Three-dimensional plasmonic nano-router via optical antennas
A three-dimensional (3D) nanoscale optical router is a much-desired component in 3D stacked optical integrated circuits. However, existing 3D routers based on dielectric configurations suffer from large footprints and nanoscale routers based on plasmonic antennas only work in a 2D in-plane scene. He...
Ausführliche Beschreibung
Autor*in: |
Xu Yi [verfasserIn] Gao Baowei [verfasserIn] He Axin [verfasserIn] Zhang Tongzhou [verfasserIn] Zhang Jiasen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nanophotonics - De Gruyter, 2016, 10(2021), 7, Seite 1931-1939 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2021 ; number:7 ; pages:1931-1939 |
Links: |
---|
DOI / URN: |
10.1515/nanoph-2021-0094 |
---|
Katalog-ID: |
DOAJ018127347 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ018127347 | ||
003 | DE-627 | ||
005 | 20230502135950.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1515/nanoph-2021-0094 |2 doi | |
035 | |a (DE-627)DOAJ018127347 | ||
035 | |a (DE-599)DOAJ8c5c36018d154b1393f84dcd4b238a15 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Xu Yi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Three-dimensional plasmonic nano-router via optical antennas |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A three-dimensional (3D) nanoscale optical router is a much-desired component in 3D stacked optical integrated circuits. However, existing 3D routers based on dielectric configurations suffer from large footprints and nanoscale routers based on plasmonic antennas only work in a 2D in-plane scene. Here, we propose and experimentally demonstrate cross-layered all-optical 3D routers with nanoscale footprints. Optical slot antenna pairs are used to realize the routing of plasmonic signals between different layers for arbitrary direction in a broadband wavelength range. The routers are also integrated with waveguide directly for exploring further applications. Based on these router elements, a 3D network of optical butterfly interconnection is demonstrated for multi-directional all-optical data communication. The proposed configuration paves the way for optical cross-layer routing on the nanoscale and advances the research and applications for 3D plasmonic circuits with high integration density in the future. | ||
650 | 4 | |a integrated optics | |
650 | 4 | |a optical slot antenna pairs | |
650 | 4 | |a plasmonic circuit | |
650 | 4 | |a plasmonics | |
650 | 4 | |a router | |
653 | 0 | |a Physics | |
700 | 0 | |a Gao Baowei |e verfasserin |4 aut | |
700 | 0 | |a He Axin |e verfasserin |4 aut | |
700 | 0 | |a Zhang Tongzhou |e verfasserin |4 aut | |
700 | 0 | |a Zhang Jiasen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nanophotonics |d De Gruyter, 2016 |g 10(2021), 7, Seite 1931-1939 |w (DE-627)720169909 |w (DE-600)2674162-3 |x 21928614 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2021 |g number:7 |g pages:1931-1939 |
856 | 4 | 0 | |u https://doi.org/10.1515/nanoph-2021-0094 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8c5c36018d154b1393f84dcd4b238a15 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1515/nanoph-2021-0094 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2192-8614 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2021 |e 7 |h 1931-1939 |
author_variant |
x y xy g b gb h a ha z t zt z j zj |
---|---|
matchkey_str |
article:21928614:2021----::hedmninllsoinnrueva |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QC |
publishDate |
2021 |
allfields |
10.1515/nanoph-2021-0094 doi (DE-627)DOAJ018127347 (DE-599)DOAJ8c5c36018d154b1393f84dcd4b238a15 DE-627 ger DE-627 rakwb eng QC1-999 Xu Yi verfasserin aut Three-dimensional plasmonic nano-router via optical antennas 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-dimensional (3D) nanoscale optical router is a much-desired component in 3D stacked optical integrated circuits. However, existing 3D routers based on dielectric configurations suffer from large footprints and nanoscale routers based on plasmonic antennas only work in a 2D in-plane scene. Here, we propose and experimentally demonstrate cross-layered all-optical 3D routers with nanoscale footprints. Optical slot antenna pairs are used to realize the routing of plasmonic signals between different layers for arbitrary direction in a broadband wavelength range. The routers are also integrated with waveguide directly for exploring further applications. Based on these router elements, a 3D network of optical butterfly interconnection is demonstrated for multi-directional all-optical data communication. The proposed configuration paves the way for optical cross-layer routing on the nanoscale and advances the research and applications for 3D plasmonic circuits with high integration density in the future. integrated optics optical slot antenna pairs plasmonic circuit plasmonics router Physics Gao Baowei verfasserin aut He Axin verfasserin aut Zhang Tongzhou verfasserin aut Zhang Jiasen verfasserin aut In Nanophotonics De Gruyter, 2016 10(2021), 7, Seite 1931-1939 (DE-627)720169909 (DE-600)2674162-3 21928614 nnns volume:10 year:2021 number:7 pages:1931-1939 https://doi.org/10.1515/nanoph-2021-0094 kostenfrei https://doaj.org/article/8c5c36018d154b1393f84dcd4b238a15 kostenfrei https://doi.org/10.1515/nanoph-2021-0094 kostenfrei https://doaj.org/toc/2192-8614 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 7 1931-1939 |
spelling |
10.1515/nanoph-2021-0094 doi (DE-627)DOAJ018127347 (DE-599)DOAJ8c5c36018d154b1393f84dcd4b238a15 DE-627 ger DE-627 rakwb eng QC1-999 Xu Yi verfasserin aut Three-dimensional plasmonic nano-router via optical antennas 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-dimensional (3D) nanoscale optical router is a much-desired component in 3D stacked optical integrated circuits. However, existing 3D routers based on dielectric configurations suffer from large footprints and nanoscale routers based on plasmonic antennas only work in a 2D in-plane scene. Here, we propose and experimentally demonstrate cross-layered all-optical 3D routers with nanoscale footprints. Optical slot antenna pairs are used to realize the routing of plasmonic signals between different layers for arbitrary direction in a broadband wavelength range. The routers are also integrated with waveguide directly for exploring further applications. Based on these router elements, a 3D network of optical butterfly interconnection is demonstrated for multi-directional all-optical data communication. The proposed configuration paves the way for optical cross-layer routing on the nanoscale and advances the research and applications for 3D plasmonic circuits with high integration density in the future. integrated optics optical slot antenna pairs plasmonic circuit plasmonics router Physics Gao Baowei verfasserin aut He Axin verfasserin aut Zhang Tongzhou verfasserin aut Zhang Jiasen verfasserin aut In Nanophotonics De Gruyter, 2016 10(2021), 7, Seite 1931-1939 (DE-627)720169909 (DE-600)2674162-3 21928614 nnns volume:10 year:2021 number:7 pages:1931-1939 https://doi.org/10.1515/nanoph-2021-0094 kostenfrei https://doaj.org/article/8c5c36018d154b1393f84dcd4b238a15 kostenfrei https://doi.org/10.1515/nanoph-2021-0094 kostenfrei https://doaj.org/toc/2192-8614 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 7 1931-1939 |
allfields_unstemmed |
10.1515/nanoph-2021-0094 doi (DE-627)DOAJ018127347 (DE-599)DOAJ8c5c36018d154b1393f84dcd4b238a15 DE-627 ger DE-627 rakwb eng QC1-999 Xu Yi verfasserin aut Three-dimensional plasmonic nano-router via optical antennas 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-dimensional (3D) nanoscale optical router is a much-desired component in 3D stacked optical integrated circuits. However, existing 3D routers based on dielectric configurations suffer from large footprints and nanoscale routers based on plasmonic antennas only work in a 2D in-plane scene. Here, we propose and experimentally demonstrate cross-layered all-optical 3D routers with nanoscale footprints. Optical slot antenna pairs are used to realize the routing of plasmonic signals between different layers for arbitrary direction in a broadband wavelength range. The routers are also integrated with waveguide directly for exploring further applications. Based on these router elements, a 3D network of optical butterfly interconnection is demonstrated for multi-directional all-optical data communication. The proposed configuration paves the way for optical cross-layer routing on the nanoscale and advances the research and applications for 3D plasmonic circuits with high integration density in the future. integrated optics optical slot antenna pairs plasmonic circuit plasmonics router Physics Gao Baowei verfasserin aut He Axin verfasserin aut Zhang Tongzhou verfasserin aut Zhang Jiasen verfasserin aut In Nanophotonics De Gruyter, 2016 10(2021), 7, Seite 1931-1939 (DE-627)720169909 (DE-600)2674162-3 21928614 nnns volume:10 year:2021 number:7 pages:1931-1939 https://doi.org/10.1515/nanoph-2021-0094 kostenfrei https://doaj.org/article/8c5c36018d154b1393f84dcd4b238a15 kostenfrei https://doi.org/10.1515/nanoph-2021-0094 kostenfrei https://doaj.org/toc/2192-8614 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 7 1931-1939 |
allfieldsGer |
10.1515/nanoph-2021-0094 doi (DE-627)DOAJ018127347 (DE-599)DOAJ8c5c36018d154b1393f84dcd4b238a15 DE-627 ger DE-627 rakwb eng QC1-999 Xu Yi verfasserin aut Three-dimensional plasmonic nano-router via optical antennas 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-dimensional (3D) nanoscale optical router is a much-desired component in 3D stacked optical integrated circuits. However, existing 3D routers based on dielectric configurations suffer from large footprints and nanoscale routers based on plasmonic antennas only work in a 2D in-plane scene. Here, we propose and experimentally demonstrate cross-layered all-optical 3D routers with nanoscale footprints. Optical slot antenna pairs are used to realize the routing of plasmonic signals between different layers for arbitrary direction in a broadband wavelength range. The routers are also integrated with waveguide directly for exploring further applications. Based on these router elements, a 3D network of optical butterfly interconnection is demonstrated for multi-directional all-optical data communication. The proposed configuration paves the way for optical cross-layer routing on the nanoscale and advances the research and applications for 3D plasmonic circuits with high integration density in the future. integrated optics optical slot antenna pairs plasmonic circuit plasmonics router Physics Gao Baowei verfasserin aut He Axin verfasserin aut Zhang Tongzhou verfasserin aut Zhang Jiasen verfasserin aut In Nanophotonics De Gruyter, 2016 10(2021), 7, Seite 1931-1939 (DE-627)720169909 (DE-600)2674162-3 21928614 nnns volume:10 year:2021 number:7 pages:1931-1939 https://doi.org/10.1515/nanoph-2021-0094 kostenfrei https://doaj.org/article/8c5c36018d154b1393f84dcd4b238a15 kostenfrei https://doi.org/10.1515/nanoph-2021-0094 kostenfrei https://doaj.org/toc/2192-8614 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 7 1931-1939 |
allfieldsSound |
10.1515/nanoph-2021-0094 doi (DE-627)DOAJ018127347 (DE-599)DOAJ8c5c36018d154b1393f84dcd4b238a15 DE-627 ger DE-627 rakwb eng QC1-999 Xu Yi verfasserin aut Three-dimensional plasmonic nano-router via optical antennas 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-dimensional (3D) nanoscale optical router is a much-desired component in 3D stacked optical integrated circuits. However, existing 3D routers based on dielectric configurations suffer from large footprints and nanoscale routers based on plasmonic antennas only work in a 2D in-plane scene. Here, we propose and experimentally demonstrate cross-layered all-optical 3D routers with nanoscale footprints. Optical slot antenna pairs are used to realize the routing of plasmonic signals between different layers for arbitrary direction in a broadband wavelength range. The routers are also integrated with waveguide directly for exploring further applications. Based on these router elements, a 3D network of optical butterfly interconnection is demonstrated for multi-directional all-optical data communication. The proposed configuration paves the way for optical cross-layer routing on the nanoscale and advances the research and applications for 3D plasmonic circuits with high integration density in the future. integrated optics optical slot antenna pairs plasmonic circuit plasmonics router Physics Gao Baowei verfasserin aut He Axin verfasserin aut Zhang Tongzhou verfasserin aut Zhang Jiasen verfasserin aut In Nanophotonics De Gruyter, 2016 10(2021), 7, Seite 1931-1939 (DE-627)720169909 (DE-600)2674162-3 21928614 nnns volume:10 year:2021 number:7 pages:1931-1939 https://doi.org/10.1515/nanoph-2021-0094 kostenfrei https://doaj.org/article/8c5c36018d154b1393f84dcd4b238a15 kostenfrei https://doi.org/10.1515/nanoph-2021-0094 kostenfrei https://doaj.org/toc/2192-8614 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 7 1931-1939 |
language |
English |
source |
In Nanophotonics 10(2021), 7, Seite 1931-1939 volume:10 year:2021 number:7 pages:1931-1939 |
sourceStr |
In Nanophotonics 10(2021), 7, Seite 1931-1939 volume:10 year:2021 number:7 pages:1931-1939 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
integrated optics optical slot antenna pairs plasmonic circuit plasmonics router Physics |
isfreeaccess_bool |
true |
container_title |
Nanophotonics |
authorswithroles_txt_mv |
Xu Yi @@aut@@ Gao Baowei @@aut@@ He Axin @@aut@@ Zhang Tongzhou @@aut@@ Zhang Jiasen @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
720169909 |
id |
DOAJ018127347 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018127347</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502135950.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/nanoph-2021-0094</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018127347</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8c5c36018d154b1393f84dcd4b238a15</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xu Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Three-dimensional plasmonic nano-router via optical antennas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A three-dimensional (3D) nanoscale optical router is a much-desired component in 3D stacked optical integrated circuits. However, existing 3D routers based on dielectric configurations suffer from large footprints and nanoscale routers based on plasmonic antennas only work in a 2D in-plane scene. Here, we propose and experimentally demonstrate cross-layered all-optical 3D routers with nanoscale footprints. Optical slot antenna pairs are used to realize the routing of plasmonic signals between different layers for arbitrary direction in a broadband wavelength range. The routers are also integrated with waveguide directly for exploring further applications. Based on these router elements, a 3D network of optical butterfly interconnection is demonstrated for multi-directional all-optical data communication. The proposed configuration paves the way for optical cross-layer routing on the nanoscale and advances the research and applications for 3D plasmonic circuits with high integration density in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integrated optics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical slot antenna pairs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasmonic circuit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasmonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">router</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gao Baowei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">He Axin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhang Tongzhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhang Jiasen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanophotonics</subfield><subfield code="d">De Gruyter, 2016</subfield><subfield code="g">10(2021), 7, Seite 1931-1939</subfield><subfield code="w">(DE-627)720169909</subfield><subfield code="w">(DE-600)2674162-3</subfield><subfield code="x">21928614</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:1931-1939</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/nanoph-2021-0094</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8c5c36018d154b1393f84dcd4b238a15</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/nanoph-2021-0094</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2192-8614</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">7</subfield><subfield code="h">1931-1939</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Xu Yi |
spellingShingle |
Xu Yi misc QC1-999 misc integrated optics misc optical slot antenna pairs misc plasmonic circuit misc plasmonics misc router misc Physics Three-dimensional plasmonic nano-router via optical antennas |
authorStr |
Xu Yi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)720169909 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
21928614 |
topic_title |
QC1-999 Three-dimensional plasmonic nano-router via optical antennas integrated optics optical slot antenna pairs plasmonic circuit plasmonics router |
topic |
misc QC1-999 misc integrated optics misc optical slot antenna pairs misc plasmonic circuit misc plasmonics misc router misc Physics |
topic_unstemmed |
misc QC1-999 misc integrated optics misc optical slot antenna pairs misc plasmonic circuit misc plasmonics misc router misc Physics |
topic_browse |
misc QC1-999 misc integrated optics misc optical slot antenna pairs misc plasmonic circuit misc plasmonics misc router misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nanophotonics |
hierarchy_parent_id |
720169909 |
hierarchy_top_title |
Nanophotonics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)720169909 (DE-600)2674162-3 |
title |
Three-dimensional plasmonic nano-router via optical antennas |
ctrlnum |
(DE-627)DOAJ018127347 (DE-599)DOAJ8c5c36018d154b1393f84dcd4b238a15 |
title_full |
Three-dimensional plasmonic nano-router via optical antennas |
author_sort |
Xu Yi |
journal |
Nanophotonics |
journalStr |
Nanophotonics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1931 |
author_browse |
Xu Yi Gao Baowei He Axin Zhang Tongzhou Zhang Jiasen |
container_volume |
10 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Xu Yi |
doi_str_mv |
10.1515/nanoph-2021-0094 |
author2-role |
verfasserin |
title_sort |
three-dimensional plasmonic nano-router via optical antennas |
callnumber |
QC1-999 |
title_auth |
Three-dimensional plasmonic nano-router via optical antennas |
abstract |
A three-dimensional (3D) nanoscale optical router is a much-desired component in 3D stacked optical integrated circuits. However, existing 3D routers based on dielectric configurations suffer from large footprints and nanoscale routers based on plasmonic antennas only work in a 2D in-plane scene. Here, we propose and experimentally demonstrate cross-layered all-optical 3D routers with nanoscale footprints. Optical slot antenna pairs are used to realize the routing of plasmonic signals between different layers for arbitrary direction in a broadband wavelength range. The routers are also integrated with waveguide directly for exploring further applications. Based on these router elements, a 3D network of optical butterfly interconnection is demonstrated for multi-directional all-optical data communication. The proposed configuration paves the way for optical cross-layer routing on the nanoscale and advances the research and applications for 3D plasmonic circuits with high integration density in the future. |
abstractGer |
A three-dimensional (3D) nanoscale optical router is a much-desired component in 3D stacked optical integrated circuits. However, existing 3D routers based on dielectric configurations suffer from large footprints and nanoscale routers based on plasmonic antennas only work in a 2D in-plane scene. Here, we propose and experimentally demonstrate cross-layered all-optical 3D routers with nanoscale footprints. Optical slot antenna pairs are used to realize the routing of plasmonic signals between different layers for arbitrary direction in a broadband wavelength range. The routers are also integrated with waveguide directly for exploring further applications. Based on these router elements, a 3D network of optical butterfly interconnection is demonstrated for multi-directional all-optical data communication. The proposed configuration paves the way for optical cross-layer routing on the nanoscale and advances the research and applications for 3D plasmonic circuits with high integration density in the future. |
abstract_unstemmed |
A three-dimensional (3D) nanoscale optical router is a much-desired component in 3D stacked optical integrated circuits. However, existing 3D routers based on dielectric configurations suffer from large footprints and nanoscale routers based on plasmonic antennas only work in a 2D in-plane scene. Here, we propose and experimentally demonstrate cross-layered all-optical 3D routers with nanoscale footprints. Optical slot antenna pairs are used to realize the routing of plasmonic signals between different layers for arbitrary direction in a broadband wavelength range. The routers are also integrated with waveguide directly for exploring further applications. Based on these router elements, a 3D network of optical butterfly interconnection is demonstrated for multi-directional all-optical data communication. The proposed configuration paves the way for optical cross-layer routing on the nanoscale and advances the research and applications for 3D plasmonic circuits with high integration density in the future. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7 |
title_short |
Three-dimensional plasmonic nano-router via optical antennas |
url |
https://doi.org/10.1515/nanoph-2021-0094 https://doaj.org/article/8c5c36018d154b1393f84dcd4b238a15 https://doaj.org/toc/2192-8614 |
remote_bool |
true |
author2 |
Gao Baowei He Axin Zhang Tongzhou Zhang Jiasen |
author2Str |
Gao Baowei He Axin Zhang Tongzhou Zhang Jiasen |
ppnlink |
720169909 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1515/nanoph-2021-0094 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T16:05:59.639Z |
_version_ |
1803574585264701440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018127347</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502135950.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/nanoph-2021-0094</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018127347</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8c5c36018d154b1393f84dcd4b238a15</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xu Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Three-dimensional plasmonic nano-router via optical antennas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A three-dimensional (3D) nanoscale optical router is a much-desired component in 3D stacked optical integrated circuits. However, existing 3D routers based on dielectric configurations suffer from large footprints and nanoscale routers based on plasmonic antennas only work in a 2D in-plane scene. Here, we propose and experimentally demonstrate cross-layered all-optical 3D routers with nanoscale footprints. Optical slot antenna pairs are used to realize the routing of plasmonic signals between different layers for arbitrary direction in a broadband wavelength range. The routers are also integrated with waveguide directly for exploring further applications. Based on these router elements, a 3D network of optical butterfly interconnection is demonstrated for multi-directional all-optical data communication. The proposed configuration paves the way for optical cross-layer routing on the nanoscale and advances the research and applications for 3D plasmonic circuits with high integration density in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integrated optics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical slot antenna pairs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasmonic circuit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasmonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">router</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gao Baowei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">He Axin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhang Tongzhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhang Jiasen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanophotonics</subfield><subfield code="d">De Gruyter, 2016</subfield><subfield code="g">10(2021), 7, Seite 1931-1939</subfield><subfield code="w">(DE-627)720169909</subfield><subfield code="w">(DE-600)2674162-3</subfield><subfield code="x">21928614</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:1931-1939</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/nanoph-2021-0094</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8c5c36018d154b1393f84dcd4b238a15</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/nanoph-2021-0094</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2192-8614</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">7</subfield><subfield code="h">1931-1939</subfield></datafield></record></collection>
|
score |
7.4032135 |