Least Angle Regression-Based Constrained Sparse Unmixing of Hyperspectral Remote Sensing Imagery
Sparse unmixing has been successfully applied in hyperspectral remote sensing imagery analysis based on a standard spectral library known in advance. This approach involves reformulating the traditional linear spectral unmixing problem by finding the optimal subset of signatures in this spectral lib...
Ausführliche Beschreibung
Autor*in: |
Ruyi Feng [verfasserIn] Lizhe Wang [verfasserIn] Yanfei Zhong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 10(2018), 10, p 1546 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2018 ; number:10, p 1546 |
Links: |
---|
DOI / URN: |
10.3390/rs10101546 |
---|
Katalog-ID: |
DOAJ017943817 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ017943817 | ||
003 | DE-627 | ||
005 | 20230502074124.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs10101546 |2 doi | |
035 | |a (DE-627)DOAJ017943817 | ||
035 | |a (DE-599)DOAJd83f47becf9c457a801b12d74e4805ed | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Ruyi Feng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Least Angle Regression-Based Constrained Sparse Unmixing of Hyperspectral Remote Sensing Imagery |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Sparse unmixing has been successfully applied in hyperspectral remote sensing imagery analysis based on a standard spectral library known in advance. This approach involves reformulating the traditional linear spectral unmixing problem by finding the optimal subset of signatures in this spectral library using the sparse regression technique, and has greatly improved the estimation of fractional abundances in ubiquitous mixed pixels. Since the potentially large standard spectral library can be given a priori, the most challenging task is to compute the regression coefficients, i.e., the fractional abundances, for the linear regression problem. There are many mathematical techniques that can be used to deal with the spectral unmixing problem; e.g., ordinary least squares (OLS), constrained least squares (CLS), orthogonal matching pursuit (OMP), and basis pursuit (BP). However, due to poor prediction accuracy and non-interpretability, the traditional methods often cannot obtain satisfactory estimations or achieve a reasonable interpretation. In this paper, to improve the regression accuracy of sparse unmixing, least angle regression-based constrained sparse unmixing (LARCSU) is introduced to further enhance the precision of sparse unmixing. Differing from the classical greedy algorithms and some of the cautious sparse regression-based approaches, the LARCSU algorithm has two main advantages. Firstly, it introduces an equiangular vector to seek the optimal regression steps based on the simple underlying geometry. Secondly, unlike the alternating direction method of multipliers (ADMM)-based algorithms that introduce one or more multipliers or augmented terms during their optimization procedures, no parameters are required in the computational process of the LARCSU approach. The experimental results obtained with both simulated datasets and real hyperspectral images confirm the effectiveness of LARCSU compared with the current state-of-the-art spectral unmixing algorithms. LARCSU can obtain a better fractional abundance map, as well as a higher unmixing accuracy, with the same order of magnitude of computational effort as the CLS-based methods. | ||
650 | 4 | |a sparse unmixing | |
650 | 4 | |a least angle regression | |
650 | 4 | |a equiangular vector | |
650 | 4 | |a linear regression | |
650 | 4 | |a hyperspectral remote sensing imagery | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Lizhe Wang |e verfasserin |4 aut | |
700 | 0 | |a Yanfei Zhong |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 10(2018), 10, p 1546 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2018 |g number:10, p 1546 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs10101546 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d83f47becf9c457a801b12d74e4805ed |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/2072-4292/10/10/1546 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2018 |e 10, p 1546 |
author_variant |
r f rf l w lw y z yz |
---|---|
matchkey_str |
article:20724292:2018----::esageersinaecntandpreniigfyeset |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.3390/rs10101546 doi (DE-627)DOAJ017943817 (DE-599)DOAJd83f47becf9c457a801b12d74e4805ed DE-627 ger DE-627 rakwb eng Ruyi Feng verfasserin aut Least Angle Regression-Based Constrained Sparse Unmixing of Hyperspectral Remote Sensing Imagery 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sparse unmixing has been successfully applied in hyperspectral remote sensing imagery analysis based on a standard spectral library known in advance. This approach involves reformulating the traditional linear spectral unmixing problem by finding the optimal subset of signatures in this spectral library using the sparse regression technique, and has greatly improved the estimation of fractional abundances in ubiquitous mixed pixels. Since the potentially large standard spectral library can be given a priori, the most challenging task is to compute the regression coefficients, i.e., the fractional abundances, for the linear regression problem. There are many mathematical techniques that can be used to deal with the spectral unmixing problem; e.g., ordinary least squares (OLS), constrained least squares (CLS), orthogonal matching pursuit (OMP), and basis pursuit (BP). However, due to poor prediction accuracy and non-interpretability, the traditional methods often cannot obtain satisfactory estimations or achieve a reasonable interpretation. In this paper, to improve the regression accuracy of sparse unmixing, least angle regression-based constrained sparse unmixing (LARCSU) is introduced to further enhance the precision of sparse unmixing. Differing from the classical greedy algorithms and some of the cautious sparse regression-based approaches, the LARCSU algorithm has two main advantages. Firstly, it introduces an equiangular vector to seek the optimal regression steps based on the simple underlying geometry. Secondly, unlike the alternating direction method of multipliers (ADMM)-based algorithms that introduce one or more multipliers or augmented terms during their optimization procedures, no parameters are required in the computational process of the LARCSU approach. The experimental results obtained with both simulated datasets and real hyperspectral images confirm the effectiveness of LARCSU compared with the current state-of-the-art spectral unmixing algorithms. LARCSU can obtain a better fractional abundance map, as well as a higher unmixing accuracy, with the same order of magnitude of computational effort as the CLS-based methods. sparse unmixing least angle regression equiangular vector linear regression hyperspectral remote sensing imagery Science Q Lizhe Wang verfasserin aut Yanfei Zhong verfasserin aut In Remote Sensing MDPI AG, 2009 10(2018), 10, p 1546 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:10 year:2018 number:10, p 1546 https://doi.org/10.3390/rs10101546 kostenfrei https://doaj.org/article/d83f47becf9c457a801b12d74e4805ed kostenfrei http://www.mdpi.com/2072-4292/10/10/1546 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2018 10, p 1546 |
spelling |
10.3390/rs10101546 doi (DE-627)DOAJ017943817 (DE-599)DOAJd83f47becf9c457a801b12d74e4805ed DE-627 ger DE-627 rakwb eng Ruyi Feng verfasserin aut Least Angle Regression-Based Constrained Sparse Unmixing of Hyperspectral Remote Sensing Imagery 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sparse unmixing has been successfully applied in hyperspectral remote sensing imagery analysis based on a standard spectral library known in advance. This approach involves reformulating the traditional linear spectral unmixing problem by finding the optimal subset of signatures in this spectral library using the sparse regression technique, and has greatly improved the estimation of fractional abundances in ubiquitous mixed pixels. Since the potentially large standard spectral library can be given a priori, the most challenging task is to compute the regression coefficients, i.e., the fractional abundances, for the linear regression problem. There are many mathematical techniques that can be used to deal with the spectral unmixing problem; e.g., ordinary least squares (OLS), constrained least squares (CLS), orthogonal matching pursuit (OMP), and basis pursuit (BP). However, due to poor prediction accuracy and non-interpretability, the traditional methods often cannot obtain satisfactory estimations or achieve a reasonable interpretation. In this paper, to improve the regression accuracy of sparse unmixing, least angle regression-based constrained sparse unmixing (LARCSU) is introduced to further enhance the precision of sparse unmixing. Differing from the classical greedy algorithms and some of the cautious sparse regression-based approaches, the LARCSU algorithm has two main advantages. Firstly, it introduces an equiangular vector to seek the optimal regression steps based on the simple underlying geometry. Secondly, unlike the alternating direction method of multipliers (ADMM)-based algorithms that introduce one or more multipliers or augmented terms during their optimization procedures, no parameters are required in the computational process of the LARCSU approach. The experimental results obtained with both simulated datasets and real hyperspectral images confirm the effectiveness of LARCSU compared with the current state-of-the-art spectral unmixing algorithms. LARCSU can obtain a better fractional abundance map, as well as a higher unmixing accuracy, with the same order of magnitude of computational effort as the CLS-based methods. sparse unmixing least angle regression equiangular vector linear regression hyperspectral remote sensing imagery Science Q Lizhe Wang verfasserin aut Yanfei Zhong verfasserin aut In Remote Sensing MDPI AG, 2009 10(2018), 10, p 1546 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:10 year:2018 number:10, p 1546 https://doi.org/10.3390/rs10101546 kostenfrei https://doaj.org/article/d83f47becf9c457a801b12d74e4805ed kostenfrei http://www.mdpi.com/2072-4292/10/10/1546 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2018 10, p 1546 |
allfields_unstemmed |
10.3390/rs10101546 doi (DE-627)DOAJ017943817 (DE-599)DOAJd83f47becf9c457a801b12d74e4805ed DE-627 ger DE-627 rakwb eng Ruyi Feng verfasserin aut Least Angle Regression-Based Constrained Sparse Unmixing of Hyperspectral Remote Sensing Imagery 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sparse unmixing has been successfully applied in hyperspectral remote sensing imagery analysis based on a standard spectral library known in advance. This approach involves reformulating the traditional linear spectral unmixing problem by finding the optimal subset of signatures in this spectral library using the sparse regression technique, and has greatly improved the estimation of fractional abundances in ubiquitous mixed pixels. Since the potentially large standard spectral library can be given a priori, the most challenging task is to compute the regression coefficients, i.e., the fractional abundances, for the linear regression problem. There are many mathematical techniques that can be used to deal with the spectral unmixing problem; e.g., ordinary least squares (OLS), constrained least squares (CLS), orthogonal matching pursuit (OMP), and basis pursuit (BP). However, due to poor prediction accuracy and non-interpretability, the traditional methods often cannot obtain satisfactory estimations or achieve a reasonable interpretation. In this paper, to improve the regression accuracy of sparse unmixing, least angle regression-based constrained sparse unmixing (LARCSU) is introduced to further enhance the precision of sparse unmixing. Differing from the classical greedy algorithms and some of the cautious sparse regression-based approaches, the LARCSU algorithm has two main advantages. Firstly, it introduces an equiangular vector to seek the optimal regression steps based on the simple underlying geometry. Secondly, unlike the alternating direction method of multipliers (ADMM)-based algorithms that introduce one or more multipliers or augmented terms during their optimization procedures, no parameters are required in the computational process of the LARCSU approach. The experimental results obtained with both simulated datasets and real hyperspectral images confirm the effectiveness of LARCSU compared with the current state-of-the-art spectral unmixing algorithms. LARCSU can obtain a better fractional abundance map, as well as a higher unmixing accuracy, with the same order of magnitude of computational effort as the CLS-based methods. sparse unmixing least angle regression equiangular vector linear regression hyperspectral remote sensing imagery Science Q Lizhe Wang verfasserin aut Yanfei Zhong verfasserin aut In Remote Sensing MDPI AG, 2009 10(2018), 10, p 1546 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:10 year:2018 number:10, p 1546 https://doi.org/10.3390/rs10101546 kostenfrei https://doaj.org/article/d83f47becf9c457a801b12d74e4805ed kostenfrei http://www.mdpi.com/2072-4292/10/10/1546 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2018 10, p 1546 |
allfieldsGer |
10.3390/rs10101546 doi (DE-627)DOAJ017943817 (DE-599)DOAJd83f47becf9c457a801b12d74e4805ed DE-627 ger DE-627 rakwb eng Ruyi Feng verfasserin aut Least Angle Regression-Based Constrained Sparse Unmixing of Hyperspectral Remote Sensing Imagery 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sparse unmixing has been successfully applied in hyperspectral remote sensing imagery analysis based on a standard spectral library known in advance. This approach involves reformulating the traditional linear spectral unmixing problem by finding the optimal subset of signatures in this spectral library using the sparse regression technique, and has greatly improved the estimation of fractional abundances in ubiquitous mixed pixels. Since the potentially large standard spectral library can be given a priori, the most challenging task is to compute the regression coefficients, i.e., the fractional abundances, for the linear regression problem. There are many mathematical techniques that can be used to deal with the spectral unmixing problem; e.g., ordinary least squares (OLS), constrained least squares (CLS), orthogonal matching pursuit (OMP), and basis pursuit (BP). However, due to poor prediction accuracy and non-interpretability, the traditional methods often cannot obtain satisfactory estimations or achieve a reasonable interpretation. In this paper, to improve the regression accuracy of sparse unmixing, least angle regression-based constrained sparse unmixing (LARCSU) is introduced to further enhance the precision of sparse unmixing. Differing from the classical greedy algorithms and some of the cautious sparse regression-based approaches, the LARCSU algorithm has two main advantages. Firstly, it introduces an equiangular vector to seek the optimal regression steps based on the simple underlying geometry. Secondly, unlike the alternating direction method of multipliers (ADMM)-based algorithms that introduce one or more multipliers or augmented terms during their optimization procedures, no parameters are required in the computational process of the LARCSU approach. The experimental results obtained with both simulated datasets and real hyperspectral images confirm the effectiveness of LARCSU compared with the current state-of-the-art spectral unmixing algorithms. LARCSU can obtain a better fractional abundance map, as well as a higher unmixing accuracy, with the same order of magnitude of computational effort as the CLS-based methods. sparse unmixing least angle regression equiangular vector linear regression hyperspectral remote sensing imagery Science Q Lizhe Wang verfasserin aut Yanfei Zhong verfasserin aut In Remote Sensing MDPI AG, 2009 10(2018), 10, p 1546 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:10 year:2018 number:10, p 1546 https://doi.org/10.3390/rs10101546 kostenfrei https://doaj.org/article/d83f47becf9c457a801b12d74e4805ed kostenfrei http://www.mdpi.com/2072-4292/10/10/1546 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2018 10, p 1546 |
allfieldsSound |
10.3390/rs10101546 doi (DE-627)DOAJ017943817 (DE-599)DOAJd83f47becf9c457a801b12d74e4805ed DE-627 ger DE-627 rakwb eng Ruyi Feng verfasserin aut Least Angle Regression-Based Constrained Sparse Unmixing of Hyperspectral Remote Sensing Imagery 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sparse unmixing has been successfully applied in hyperspectral remote sensing imagery analysis based on a standard spectral library known in advance. This approach involves reformulating the traditional linear spectral unmixing problem by finding the optimal subset of signatures in this spectral library using the sparse regression technique, and has greatly improved the estimation of fractional abundances in ubiquitous mixed pixels. Since the potentially large standard spectral library can be given a priori, the most challenging task is to compute the regression coefficients, i.e., the fractional abundances, for the linear regression problem. There are many mathematical techniques that can be used to deal with the spectral unmixing problem; e.g., ordinary least squares (OLS), constrained least squares (CLS), orthogonal matching pursuit (OMP), and basis pursuit (BP). However, due to poor prediction accuracy and non-interpretability, the traditional methods often cannot obtain satisfactory estimations or achieve a reasonable interpretation. In this paper, to improve the regression accuracy of sparse unmixing, least angle regression-based constrained sparse unmixing (LARCSU) is introduced to further enhance the precision of sparse unmixing. Differing from the classical greedy algorithms and some of the cautious sparse regression-based approaches, the LARCSU algorithm has two main advantages. Firstly, it introduces an equiangular vector to seek the optimal regression steps based on the simple underlying geometry. Secondly, unlike the alternating direction method of multipliers (ADMM)-based algorithms that introduce one or more multipliers or augmented terms during their optimization procedures, no parameters are required in the computational process of the LARCSU approach. The experimental results obtained with both simulated datasets and real hyperspectral images confirm the effectiveness of LARCSU compared with the current state-of-the-art spectral unmixing algorithms. LARCSU can obtain a better fractional abundance map, as well as a higher unmixing accuracy, with the same order of magnitude of computational effort as the CLS-based methods. sparse unmixing least angle regression equiangular vector linear regression hyperspectral remote sensing imagery Science Q Lizhe Wang verfasserin aut Yanfei Zhong verfasserin aut In Remote Sensing MDPI AG, 2009 10(2018), 10, p 1546 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:10 year:2018 number:10, p 1546 https://doi.org/10.3390/rs10101546 kostenfrei https://doaj.org/article/d83f47becf9c457a801b12d74e4805ed kostenfrei http://www.mdpi.com/2072-4292/10/10/1546 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2018 10, p 1546 |
language |
English |
source |
In Remote Sensing 10(2018), 10, p 1546 volume:10 year:2018 number:10, p 1546 |
sourceStr |
In Remote Sensing 10(2018), 10, p 1546 volume:10 year:2018 number:10, p 1546 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
sparse unmixing least angle regression equiangular vector linear regression hyperspectral remote sensing imagery Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Ruyi Feng @@aut@@ Lizhe Wang @@aut@@ Yanfei Zhong @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ017943817 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ017943817</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502074124.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs10101546</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ017943817</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd83f47becf9c457a801b12d74e4805ed</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ruyi Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Least Angle Regression-Based Constrained Sparse Unmixing of Hyperspectral Remote Sensing Imagery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sparse unmixing has been successfully applied in hyperspectral remote sensing imagery analysis based on a standard spectral library known in advance. This approach involves reformulating the traditional linear spectral unmixing problem by finding the optimal subset of signatures in this spectral library using the sparse regression technique, and has greatly improved the estimation of fractional abundances in ubiquitous mixed pixels. Since the potentially large standard spectral library can be given a priori, the most challenging task is to compute the regression coefficients, i.e., the fractional abundances, for the linear regression problem. There are many mathematical techniques that can be used to deal with the spectral unmixing problem; e.g., ordinary least squares (OLS), constrained least squares (CLS), orthogonal matching pursuit (OMP), and basis pursuit (BP). However, due to poor prediction accuracy and non-interpretability, the traditional methods often cannot obtain satisfactory estimations or achieve a reasonable interpretation. In this paper, to improve the regression accuracy of sparse unmixing, least angle regression-based constrained sparse unmixing (LARCSU) is introduced to further enhance the precision of sparse unmixing. Differing from the classical greedy algorithms and some of the cautious sparse regression-based approaches, the LARCSU algorithm has two main advantages. Firstly, it introduces an equiangular vector to seek the optimal regression steps based on the simple underlying geometry. Secondly, unlike the alternating direction method of multipliers (ADMM)-based algorithms that introduce one or more multipliers or augmented terms during their optimization procedures, no parameters are required in the computational process of the LARCSU approach. The experimental results obtained with both simulated datasets and real hyperspectral images confirm the effectiveness of LARCSU compared with the current state-of-the-art spectral unmixing algorithms. LARCSU can obtain a better fractional abundance map, as well as a higher unmixing accuracy, with the same order of magnitude of computational effort as the CLS-based methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sparse unmixing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">least angle regression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">equiangular vector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear regression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperspectral remote sensing imagery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lizhe Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanfei Zhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">10(2018), 10, p 1546</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:10, p 1546</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs10101546</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d83f47becf9c457a801b12d74e4805ed</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2072-4292/10/10/1546</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">10, p 1546</subfield></datafield></record></collection>
|
author |
Ruyi Feng |
spellingShingle |
Ruyi Feng misc sparse unmixing misc least angle regression misc equiangular vector misc linear regression misc hyperspectral remote sensing imagery misc Science misc Q Least Angle Regression-Based Constrained Sparse Unmixing of Hyperspectral Remote Sensing Imagery |
authorStr |
Ruyi Feng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Least Angle Regression-Based Constrained Sparse Unmixing of Hyperspectral Remote Sensing Imagery sparse unmixing least angle regression equiangular vector linear regression hyperspectral remote sensing imagery |
topic |
misc sparse unmixing misc least angle regression misc equiangular vector misc linear regression misc hyperspectral remote sensing imagery misc Science misc Q |
topic_unstemmed |
misc sparse unmixing misc least angle regression misc equiangular vector misc linear regression misc hyperspectral remote sensing imagery misc Science misc Q |
topic_browse |
misc sparse unmixing misc least angle regression misc equiangular vector misc linear regression misc hyperspectral remote sensing imagery misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Least Angle Regression-Based Constrained Sparse Unmixing of Hyperspectral Remote Sensing Imagery |
ctrlnum |
(DE-627)DOAJ017943817 (DE-599)DOAJd83f47becf9c457a801b12d74e4805ed |
title_full |
Least Angle Regression-Based Constrained Sparse Unmixing of Hyperspectral Remote Sensing Imagery |
author_sort |
Ruyi Feng |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Ruyi Feng Lizhe Wang Yanfei Zhong |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Ruyi Feng |
doi_str_mv |
10.3390/rs10101546 |
author2-role |
verfasserin |
title_sort |
least angle regression-based constrained sparse unmixing of hyperspectral remote sensing imagery |
title_auth |
Least Angle Regression-Based Constrained Sparse Unmixing of Hyperspectral Remote Sensing Imagery |
abstract |
Sparse unmixing has been successfully applied in hyperspectral remote sensing imagery analysis based on a standard spectral library known in advance. This approach involves reformulating the traditional linear spectral unmixing problem by finding the optimal subset of signatures in this spectral library using the sparse regression technique, and has greatly improved the estimation of fractional abundances in ubiquitous mixed pixels. Since the potentially large standard spectral library can be given a priori, the most challenging task is to compute the regression coefficients, i.e., the fractional abundances, for the linear regression problem. There are many mathematical techniques that can be used to deal with the spectral unmixing problem; e.g., ordinary least squares (OLS), constrained least squares (CLS), orthogonal matching pursuit (OMP), and basis pursuit (BP). However, due to poor prediction accuracy and non-interpretability, the traditional methods often cannot obtain satisfactory estimations or achieve a reasonable interpretation. In this paper, to improve the regression accuracy of sparse unmixing, least angle regression-based constrained sparse unmixing (LARCSU) is introduced to further enhance the precision of sparse unmixing. Differing from the classical greedy algorithms and some of the cautious sparse regression-based approaches, the LARCSU algorithm has two main advantages. Firstly, it introduces an equiangular vector to seek the optimal regression steps based on the simple underlying geometry. Secondly, unlike the alternating direction method of multipliers (ADMM)-based algorithms that introduce one or more multipliers or augmented terms during their optimization procedures, no parameters are required in the computational process of the LARCSU approach. The experimental results obtained with both simulated datasets and real hyperspectral images confirm the effectiveness of LARCSU compared with the current state-of-the-art spectral unmixing algorithms. LARCSU can obtain a better fractional abundance map, as well as a higher unmixing accuracy, with the same order of magnitude of computational effort as the CLS-based methods. |
abstractGer |
Sparse unmixing has been successfully applied in hyperspectral remote sensing imagery analysis based on a standard spectral library known in advance. This approach involves reformulating the traditional linear spectral unmixing problem by finding the optimal subset of signatures in this spectral library using the sparse regression technique, and has greatly improved the estimation of fractional abundances in ubiquitous mixed pixels. Since the potentially large standard spectral library can be given a priori, the most challenging task is to compute the regression coefficients, i.e., the fractional abundances, for the linear regression problem. There are many mathematical techniques that can be used to deal with the spectral unmixing problem; e.g., ordinary least squares (OLS), constrained least squares (CLS), orthogonal matching pursuit (OMP), and basis pursuit (BP). However, due to poor prediction accuracy and non-interpretability, the traditional methods often cannot obtain satisfactory estimations or achieve a reasonable interpretation. In this paper, to improve the regression accuracy of sparse unmixing, least angle regression-based constrained sparse unmixing (LARCSU) is introduced to further enhance the precision of sparse unmixing. Differing from the classical greedy algorithms and some of the cautious sparse regression-based approaches, the LARCSU algorithm has two main advantages. Firstly, it introduces an equiangular vector to seek the optimal regression steps based on the simple underlying geometry. Secondly, unlike the alternating direction method of multipliers (ADMM)-based algorithms that introduce one or more multipliers or augmented terms during their optimization procedures, no parameters are required in the computational process of the LARCSU approach. The experimental results obtained with both simulated datasets and real hyperspectral images confirm the effectiveness of LARCSU compared with the current state-of-the-art spectral unmixing algorithms. LARCSU can obtain a better fractional abundance map, as well as a higher unmixing accuracy, with the same order of magnitude of computational effort as the CLS-based methods. |
abstract_unstemmed |
Sparse unmixing has been successfully applied in hyperspectral remote sensing imagery analysis based on a standard spectral library known in advance. This approach involves reformulating the traditional linear spectral unmixing problem by finding the optimal subset of signatures in this spectral library using the sparse regression technique, and has greatly improved the estimation of fractional abundances in ubiquitous mixed pixels. Since the potentially large standard spectral library can be given a priori, the most challenging task is to compute the regression coefficients, i.e., the fractional abundances, for the linear regression problem. There are many mathematical techniques that can be used to deal with the spectral unmixing problem; e.g., ordinary least squares (OLS), constrained least squares (CLS), orthogonal matching pursuit (OMP), and basis pursuit (BP). However, due to poor prediction accuracy and non-interpretability, the traditional methods often cannot obtain satisfactory estimations or achieve a reasonable interpretation. In this paper, to improve the regression accuracy of sparse unmixing, least angle regression-based constrained sparse unmixing (LARCSU) is introduced to further enhance the precision of sparse unmixing. Differing from the classical greedy algorithms and some of the cautious sparse regression-based approaches, the LARCSU algorithm has two main advantages. Firstly, it introduces an equiangular vector to seek the optimal regression steps based on the simple underlying geometry. Secondly, unlike the alternating direction method of multipliers (ADMM)-based algorithms that introduce one or more multipliers or augmented terms during their optimization procedures, no parameters are required in the computational process of the LARCSU approach. The experimental results obtained with both simulated datasets and real hyperspectral images confirm the effectiveness of LARCSU compared with the current state-of-the-art spectral unmixing algorithms. LARCSU can obtain a better fractional abundance map, as well as a higher unmixing accuracy, with the same order of magnitude of computational effort as the CLS-based methods. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
10, p 1546 |
title_short |
Least Angle Regression-Based Constrained Sparse Unmixing of Hyperspectral Remote Sensing Imagery |
url |
https://doi.org/10.3390/rs10101546 https://doaj.org/article/d83f47becf9c457a801b12d74e4805ed http://www.mdpi.com/2072-4292/10/10/1546 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Lizhe Wang Yanfei Zhong |
author2Str |
Lizhe Wang Yanfei Zhong |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs10101546 |
up_date |
2024-07-03T15:02:44.228Z |
_version_ |
1803570605433290752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ017943817</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502074124.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs10101546</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ017943817</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd83f47becf9c457a801b12d74e4805ed</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ruyi Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Least Angle Regression-Based Constrained Sparse Unmixing of Hyperspectral Remote Sensing Imagery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sparse unmixing has been successfully applied in hyperspectral remote sensing imagery analysis based on a standard spectral library known in advance. This approach involves reformulating the traditional linear spectral unmixing problem by finding the optimal subset of signatures in this spectral library using the sparse regression technique, and has greatly improved the estimation of fractional abundances in ubiquitous mixed pixels. Since the potentially large standard spectral library can be given a priori, the most challenging task is to compute the regression coefficients, i.e., the fractional abundances, for the linear regression problem. There are many mathematical techniques that can be used to deal with the spectral unmixing problem; e.g., ordinary least squares (OLS), constrained least squares (CLS), orthogonal matching pursuit (OMP), and basis pursuit (BP). However, due to poor prediction accuracy and non-interpretability, the traditional methods often cannot obtain satisfactory estimations or achieve a reasonable interpretation. In this paper, to improve the regression accuracy of sparse unmixing, least angle regression-based constrained sparse unmixing (LARCSU) is introduced to further enhance the precision of sparse unmixing. Differing from the classical greedy algorithms and some of the cautious sparse regression-based approaches, the LARCSU algorithm has two main advantages. Firstly, it introduces an equiangular vector to seek the optimal regression steps based on the simple underlying geometry. Secondly, unlike the alternating direction method of multipliers (ADMM)-based algorithms that introduce one or more multipliers or augmented terms during their optimization procedures, no parameters are required in the computational process of the LARCSU approach. The experimental results obtained with both simulated datasets and real hyperspectral images confirm the effectiveness of LARCSU compared with the current state-of-the-art spectral unmixing algorithms. LARCSU can obtain a better fractional abundance map, as well as a higher unmixing accuracy, with the same order of magnitude of computational effort as the CLS-based methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sparse unmixing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">least angle regression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">equiangular vector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear regression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperspectral remote sensing imagery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lizhe Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanfei Zhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">10(2018), 10, p 1546</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:10, p 1546</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs10101546</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d83f47becf9c457a801b12d74e4805ed</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2072-4292/10/10/1546</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">10, p 1546</subfield></datafield></record></collection>
|
score |
7.4026136 |