Particle Size Parameters of Particulate Matter Suspended in Coastal Waters and Their Use as Indicators of Typhoon Influence
The power law particle size distribution (PSD) slope parameter is commonly used to characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine waters. However, particle size distribution metrics are also very useful for understanding sediment source and dynami...
Ausführliche Beschreibung
Autor*in: |
Yanxia Liu [verfasserIn] Haijun Huang [verfasserIn] Liwen Yan [verfasserIn] Xiguang Yang [verfasserIn] Haibo Bi [verfasserIn] Zehua Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 12(2020), 16, p 2581 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2020 ; number:16, p 2581 |
Links: |
---|
DOI / URN: |
10.3390/rs12162581 |
---|
Katalog-ID: |
DOAJ017980224 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ017980224 | ||
003 | DE-627 | ||
005 | 20240412221159.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs12162581 |2 doi | |
035 | |a (DE-627)DOAJ017980224 | ||
035 | |a (DE-599)DOAJ3184d403e3214a6bb744a4a7ef965a0b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Yanxia Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Particle Size Parameters of Particulate Matter Suspended in Coastal Waters and Their Use as Indicators of Typhoon Influence |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The power law particle size distribution (PSD) slope parameter is commonly used to characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine waters. However, particle size distribution metrics are also very useful for understanding sediment source and dynamic processes. In this study, a method was proposed to employ the particle size parameters commonly used in sedimentary geology (average particle size (ø), sorting, skewness, and kurtosis) as indicators of changes in sediment dynamic processes, and MODIS images were used to estimate these parameters. The particle size parameters were estimated using a Mie scattering model, Quasi-Analytical Algorithm (QAA) analysis algorithm, and least squares QR decomposition (LSQR) solution method based on the relationship between the power law distribution of the suspended particles and their optical scattering properties. The estimates were verified by field measurements in the Yellow Sea and Bohai Sea regions of China. This method provided good estimates of the average particle size (ø), sorting, and kurtosis. A greater number of wavebands (39) was associated with more accurate particle size distribution curves. Furthermore, the method was used to monitor changes in suspended particulate matter in the vicinity of the Heini Bay of China before and after the passage of a strong storm in August 2011. The particle size parameters represented the influence of a strong typhoon on the distribution of the near-shore sediment and, together with the PSD slope, comprehensively reflected the changes in the near-shore suspended particulate matter. This method not only established the relationship between remote sensing monitoring and the historical sediment record, it also extends the power law model to the application of sediment source and dynamic processes in coastal waters. | ||
650 | 4 | |a slope of the power law PSD | |
650 | 4 | |a particle size parameters | |
650 | 4 | |a typhoon effect | |
650 | 4 | |a remote sensing reflectance | |
650 | 4 | |a coastal waters | |
650 | 4 | |a MODIS | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Haijun Huang |e verfasserin |4 aut | |
700 | 0 | |a Liwen Yan |e verfasserin |4 aut | |
700 | 0 | |a Xiguang Yang |e verfasserin |4 aut | |
700 | 0 | |a Haibo Bi |e verfasserin |4 aut | |
700 | 0 | |a Zehua Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 12(2020), 16, p 2581 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2020 |g number:16, p 2581 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs12162581 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3184d403e3214a6bb744a4a7ef965a0b |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/12/16/2581 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2020 |e 16, p 2581 |
author_variant |
y l yl h h hh l y ly x y xy h b hb z z zz |
---|---|
matchkey_str |
article:20724292:2020----::atceieaaeesfatcltmtesseddnosawtradhiues |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.3390/rs12162581 doi (DE-627)DOAJ017980224 (DE-599)DOAJ3184d403e3214a6bb744a4a7ef965a0b DE-627 ger DE-627 rakwb eng Yanxia Liu verfasserin aut Particle Size Parameters of Particulate Matter Suspended in Coastal Waters and Their Use as Indicators of Typhoon Influence 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The power law particle size distribution (PSD) slope parameter is commonly used to characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine waters. However, particle size distribution metrics are also very useful for understanding sediment source and dynamic processes. In this study, a method was proposed to employ the particle size parameters commonly used in sedimentary geology (average particle size (ø), sorting, skewness, and kurtosis) as indicators of changes in sediment dynamic processes, and MODIS images were used to estimate these parameters. The particle size parameters were estimated using a Mie scattering model, Quasi-Analytical Algorithm (QAA) analysis algorithm, and least squares QR decomposition (LSQR) solution method based on the relationship between the power law distribution of the suspended particles and their optical scattering properties. The estimates were verified by field measurements in the Yellow Sea and Bohai Sea regions of China. This method provided good estimates of the average particle size (ø), sorting, and kurtosis. A greater number of wavebands (39) was associated with more accurate particle size distribution curves. Furthermore, the method was used to monitor changes in suspended particulate matter in the vicinity of the Heini Bay of China before and after the passage of a strong storm in August 2011. The particle size parameters represented the influence of a strong typhoon on the distribution of the near-shore sediment and, together with the PSD slope, comprehensively reflected the changes in the near-shore suspended particulate matter. This method not only established the relationship between remote sensing monitoring and the historical sediment record, it also extends the power law model to the application of sediment source and dynamic processes in coastal waters. slope of the power law PSD particle size parameters typhoon effect remote sensing reflectance coastal waters MODIS Science Q Haijun Huang verfasserin aut Liwen Yan verfasserin aut Xiguang Yang verfasserin aut Haibo Bi verfasserin aut Zehua Zhang verfasserin aut In Remote Sensing MDPI AG, 2009 12(2020), 16, p 2581 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:12 year:2020 number:16, p 2581 https://doi.org/10.3390/rs12162581 kostenfrei https://doaj.org/article/3184d403e3214a6bb744a4a7ef965a0b kostenfrei https://www.mdpi.com/2072-4292/12/16/2581 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 12 2020 16, p 2581 |
spelling |
10.3390/rs12162581 doi (DE-627)DOAJ017980224 (DE-599)DOAJ3184d403e3214a6bb744a4a7ef965a0b DE-627 ger DE-627 rakwb eng Yanxia Liu verfasserin aut Particle Size Parameters of Particulate Matter Suspended in Coastal Waters and Their Use as Indicators of Typhoon Influence 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The power law particle size distribution (PSD) slope parameter is commonly used to characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine waters. However, particle size distribution metrics are also very useful for understanding sediment source and dynamic processes. In this study, a method was proposed to employ the particle size parameters commonly used in sedimentary geology (average particle size (ø), sorting, skewness, and kurtosis) as indicators of changes in sediment dynamic processes, and MODIS images were used to estimate these parameters. The particle size parameters were estimated using a Mie scattering model, Quasi-Analytical Algorithm (QAA) analysis algorithm, and least squares QR decomposition (LSQR) solution method based on the relationship between the power law distribution of the suspended particles and their optical scattering properties. The estimates were verified by field measurements in the Yellow Sea and Bohai Sea regions of China. This method provided good estimates of the average particle size (ø), sorting, and kurtosis. A greater number of wavebands (39) was associated with more accurate particle size distribution curves. Furthermore, the method was used to monitor changes in suspended particulate matter in the vicinity of the Heini Bay of China before and after the passage of a strong storm in August 2011. The particle size parameters represented the influence of a strong typhoon on the distribution of the near-shore sediment and, together with the PSD slope, comprehensively reflected the changes in the near-shore suspended particulate matter. This method not only established the relationship between remote sensing monitoring and the historical sediment record, it also extends the power law model to the application of sediment source and dynamic processes in coastal waters. slope of the power law PSD particle size parameters typhoon effect remote sensing reflectance coastal waters MODIS Science Q Haijun Huang verfasserin aut Liwen Yan verfasserin aut Xiguang Yang verfasserin aut Haibo Bi verfasserin aut Zehua Zhang verfasserin aut In Remote Sensing MDPI AG, 2009 12(2020), 16, p 2581 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:12 year:2020 number:16, p 2581 https://doi.org/10.3390/rs12162581 kostenfrei https://doaj.org/article/3184d403e3214a6bb744a4a7ef965a0b kostenfrei https://www.mdpi.com/2072-4292/12/16/2581 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 12 2020 16, p 2581 |
allfields_unstemmed |
10.3390/rs12162581 doi (DE-627)DOAJ017980224 (DE-599)DOAJ3184d403e3214a6bb744a4a7ef965a0b DE-627 ger DE-627 rakwb eng Yanxia Liu verfasserin aut Particle Size Parameters of Particulate Matter Suspended in Coastal Waters and Their Use as Indicators of Typhoon Influence 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The power law particle size distribution (PSD) slope parameter is commonly used to characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine waters. However, particle size distribution metrics are also very useful for understanding sediment source and dynamic processes. In this study, a method was proposed to employ the particle size parameters commonly used in sedimentary geology (average particle size (ø), sorting, skewness, and kurtosis) as indicators of changes in sediment dynamic processes, and MODIS images were used to estimate these parameters. The particle size parameters were estimated using a Mie scattering model, Quasi-Analytical Algorithm (QAA) analysis algorithm, and least squares QR decomposition (LSQR) solution method based on the relationship between the power law distribution of the suspended particles and their optical scattering properties. The estimates were verified by field measurements in the Yellow Sea and Bohai Sea regions of China. This method provided good estimates of the average particle size (ø), sorting, and kurtosis. A greater number of wavebands (39) was associated with more accurate particle size distribution curves. Furthermore, the method was used to monitor changes in suspended particulate matter in the vicinity of the Heini Bay of China before and after the passage of a strong storm in August 2011. The particle size parameters represented the influence of a strong typhoon on the distribution of the near-shore sediment and, together with the PSD slope, comprehensively reflected the changes in the near-shore suspended particulate matter. This method not only established the relationship between remote sensing monitoring and the historical sediment record, it also extends the power law model to the application of sediment source and dynamic processes in coastal waters. slope of the power law PSD particle size parameters typhoon effect remote sensing reflectance coastal waters MODIS Science Q Haijun Huang verfasserin aut Liwen Yan verfasserin aut Xiguang Yang verfasserin aut Haibo Bi verfasserin aut Zehua Zhang verfasserin aut In Remote Sensing MDPI AG, 2009 12(2020), 16, p 2581 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:12 year:2020 number:16, p 2581 https://doi.org/10.3390/rs12162581 kostenfrei https://doaj.org/article/3184d403e3214a6bb744a4a7ef965a0b kostenfrei https://www.mdpi.com/2072-4292/12/16/2581 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 12 2020 16, p 2581 |
allfieldsGer |
10.3390/rs12162581 doi (DE-627)DOAJ017980224 (DE-599)DOAJ3184d403e3214a6bb744a4a7ef965a0b DE-627 ger DE-627 rakwb eng Yanxia Liu verfasserin aut Particle Size Parameters of Particulate Matter Suspended in Coastal Waters and Their Use as Indicators of Typhoon Influence 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The power law particle size distribution (PSD) slope parameter is commonly used to characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine waters. However, particle size distribution metrics are also very useful for understanding sediment source and dynamic processes. In this study, a method was proposed to employ the particle size parameters commonly used in sedimentary geology (average particle size (ø), sorting, skewness, and kurtosis) as indicators of changes in sediment dynamic processes, and MODIS images were used to estimate these parameters. The particle size parameters were estimated using a Mie scattering model, Quasi-Analytical Algorithm (QAA) analysis algorithm, and least squares QR decomposition (LSQR) solution method based on the relationship between the power law distribution of the suspended particles and their optical scattering properties. The estimates were verified by field measurements in the Yellow Sea and Bohai Sea regions of China. This method provided good estimates of the average particle size (ø), sorting, and kurtosis. A greater number of wavebands (39) was associated with more accurate particle size distribution curves. Furthermore, the method was used to monitor changes in suspended particulate matter in the vicinity of the Heini Bay of China before and after the passage of a strong storm in August 2011. The particle size parameters represented the influence of a strong typhoon on the distribution of the near-shore sediment and, together with the PSD slope, comprehensively reflected the changes in the near-shore suspended particulate matter. This method not only established the relationship between remote sensing monitoring and the historical sediment record, it also extends the power law model to the application of sediment source and dynamic processes in coastal waters. slope of the power law PSD particle size parameters typhoon effect remote sensing reflectance coastal waters MODIS Science Q Haijun Huang verfasserin aut Liwen Yan verfasserin aut Xiguang Yang verfasserin aut Haibo Bi verfasserin aut Zehua Zhang verfasserin aut In Remote Sensing MDPI AG, 2009 12(2020), 16, p 2581 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:12 year:2020 number:16, p 2581 https://doi.org/10.3390/rs12162581 kostenfrei https://doaj.org/article/3184d403e3214a6bb744a4a7ef965a0b kostenfrei https://www.mdpi.com/2072-4292/12/16/2581 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 12 2020 16, p 2581 |
allfieldsSound |
10.3390/rs12162581 doi (DE-627)DOAJ017980224 (DE-599)DOAJ3184d403e3214a6bb744a4a7ef965a0b DE-627 ger DE-627 rakwb eng Yanxia Liu verfasserin aut Particle Size Parameters of Particulate Matter Suspended in Coastal Waters and Their Use as Indicators of Typhoon Influence 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The power law particle size distribution (PSD) slope parameter is commonly used to characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine waters. However, particle size distribution metrics are also very useful for understanding sediment source and dynamic processes. In this study, a method was proposed to employ the particle size parameters commonly used in sedimentary geology (average particle size (ø), sorting, skewness, and kurtosis) as indicators of changes in sediment dynamic processes, and MODIS images were used to estimate these parameters. The particle size parameters were estimated using a Mie scattering model, Quasi-Analytical Algorithm (QAA) analysis algorithm, and least squares QR decomposition (LSQR) solution method based on the relationship between the power law distribution of the suspended particles and their optical scattering properties. The estimates were verified by field measurements in the Yellow Sea and Bohai Sea regions of China. This method provided good estimates of the average particle size (ø), sorting, and kurtosis. A greater number of wavebands (39) was associated with more accurate particle size distribution curves. Furthermore, the method was used to monitor changes in suspended particulate matter in the vicinity of the Heini Bay of China before and after the passage of a strong storm in August 2011. The particle size parameters represented the influence of a strong typhoon on the distribution of the near-shore sediment and, together with the PSD slope, comprehensively reflected the changes in the near-shore suspended particulate matter. This method not only established the relationship between remote sensing monitoring and the historical sediment record, it also extends the power law model to the application of sediment source and dynamic processes in coastal waters. slope of the power law PSD particle size parameters typhoon effect remote sensing reflectance coastal waters MODIS Science Q Haijun Huang verfasserin aut Liwen Yan verfasserin aut Xiguang Yang verfasserin aut Haibo Bi verfasserin aut Zehua Zhang verfasserin aut In Remote Sensing MDPI AG, 2009 12(2020), 16, p 2581 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:12 year:2020 number:16, p 2581 https://doi.org/10.3390/rs12162581 kostenfrei https://doaj.org/article/3184d403e3214a6bb744a4a7ef965a0b kostenfrei https://www.mdpi.com/2072-4292/12/16/2581 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 12 2020 16, p 2581 |
language |
English |
source |
In Remote Sensing 12(2020), 16, p 2581 volume:12 year:2020 number:16, p 2581 |
sourceStr |
In Remote Sensing 12(2020), 16, p 2581 volume:12 year:2020 number:16, p 2581 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
slope of the power law PSD particle size parameters typhoon effect remote sensing reflectance coastal waters MODIS Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Yanxia Liu @@aut@@ Haijun Huang @@aut@@ Liwen Yan @@aut@@ Xiguang Yang @@aut@@ Haibo Bi @@aut@@ Zehua Zhang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ017980224 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ017980224</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412221159.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs12162581</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ017980224</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3184d403e3214a6bb744a4a7ef965a0b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yanxia Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Particle Size Parameters of Particulate Matter Suspended in Coastal Waters and Their Use as Indicators of Typhoon Influence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The power law particle size distribution (PSD) slope parameter is commonly used to characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine waters. However, particle size distribution metrics are also very useful for understanding sediment source and dynamic processes. In this study, a method was proposed to employ the particle size parameters commonly used in sedimentary geology (average particle size (ø), sorting, skewness, and kurtosis) as indicators of changes in sediment dynamic processes, and MODIS images were used to estimate these parameters. The particle size parameters were estimated using a Mie scattering model, Quasi-Analytical Algorithm (QAA) analysis algorithm, and least squares QR decomposition (LSQR) solution method based on the relationship between the power law distribution of the suspended particles and their optical scattering properties. The estimates were verified by field measurements in the Yellow Sea and Bohai Sea regions of China. This method provided good estimates of the average particle size (ø), sorting, and kurtosis. A greater number of wavebands (39) was associated with more accurate particle size distribution curves. Furthermore, the method was used to monitor changes in suspended particulate matter in the vicinity of the Heini Bay of China before and after the passage of a strong storm in August 2011. The particle size parameters represented the influence of a strong typhoon on the distribution of the near-shore sediment and, together with the PSD slope, comprehensively reflected the changes in the near-shore suspended particulate matter. This method not only established the relationship between remote sensing monitoring and the historical sediment record, it also extends the power law model to the application of sediment source and dynamic processes in coastal waters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">slope of the power law PSD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle size parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">typhoon effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">remote sensing reflectance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coastal waters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MODIS</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haijun Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liwen Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiguang Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haibo Bi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zehua Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">12(2020), 16, p 2581</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:16, p 2581</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs12162581</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3184d403e3214a6bb744a4a7ef965a0b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/12/16/2581</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2020</subfield><subfield code="e">16, p 2581</subfield></datafield></record></collection>
|
author |
Yanxia Liu |
spellingShingle |
Yanxia Liu misc slope of the power law PSD misc particle size parameters misc typhoon effect misc remote sensing reflectance misc coastal waters misc MODIS misc Science misc Q Particle Size Parameters of Particulate Matter Suspended in Coastal Waters and Their Use as Indicators of Typhoon Influence |
authorStr |
Yanxia Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Particle Size Parameters of Particulate Matter Suspended in Coastal Waters and Their Use as Indicators of Typhoon Influence slope of the power law PSD particle size parameters typhoon effect remote sensing reflectance coastal waters MODIS |
topic |
misc slope of the power law PSD misc particle size parameters misc typhoon effect misc remote sensing reflectance misc coastal waters misc MODIS misc Science misc Q |
topic_unstemmed |
misc slope of the power law PSD misc particle size parameters misc typhoon effect misc remote sensing reflectance misc coastal waters misc MODIS misc Science misc Q |
topic_browse |
misc slope of the power law PSD misc particle size parameters misc typhoon effect misc remote sensing reflectance misc coastal waters misc MODIS misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Particle Size Parameters of Particulate Matter Suspended in Coastal Waters and Their Use as Indicators of Typhoon Influence |
ctrlnum |
(DE-627)DOAJ017980224 (DE-599)DOAJ3184d403e3214a6bb744a4a7ef965a0b |
title_full |
Particle Size Parameters of Particulate Matter Suspended in Coastal Waters and Their Use as Indicators of Typhoon Influence |
author_sort |
Yanxia Liu |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Yanxia Liu Haijun Huang Liwen Yan Xiguang Yang Haibo Bi Zehua Zhang |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Yanxia Liu |
doi_str_mv |
10.3390/rs12162581 |
author2-role |
verfasserin |
title_sort |
particle size parameters of particulate matter suspended in coastal waters and their use as indicators of typhoon influence |
title_auth |
Particle Size Parameters of Particulate Matter Suspended in Coastal Waters and Their Use as Indicators of Typhoon Influence |
abstract |
The power law particle size distribution (PSD) slope parameter is commonly used to characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine waters. However, particle size distribution metrics are also very useful for understanding sediment source and dynamic processes. In this study, a method was proposed to employ the particle size parameters commonly used in sedimentary geology (average particle size (ø), sorting, skewness, and kurtosis) as indicators of changes in sediment dynamic processes, and MODIS images were used to estimate these parameters. The particle size parameters were estimated using a Mie scattering model, Quasi-Analytical Algorithm (QAA) analysis algorithm, and least squares QR decomposition (LSQR) solution method based on the relationship between the power law distribution of the suspended particles and their optical scattering properties. The estimates were verified by field measurements in the Yellow Sea and Bohai Sea regions of China. This method provided good estimates of the average particle size (ø), sorting, and kurtosis. A greater number of wavebands (39) was associated with more accurate particle size distribution curves. Furthermore, the method was used to monitor changes in suspended particulate matter in the vicinity of the Heini Bay of China before and after the passage of a strong storm in August 2011. The particle size parameters represented the influence of a strong typhoon on the distribution of the near-shore sediment and, together with the PSD slope, comprehensively reflected the changes in the near-shore suspended particulate matter. This method not only established the relationship between remote sensing monitoring and the historical sediment record, it also extends the power law model to the application of sediment source and dynamic processes in coastal waters. |
abstractGer |
The power law particle size distribution (PSD) slope parameter is commonly used to characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine waters. However, particle size distribution metrics are also very useful for understanding sediment source and dynamic processes. In this study, a method was proposed to employ the particle size parameters commonly used in sedimentary geology (average particle size (ø), sorting, skewness, and kurtosis) as indicators of changes in sediment dynamic processes, and MODIS images were used to estimate these parameters. The particle size parameters were estimated using a Mie scattering model, Quasi-Analytical Algorithm (QAA) analysis algorithm, and least squares QR decomposition (LSQR) solution method based on the relationship between the power law distribution of the suspended particles and their optical scattering properties. The estimates were verified by field measurements in the Yellow Sea and Bohai Sea regions of China. This method provided good estimates of the average particle size (ø), sorting, and kurtosis. A greater number of wavebands (39) was associated with more accurate particle size distribution curves. Furthermore, the method was used to monitor changes in suspended particulate matter in the vicinity of the Heini Bay of China before and after the passage of a strong storm in August 2011. The particle size parameters represented the influence of a strong typhoon on the distribution of the near-shore sediment and, together with the PSD slope, comprehensively reflected the changes in the near-shore suspended particulate matter. This method not only established the relationship between remote sensing monitoring and the historical sediment record, it also extends the power law model to the application of sediment source and dynamic processes in coastal waters. |
abstract_unstemmed |
The power law particle size distribution (PSD) slope parameter is commonly used to characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine waters. However, particle size distribution metrics are also very useful for understanding sediment source and dynamic processes. In this study, a method was proposed to employ the particle size parameters commonly used in sedimentary geology (average particle size (ø), sorting, skewness, and kurtosis) as indicators of changes in sediment dynamic processes, and MODIS images were used to estimate these parameters. The particle size parameters were estimated using a Mie scattering model, Quasi-Analytical Algorithm (QAA) analysis algorithm, and least squares QR decomposition (LSQR) solution method based on the relationship between the power law distribution of the suspended particles and their optical scattering properties. The estimates were verified by field measurements in the Yellow Sea and Bohai Sea regions of China. This method provided good estimates of the average particle size (ø), sorting, and kurtosis. A greater number of wavebands (39) was associated with more accurate particle size distribution curves. Furthermore, the method was used to monitor changes in suspended particulate matter in the vicinity of the Heini Bay of China before and after the passage of a strong storm in August 2011. The particle size parameters represented the influence of a strong typhoon on the distribution of the near-shore sediment and, together with the PSD slope, comprehensively reflected the changes in the near-shore suspended particulate matter. This method not only established the relationship between remote sensing monitoring and the historical sediment record, it also extends the power law model to the application of sediment source and dynamic processes in coastal waters. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
16, p 2581 |
title_short |
Particle Size Parameters of Particulate Matter Suspended in Coastal Waters and Their Use as Indicators of Typhoon Influence |
url |
https://doi.org/10.3390/rs12162581 https://doaj.org/article/3184d403e3214a6bb744a4a7ef965a0b https://www.mdpi.com/2072-4292/12/16/2581 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Haijun Huang Liwen Yan Xiguang Yang Haibo Bi Zehua Zhang |
author2Str |
Haijun Huang Liwen Yan Xiguang Yang Haibo Bi Zehua Zhang |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs12162581 |
up_date |
2024-07-03T15:15:08.055Z |
_version_ |
1803571385396625408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ017980224</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412221159.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs12162581</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ017980224</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3184d403e3214a6bb744a4a7ef965a0b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yanxia Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Particle Size Parameters of Particulate Matter Suspended in Coastal Waters and Their Use as Indicators of Typhoon Influence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The power law particle size distribution (PSD) slope parameter is commonly used to characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine waters. However, particle size distribution metrics are also very useful for understanding sediment source and dynamic processes. In this study, a method was proposed to employ the particle size parameters commonly used in sedimentary geology (average particle size (ø), sorting, skewness, and kurtosis) as indicators of changes in sediment dynamic processes, and MODIS images were used to estimate these parameters. The particle size parameters were estimated using a Mie scattering model, Quasi-Analytical Algorithm (QAA) analysis algorithm, and least squares QR decomposition (LSQR) solution method based on the relationship between the power law distribution of the suspended particles and their optical scattering properties. The estimates were verified by field measurements in the Yellow Sea and Bohai Sea regions of China. This method provided good estimates of the average particle size (ø), sorting, and kurtosis. A greater number of wavebands (39) was associated with more accurate particle size distribution curves. Furthermore, the method was used to monitor changes in suspended particulate matter in the vicinity of the Heini Bay of China before and after the passage of a strong storm in August 2011. The particle size parameters represented the influence of a strong typhoon on the distribution of the near-shore sediment and, together with the PSD slope, comprehensively reflected the changes in the near-shore suspended particulate matter. This method not only established the relationship between remote sensing monitoring and the historical sediment record, it also extends the power law model to the application of sediment source and dynamic processes in coastal waters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">slope of the power law PSD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle size parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">typhoon effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">remote sensing reflectance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coastal waters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MODIS</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haijun Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liwen Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiguang Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haibo Bi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zehua Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">12(2020), 16, p 2581</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:16, p 2581</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs12162581</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3184d403e3214a6bb744a4a7ef965a0b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/12/16/2581</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2020</subfield><subfield code="e">16, p 2581</subfield></datafield></record></collection>
|
score |
7.4008236 |