving the purpose of serializing VAPP products. A multi-objective optimization model was put forward according to energy-saving efficiency and operational efficiency. First, the accuracy of the acceleration method of the CVODE, a solver for stiff and non-stiff ordinary differential equation (ODE) systems, was verified by a physical prototype test. The results showed that the test and simulation results were in good agreement. A particle swarm optimization algorithm (PSO) was used to optimize the main parameters of the boom energy-recovery system to obtain the appropriate energy-saving efficiency and obtain the VAPP displacement and related component parameters required by the energy-recovery system of excavator booms of different tonnages. The simulation results showed that a motor working condition was necessary in the guaranteed descending stage, and the process of lifting–descending–lifting was completed under the condition that the total time did not exceed a certain value. The energy-saving rates of the 7-ton (7T), 12-ton (12T), 20-ton (20T), and 30-ton (30T) excavator boom energy-recovery systems reached 29.8%, 35.3%, 31.25%, and 27.88%, respectively. In the eight-core CPU workstation under the simulation conditions, compared with the Simulation X platform simulation method, the simulation efficiency of the multi-core CPU parallel method was improved by more than 80 times. energy recovery multi-core CPU multi-process parallel serialization products VAPP Chemical technology Chemistry Zhiqiang Ning verfasserin aut Long Quan verfasserin aut Aihong Wang verfasserin aut Youshan Gao verfasserin aut In Processes MDPI AG, 2013 10(2022), 2298, p 2298 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:2298, p 2298 https://doi.org/10.3390/pr10112298 kostenfrei https://doaj.org/article/8bc6b9fa65d74218a1c9b05dfe2288c5 kostenfrei https://www.mdpi.com/2227-9717/10/11/2298 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 2298, p 2298 |
spelling |
10.3390/pr10112298 doi (DE-627)DOAJ017785316 (DE-599)DOAJ8bc6b9fa65d74218a1c9b05dfe2288c5 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Lixin Wei verfasserin aut Research on Parameter Matching of the Asymmetric Pump Potential Energy Recovery System Based on Multi-Core Parallel Optimization Method 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aiming at the parameters of the different displacements and related components of the variable-displacement asymmetric axial piston pump (VAPP) required by the energy-recovery system of excavator booms of different tonnages, a rapid multi-process parallel optimization method of complex hydraulic products based on a multi-core CPU was proposed for parameter matching. The parameter matching was used to reasonably select relevant parameters so that the excavator’s boom energy-recovery and utilization system can improve operational efficiency and energy-saving efficiency under the premise of satisfying the normal working conditions of the working mechanism, and achieving the purpose of serializing VAPP products. A multi-objective optimization model was put forward according to energy-saving efficiency and operational efficiency. First, the accuracy of the acceleration method of the CVODE, a solver for stiff and non-stiff ordinary differential equation (ODE) systems, was verified by a physical prototype test. The results showed that the test and simulation results were in good agreement. A particle swarm optimization algorithm (PSO) was used to optimize the main parameters of the boom energy-recovery system to obtain the appropriate energy-saving efficiency and obtain the VAPP displacement and related component parameters required by the energy-recovery system of excavator booms of different tonnages. The simulation results showed that a motor working condition was necessary in the guaranteed descending stage, and the process of lifting–descending–lifting was completed under the condition that the total time did not exceed a certain value. The energy-saving rates of the 7-ton (7T), 12-ton (12T), 20-ton (20T), and 30-ton (30T) excavator boom energy-recovery systems reached 29.8%, 35.3%, 31.25%, and 27.88%, respectively. In the eight-core CPU workstation under the simulation conditions, compared with the Simulation X platform simulation method, the simulation efficiency of the multi-core CPU parallel method was improved by more than 80 times. energy recovery multi-core CPU multi-process parallel serialization products VAPP Chemical technology Chemistry Zhiqiang Ning verfasserin aut Long Quan verfasserin aut Aihong Wang verfasserin aut Youshan Gao verfasserin aut In Processes MDPI AG, 2013 10(2022), 2298, p 2298 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:2298, p 2298 https://doi.org/10.3390/pr10112298 kostenfrei https://doaj.org/article/8bc6b9fa65d74218a1c9b05dfe2288c5 kostenfrei https://www.mdpi.com/2227-9717/10/11/2298 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 2298, p 2298 |
allfields_unstemmed |
10.3390/pr10112298 doi (DE-627)DOAJ017785316 (DE-599)DOAJ8bc6b9fa65d74218a1c9b05dfe2288c5 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Lixin Wei verfasserin aut Research on Parameter Matching of the Asymmetric Pump Potential Energy Recovery System Based on Multi-Core Parallel Optimization Method 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aiming at the parameters of the different displacements and related components of the variable-displacement asymmetric axial piston pump (VAPP) required by the energy-recovery system of excavator booms of different tonnages, a rapid multi-process parallel optimization method of complex hydraulic products based on a multi-core CPU was proposed for parameter matching. The parameter matching was used to reasonably select relevant parameters so that the excavator’s boom energy-recovery and utilization system can improve operational efficiency and energy-saving efficiency under the premise of satisfying the normal working conditions of the working mechanism, and achieving the purpose of serializing VAPP products. A multi-objective optimization model was put forward according to energy-saving efficiency and operational efficiency. First, the accuracy of the acceleration method of the CVODE, a solver for stiff and non-stiff ordinary differential equation (ODE) systems, was verified by a physical prototype test. The results showed that the test and simulation results were in good agreement. A particle swarm optimization algorithm (PSO) was used to optimize the main parameters of the boom energy-recovery system to obtain the appropriate energy-saving efficiency and obtain the VAPP displacement and related component parameters required by the energy-recovery system of excavator booms of different tonnages. The simulation results showed that a motor working condition was necessary in the guaranteed descending stage, and the process of lifting–descending–lifting was completed under the condition that the total time did not exceed a certain value. The energy-saving rates of the 7-ton (7T), 12-ton (12T), 20-ton (20T), and 30-ton (30T) excavator boom energy-recovery systems reached 29.8%, 35.3%, 31.25%, and 27.88%, respectively. In the eight-core CPU workstation under the simulation conditions, compared with the Simulation X platform simulation method, the simulation efficiency of the multi-core CPU parallel method was improved by more than 80 times. energy recovery multi-core CPU multi-process parallel serialization products VAPP Chemical technology Chemistry Zhiqiang Ning verfasserin aut Long Quan verfasserin aut Aihong Wang verfasserin aut Youshan Gao verfasserin aut In Processes MDPI AG, 2013 10(2022), 2298, p 2298 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:2298, p 2298 https://doi.org/10.3390/pr10112298 kostenfrei https://doaj.org/article/8bc6b9fa65d74218a1c9b05dfe2288c5 kostenfrei https://www.mdpi.com/2227-9717/10/11/2298 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 2298, p 2298 |
allfieldsGer |
10.3390/pr10112298 doi (DE-627)DOAJ017785316 (DE-599)DOAJ8bc6b9fa65d74218a1c9b05dfe2288c5 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Lixin Wei verfasserin aut Research on Parameter Matching of the Asymmetric Pump Potential Energy Recovery System Based on Multi-Core Parallel Optimization Method 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aiming at the parameters of the different displacements and related components of the variable-displacement asymmetric axial piston pump (VAPP) required by the energy-recovery system of excavator booms of different tonnages, a rapid multi-process parallel optimization method of complex hydraulic products based on a multi-core CPU was proposed for parameter matching. The parameter matching was used to reasonably select relevant parameters so that the excavator’s boom energy-recovery and utilization system can improve operational efficiency and energy-saving efficiency under the premise of satisfying the normal working conditions of the working mechanism, and achieving the purpose of serializing VAPP products. A multi-objective optimization model was put forward according to energy-saving efficiency and operational efficiency. First, the accuracy of the acceleration method of the CVODE, a solver for stiff and non-stiff ordinary differential equation (ODE) systems, was verified by a physical prototype test. The results showed that the test and simulation results were in good agreement. A particle swarm optimization algorithm (PSO) was used to optimize the main parameters of the boom energy-recovery system to obtain the appropriate energy-saving efficiency and obtain the VAPP displacement and related component parameters required by the energy-recovery system of excavator booms of different tonnages. The simulation results showed that a motor working condition was necessary in the guaranteed descending stage, and the process of lifting–descending–lifting was completed under the condition that the total time did not exceed a certain value. The energy-saving rates of the 7-ton (7T), 12-ton (12T), 20-ton (20T), and 30-ton (30T) excavator boom energy-recovery systems reached 29.8%, 35.3%, 31.25%, and 27.88%, respectively. In the eight-core CPU workstation under the simulation conditions, compared with the Simulation X platform simulation method, the simulation efficiency of the multi-core CPU parallel method was improved by more than 80 times. energy recovery multi-core CPU multi-process parallel serialization products VAPP Chemical technology Chemistry Zhiqiang Ning verfasserin aut Long Quan verfasserin aut Aihong Wang verfasserin aut Youshan Gao verfasserin aut In Processes MDPI AG, 2013 10(2022), 2298, p 2298 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:2298, p 2298 https://doi.org/10.3390/pr10112298 kostenfrei https://doaj.org/article/8bc6b9fa65d74218a1c9b05dfe2288c5 kostenfrei https://www.mdpi.com/2227-9717/10/11/2298 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 2298, p 2298 |
allfieldsSound |
10.3390/pr10112298 doi (DE-627)DOAJ017785316 (DE-599)DOAJ8bc6b9fa65d74218a1c9b05dfe2288c5 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Lixin Wei verfasserin aut Research on Parameter Matching of the Asymmetric Pump Potential Energy Recovery System Based on Multi-Core Parallel Optimization Method 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aiming at the parameters of the different displacements and related components of the variable-displacement asymmetric axial piston pump (VAPP) required by the energy-recovery system of excavator booms of different tonnages, a rapid multi-process parallel optimization method of complex hydraulic products based on a multi-core CPU was proposed for parameter matching. The parameter matching was used to reasonably select relevant parameters so that the excavator’s boom energy-recovery and utilization system can improve operational efficiency and energy-saving efficiency under the premise of satisfying the normal working conditions of the working mechanism, and achieving the purpose of serializing VAPP products. A multi-objective optimization model was put forward according to energy-saving efficiency and operational efficiency. First, the accuracy of the acceleration method of the CVODE, a solver for stiff and non-stiff ordinary differential equation (ODE) systems, was verified by a physical prototype test. The results showed that the test and simulation results were in good agreement. A particle swarm optimization algorithm (PSO) was used to optimize the main parameters of the boom energy-recovery system to obtain the appropriate energy-saving efficiency and obtain the VAPP displacement and related component parameters required by the energy-recovery system of excavator booms of different tonnages. The simulation results showed that a motor working condition was necessary in the guaranteed descending stage, and the process of lifting–descending–lifting was completed under the condition that the total time did not exceed a certain value. The energy-saving rates of the 7-ton (7T), 12-ton (12T), 20-ton (20T), and 30-ton (30T) excavator boom energy-recovery systems reached 29.8%, 35.3%, 31.25%, and 27.88%, respectively. In the eight-core CPU workstation under the simulation conditions, compared with the Simulation X platform simulation method, the simulation efficiency of the multi-core CPU parallel method was improved by more than 80 times. energy recovery multi-core CPU multi-process parallel serialization products VAPP Chemical technology Chemistry Zhiqiang Ning verfasserin aut Long Quan verfasserin aut Aihong Wang verfasserin aut Youshan Gao verfasserin aut In Processes MDPI AG, 2013 10(2022), 2298, p 2298 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:2298, p 2298 https://doi.org/10.3390/pr10112298 kostenfrei https://doaj.org/article/8bc6b9fa65d74218a1c9b05dfe2288c5 kostenfrei https://www.mdpi.com/2227-9717/10/11/2298 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 2298, p 2298 |
language |
English |
source |
In Processes 10(2022), 2298, p 2298 volume:10 year:2022 number:2298, p 2298 |
sourceStr |
In Processes 10(2022), 2298, p 2298 volume:10 year:2022 number:2298, p 2298 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
energy recovery multi-core CPU multi-process parallel serialization products VAPP Chemical technology Chemistry |
isfreeaccess_bool |
true |
container_title |
Processes |
authorswithroles_txt_mv |
Lixin Wei @@aut@@ Zhiqiang Ning @@aut@@ Long Quan @@aut@@ Aihong Wang @@aut@@ Youshan Gao @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
750371439 |
id |
DOAJ017785316 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ017785316</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503022559.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pr10112298</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ017785316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8bc6b9fa65d74218a1c9b05dfe2288c5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lixin Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on Parameter Matching of the Asymmetric Pump Potential Energy Recovery System Based on Multi-Core Parallel Optimization Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Aiming at the parameters of the different displacements and related components of the variable-displacement asymmetric axial piston pump (VAPP) required by the energy-recovery system of excavator booms of different tonnages, a rapid multi-process parallel optimization method of complex hydraulic products based on a multi-core CPU was proposed for parameter matching. The parameter matching was used to reasonably select relevant parameters so that the excavator’s boom energy-recovery and utilization system can improve operational efficiency and energy-saving efficiency under the premise of satisfying the normal working conditions of the working mechanism, and achieving the purpose of serializing VAPP products. A multi-objective optimization model was put forward according to energy-saving efficiency and operational efficiency. First, the accuracy of the acceleration method of the CVODE, a solver for stiff and non-stiff ordinary differential equation (ODE) systems, was verified by a physical prototype test. The results showed that the test and simulation results were in good agreement. A particle swarm optimization algorithm (PSO) was used to optimize the main parameters of the boom energy-recovery system to obtain the appropriate energy-saving efficiency and obtain the VAPP displacement and related component parameters required by the energy-recovery system of excavator booms of different tonnages. The simulation results showed that a motor working condition was necessary in the guaranteed descending stage, and the process of lifting–descending–lifting was completed under the condition that the total time did not exceed a certain value. The energy-saving rates of the 7-ton (7T), 12-ton (12T), 20-ton (20T), and 30-ton (30T) excavator boom energy-recovery systems reached 29.8%, 35.3%, 31.25%, and 27.88%, respectively. In the eight-core CPU workstation under the simulation conditions, compared with the Simulation X platform simulation method, the simulation efficiency of the multi-core CPU parallel method was improved by more than 80 times.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy recovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-core CPU</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-process parallel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">serialization products</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VAPP</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiqiang Ning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Long Quan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aihong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Youshan Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Processes</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 2298, p 2298</subfield><subfield code="w">(DE-627)750371439</subfield><subfield code="w">(DE-600)2720994-5</subfield><subfield code="x">22279717</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2298, p 2298</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pr10112298</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8bc6b9fa65d74218a1c9b05dfe2288c5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9717/10/11/2298</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9717</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">2298, p 2298</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Lixin Wei |
spellingShingle |
Lixin Wei misc TP1-1185 misc QD1-999 misc energy recovery misc multi-core CPU misc multi-process parallel misc serialization products misc VAPP misc Chemical technology misc Chemistry Research on Parameter Matching of the Asymmetric Pump Potential Energy Recovery System Based on Multi-Core Parallel Optimization Method |
authorStr |
Lixin Wei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750371439 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
22279717 |
topic_title |
TP1-1185 QD1-999 Research on Parameter Matching of the Asymmetric Pump Potential Energy Recovery System Based on Multi-Core Parallel Optimization Method energy recovery multi-core CPU multi-process parallel serialization products VAPP |
topic |
misc TP1-1185 misc QD1-999 misc energy recovery misc multi-core CPU misc multi-process parallel misc serialization products misc VAPP misc Chemical technology misc Chemistry |
topic_unstemmed |
misc TP1-1185 misc QD1-999 misc energy recovery misc multi-core CPU misc multi-process parallel misc serialization products misc VAPP misc Chemical technology misc Chemistry |
topic_browse |
misc TP1-1185 misc QD1-999 misc energy recovery misc multi-core CPU misc multi-process parallel misc serialization products misc VAPP misc Chemical technology misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Processes |
hierarchy_parent_id |
750371439 |
hierarchy_top_title |
Processes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750371439 (DE-600)2720994-5 |
title |
Research on Parameter Matching of the Asymmetric Pump Potential Energy Recovery System Based on Multi-Core Parallel Optimization Method |
ctrlnum |
(DE-627)DOAJ017785316 (DE-599)DOAJ8bc6b9fa65d74218a1c9b05dfe2288c5 |
title_full |
Research on Parameter Matching of the Asymmetric Pump Potential Energy Recovery System Based on Multi-Core Parallel Optimization Method |
author_sort |
Lixin Wei |
journal |
Processes |
journalStr |
Processes |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Lixin Wei Zhiqiang Ning Long Quan Aihong Wang Youshan Gao |
container_volume |
10 |
class |
TP1-1185 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Lixin Wei |
doi_str_mv |
10.3390/pr10112298 |
author2-role |
verfasserin |
title_sort |
research on parameter matching of the asymmetric pump potential energy recovery system based on multi-core parallel optimization method |
callnumber |
TP1-1185 |
title_auth |
Research on Parameter Matching of the Asymmetric Pump Potential Energy Recovery System Based on Multi-Core Parallel Optimization Method |
abstract |
Aiming at the parameters of the different displacements and related components of the variable-displacement asymmetric axial piston pump (VAPP) required by the energy-recovery system of excavator booms of different tonnages, a rapid multi-process parallel optimization method of complex hydraulic products based on a multi-core CPU was proposed for parameter matching. The parameter matching was used to reasonably select relevant parameters so that the excavator’s boom energy-recovery and utilization system can improve operational efficiency and energy-saving efficiency under the premise of satisfying the normal working conditions of the working mechanism, and achieving the purpose of serializing VAPP products. A multi-objective optimization model was put forward according to energy-saving efficiency and operational efficiency. First, the accuracy of the acceleration method of the CVODE, a solver for stiff and non-stiff ordinary differential equation (ODE) systems, was verified by a physical prototype test. The results showed that the test and simulation results were in good agreement. A particle swarm optimization algorithm (PSO) was used to optimize the main parameters of the boom energy-recovery system to obtain the appropriate energy-saving efficiency and obtain the VAPP displacement and related component parameters required by the energy-recovery system of excavator booms of different tonnages. The simulation results showed that a motor working condition was necessary in the guaranteed descending stage, and the process of lifting–descending–lifting was completed under the condition that the total time did not exceed a certain value. The energy-saving rates of the 7-ton (7T), 12-ton (12T), 20-ton (20T), and 30-ton (30T) excavator boom energy-recovery systems reached 29.8%, 35.3%, 31.25%, and 27.88%, respectively. In the eight-core CPU workstation under the simulation conditions, compared with the Simulation X platform simulation method, the simulation efficiency of the multi-core CPU parallel method was improved by more than 80 times. |
abstractGer |
Aiming at the parameters of the different displacements and related components of the variable-displacement asymmetric axial piston pump (VAPP) required by the energy-recovery system of excavator booms of different tonnages, a rapid multi-process parallel optimization method of complex hydraulic products based on a multi-core CPU was proposed for parameter matching. The parameter matching was used to reasonably select relevant parameters so that the excavator’s boom energy-recovery and utilization system can improve operational efficiency and energy-saving efficiency under the premise of satisfying the normal working conditions of the working mechanism, and achieving the purpose of serializing VAPP products. A multi-objective optimization model was put forward according to energy-saving efficiency and operational efficiency. First, the accuracy of the acceleration method of the CVODE, a solver for stiff and non-stiff ordinary differential equation (ODE) systems, was verified by a physical prototype test. The results showed that the test and simulation results were in good agreement. A particle swarm optimization algorithm (PSO) was used to optimize the main parameters of the boom energy-recovery system to obtain the appropriate energy-saving efficiency and obtain the VAPP displacement and related component parameters required by the energy-recovery system of excavator booms of different tonnages. The simulation results showed that a motor working condition was necessary in the guaranteed descending stage, and the process of lifting–descending–lifting was completed under the condition that the total time did not exceed a certain value. The energy-saving rates of the 7-ton (7T), 12-ton (12T), 20-ton (20T), and 30-ton (30T) excavator boom energy-recovery systems reached 29.8%, 35.3%, 31.25%, and 27.88%, respectively. In the eight-core CPU workstation under the simulation conditions, compared with the Simulation X platform simulation method, the simulation efficiency of the multi-core CPU parallel method was improved by more than 80 times. |
abstract_unstemmed |
Aiming at the parameters of the different displacements and related components of the variable-displacement asymmetric axial piston pump (VAPP) required by the energy-recovery system of excavator booms of different tonnages, a rapid multi-process parallel optimization method of complex hydraulic products based on a multi-core CPU was proposed for parameter matching. The parameter matching was used to reasonably select relevant parameters so that the excavator’s boom energy-recovery and utilization system can improve operational efficiency and energy-saving efficiency under the premise of satisfying the normal working conditions of the working mechanism, and achieving the purpose of serializing VAPP products. A multi-objective optimization model was put forward according to energy-saving efficiency and operational efficiency. First, the accuracy of the acceleration method of the CVODE, a solver for stiff and non-stiff ordinary differential equation (ODE) systems, was verified by a physical prototype test. The results showed that the test and simulation results were in good agreement. A particle swarm optimization algorithm (PSO) was used to optimize the main parameters of the boom energy-recovery system to obtain the appropriate energy-saving efficiency and obtain the VAPP displacement and related component parameters required by the energy-recovery system of excavator booms of different tonnages. The simulation results showed that a motor working condition was necessary in the guaranteed descending stage, and the process of lifting–descending–lifting was completed under the condition that the total time did not exceed a certain value. The energy-saving rates of the 7-ton (7T), 12-ton (12T), 20-ton (20T), and 30-ton (30T) excavator boom energy-recovery systems reached 29.8%, 35.3%, 31.25%, and 27.88%, respectively. In the eight-core CPU workstation under the simulation conditions, compared with the Simulation X platform simulation method, the simulation efficiency of the multi-core CPU parallel method was improved by more than 80 times. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2298, p 2298 |
title_short |
Research on Parameter Matching of the Asymmetric Pump Potential Energy Recovery System Based on Multi-Core Parallel Optimization Method |
url |
https://doi.org/10.3390/pr10112298 https://doaj.org/article/8bc6b9fa65d74218a1c9b05dfe2288c5 https://www.mdpi.com/2227-9717/10/11/2298 https://doaj.org/toc/2227-9717 |
remote_bool |
true |
author2 |
Zhiqiang Ning Long Quan Aihong Wang Youshan Gao |
author2Str |
Zhiqiang Ning Long Quan Aihong Wang Youshan Gao |
ppnlink |
750371439 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/pr10112298 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T14:04:56.235Z |
_version_ |
1803566968986402816 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ017785316</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503022559.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pr10112298</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ017785316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8bc6b9fa65d74218a1c9b05dfe2288c5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lixin Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on Parameter Matching of the Asymmetric Pump Potential Energy Recovery System Based on Multi-Core Parallel Optimization Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Aiming at the parameters of the different displacements and related components of the variable-displacement asymmetric axial piston pump (VAPP) required by the energy-recovery system of excavator booms of different tonnages, a rapid multi-process parallel optimization method of complex hydraulic products based on a multi-core CPU was proposed for parameter matching. The parameter matching was used to reasonably select relevant parameters so that the excavator’s boom energy-recovery and utilization system can improve operational efficiency and energy-saving efficiency under the premise of satisfying the normal working conditions of the working mechanism, and achieving the purpose of serializing VAPP products. A multi-objective optimization model was put forward according to energy-saving efficiency and operational efficiency. First, the accuracy of the acceleration method of the CVODE, a solver for stiff and non-stiff ordinary differential equation (ODE) systems, was verified by a physical prototype test. The results showed that the test and simulation results were in good agreement. A particle swarm optimization algorithm (PSO) was used to optimize the main parameters of the boom energy-recovery system to obtain the appropriate energy-saving efficiency and obtain the VAPP displacement and related component parameters required by the energy-recovery system of excavator booms of different tonnages. The simulation results showed that a motor working condition was necessary in the guaranteed descending stage, and the process of lifting–descending–lifting was completed under the condition that the total time did not exceed a certain value. The energy-saving rates of the 7-ton (7T), 12-ton (12T), 20-ton (20T), and 30-ton (30T) excavator boom energy-recovery systems reached 29.8%, 35.3%, 31.25%, and 27.88%, respectively. In the eight-core CPU workstation under the simulation conditions, compared with the Simulation X platform simulation method, the simulation efficiency of the multi-core CPU parallel method was improved by more than 80 times.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy recovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-core CPU</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-process parallel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">serialization products</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VAPP</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiqiang Ning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Long Quan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aihong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Youshan Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Processes</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 2298, p 2298</subfield><subfield code="w">(DE-627)750371439</subfield><subfield code="w">(DE-600)2720994-5</subfield><subfield code="x">22279717</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2298, p 2298</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pr10112298</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8bc6b9fa65d74218a1c9b05dfe2288c5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9717/10/11/2298</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9717</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">2298, p 2298</subfield></datafield></record></collection>
|
score |
7.401745 |