Optimized Series Dynamic Braking Resistor for LVRT of Doubly-Fed Induction Generator With Uncertain Fault Scenarios
The terminal-connected series dynamic braking resistor (SDBR) is applied to assist the low-voltage ride-through (LVRT) of the doubly-fed induction generator (DFIG). With the fault current and switch-in of the SDBR, the stator voltage oscillates, thus the constant stator voltage drop assumption is in...
Ausführliche Beschreibung
Autor*in: |
Jiejie Huang [verfasserIn] Lei Zhang [verfasserIn] Shun Sang [verfasserIn] Xiaocen Xue [verfasserIn] Xinsong Zhang [verfasserIn] Tingting Sun [verfasserIn] Weimin Wu [verfasserIn] Ning Gao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
Doubly-fed induction generator series dynamic braking resistor |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 10(2022), Seite 22533-22546 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; pages:22533-22546 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2022.3154042 |
---|
Katalog-ID: |
DOAJ018300197 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ018300197 | ||
003 | DE-627 | ||
005 | 20230310095509.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2022.3154042 |2 doi | |
035 | |a (DE-627)DOAJ018300197 | ||
035 | |a (DE-599)DOAJ18b56af5d70b4bf9894847a682a30990 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Jiejie Huang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimized Series Dynamic Braking Resistor for LVRT of Doubly-Fed Induction Generator With Uncertain Fault Scenarios |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The terminal-connected series dynamic braking resistor (SDBR) is applied to assist the low-voltage ride-through (LVRT) of the doubly-fed induction generator (DFIG). With the fault current and switch-in of the SDBR, the stator voltage oscillates, thus the constant stator voltage drop assumption is invalid and the effect of the converter current control is weakened with the changing voltage-oriented reference frame. In this paper, the xy frame of the point of common coupling is applied to the converter control to avoid oscillation of the reference frame. The analytical expression of fault current with the SDBR and constant converter current control is derived. To evaluate the LVRT effect, the analytical analysis of the LVRT transient is carried out. The resistance of the SDBR is optimized based on an index combining the capabilities of the DFIG to provide the active power support and damp the electromagnetic torque oscillation. The uncertainties of the fault scenario are considered in the optimization algorithm by applying the probabilistic method. Simulation results show that the improved LVRT effect of the DFIG is realized with optimization to the SDBR resistance and its switch-in criterion. | ||
650 | 4 | |a Doubly-fed induction generator | |
650 | 4 | |a low-voltage ride-through | |
650 | 4 | |a series dynamic braking resistor | |
650 | 4 | |a constant current control | |
650 | 4 | |a analytical fault current expression | |
650 | 4 | |a fault uncertainties | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Lei Zhang |e verfasserin |4 aut | |
700 | 0 | |a Shun Sang |e verfasserin |4 aut | |
700 | 0 | |a Xiaocen Xue |e verfasserin |4 aut | |
700 | 0 | |a Xinsong Zhang |e verfasserin |4 aut | |
700 | 0 | |a Tingting Sun |e verfasserin |4 aut | |
700 | 0 | |a Weimin Wu |e verfasserin |4 aut | |
700 | 0 | |a Ning Gao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 10(2022), Seite 22533-22546 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g pages:22533-22546 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2022.3154042 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/18b56af5d70b4bf9894847a682a30990 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9720980/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |h 22533-22546 |
author_variant |
j h jh l z lz s s ss x x xx x z xz t s ts w w ww n g ng |
---|---|
matchkey_str |
article:21693536:2022----::piiesrednmcrknrssofrvtfobyeidcineeaow |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.1109/ACCESS.2022.3154042 doi (DE-627)DOAJ018300197 (DE-599)DOAJ18b56af5d70b4bf9894847a682a30990 DE-627 ger DE-627 rakwb eng TK1-9971 Jiejie Huang verfasserin aut Optimized Series Dynamic Braking Resistor for LVRT of Doubly-Fed Induction Generator With Uncertain Fault Scenarios 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The terminal-connected series dynamic braking resistor (SDBR) is applied to assist the low-voltage ride-through (LVRT) of the doubly-fed induction generator (DFIG). With the fault current and switch-in of the SDBR, the stator voltage oscillates, thus the constant stator voltage drop assumption is invalid and the effect of the converter current control is weakened with the changing voltage-oriented reference frame. In this paper, the xy frame of the point of common coupling is applied to the converter control to avoid oscillation of the reference frame. The analytical expression of fault current with the SDBR and constant converter current control is derived. To evaluate the LVRT effect, the analytical analysis of the LVRT transient is carried out. The resistance of the SDBR is optimized based on an index combining the capabilities of the DFIG to provide the active power support and damp the electromagnetic torque oscillation. The uncertainties of the fault scenario are considered in the optimization algorithm by applying the probabilistic method. Simulation results show that the improved LVRT effect of the DFIG is realized with optimization to the SDBR resistance and its switch-in criterion. Doubly-fed induction generator low-voltage ride-through series dynamic braking resistor constant current control analytical fault current expression fault uncertainties Electrical engineering. Electronics. Nuclear engineering Lei Zhang verfasserin aut Shun Sang verfasserin aut Xiaocen Xue verfasserin aut Xinsong Zhang verfasserin aut Tingting Sun verfasserin aut Weimin Wu verfasserin aut Ning Gao verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 22533-22546 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:22533-22546 https://doi.org/10.1109/ACCESS.2022.3154042 kostenfrei https://doaj.org/article/18b56af5d70b4bf9894847a682a30990 kostenfrei https://ieeexplore.ieee.org/document/9720980/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 22533-22546 |
spelling |
10.1109/ACCESS.2022.3154042 doi (DE-627)DOAJ018300197 (DE-599)DOAJ18b56af5d70b4bf9894847a682a30990 DE-627 ger DE-627 rakwb eng TK1-9971 Jiejie Huang verfasserin aut Optimized Series Dynamic Braking Resistor for LVRT of Doubly-Fed Induction Generator With Uncertain Fault Scenarios 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The terminal-connected series dynamic braking resistor (SDBR) is applied to assist the low-voltage ride-through (LVRT) of the doubly-fed induction generator (DFIG). With the fault current and switch-in of the SDBR, the stator voltage oscillates, thus the constant stator voltage drop assumption is invalid and the effect of the converter current control is weakened with the changing voltage-oriented reference frame. In this paper, the xy frame of the point of common coupling is applied to the converter control to avoid oscillation of the reference frame. The analytical expression of fault current with the SDBR and constant converter current control is derived. To evaluate the LVRT effect, the analytical analysis of the LVRT transient is carried out. The resistance of the SDBR is optimized based on an index combining the capabilities of the DFIG to provide the active power support and damp the electromagnetic torque oscillation. The uncertainties of the fault scenario are considered in the optimization algorithm by applying the probabilistic method. Simulation results show that the improved LVRT effect of the DFIG is realized with optimization to the SDBR resistance and its switch-in criterion. Doubly-fed induction generator low-voltage ride-through series dynamic braking resistor constant current control analytical fault current expression fault uncertainties Electrical engineering. Electronics. Nuclear engineering Lei Zhang verfasserin aut Shun Sang verfasserin aut Xiaocen Xue verfasserin aut Xinsong Zhang verfasserin aut Tingting Sun verfasserin aut Weimin Wu verfasserin aut Ning Gao verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 22533-22546 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:22533-22546 https://doi.org/10.1109/ACCESS.2022.3154042 kostenfrei https://doaj.org/article/18b56af5d70b4bf9894847a682a30990 kostenfrei https://ieeexplore.ieee.org/document/9720980/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 22533-22546 |
allfields_unstemmed |
10.1109/ACCESS.2022.3154042 doi (DE-627)DOAJ018300197 (DE-599)DOAJ18b56af5d70b4bf9894847a682a30990 DE-627 ger DE-627 rakwb eng TK1-9971 Jiejie Huang verfasserin aut Optimized Series Dynamic Braking Resistor for LVRT of Doubly-Fed Induction Generator With Uncertain Fault Scenarios 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The terminal-connected series dynamic braking resistor (SDBR) is applied to assist the low-voltage ride-through (LVRT) of the doubly-fed induction generator (DFIG). With the fault current and switch-in of the SDBR, the stator voltage oscillates, thus the constant stator voltage drop assumption is invalid and the effect of the converter current control is weakened with the changing voltage-oriented reference frame. In this paper, the xy frame of the point of common coupling is applied to the converter control to avoid oscillation of the reference frame. The analytical expression of fault current with the SDBR and constant converter current control is derived. To evaluate the LVRT effect, the analytical analysis of the LVRT transient is carried out. The resistance of the SDBR is optimized based on an index combining the capabilities of the DFIG to provide the active power support and damp the electromagnetic torque oscillation. The uncertainties of the fault scenario are considered in the optimization algorithm by applying the probabilistic method. Simulation results show that the improved LVRT effect of the DFIG is realized with optimization to the SDBR resistance and its switch-in criterion. Doubly-fed induction generator low-voltage ride-through series dynamic braking resistor constant current control analytical fault current expression fault uncertainties Electrical engineering. Electronics. Nuclear engineering Lei Zhang verfasserin aut Shun Sang verfasserin aut Xiaocen Xue verfasserin aut Xinsong Zhang verfasserin aut Tingting Sun verfasserin aut Weimin Wu verfasserin aut Ning Gao verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 22533-22546 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:22533-22546 https://doi.org/10.1109/ACCESS.2022.3154042 kostenfrei https://doaj.org/article/18b56af5d70b4bf9894847a682a30990 kostenfrei https://ieeexplore.ieee.org/document/9720980/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 22533-22546 |
allfieldsGer |
10.1109/ACCESS.2022.3154042 doi (DE-627)DOAJ018300197 (DE-599)DOAJ18b56af5d70b4bf9894847a682a30990 DE-627 ger DE-627 rakwb eng TK1-9971 Jiejie Huang verfasserin aut Optimized Series Dynamic Braking Resistor for LVRT of Doubly-Fed Induction Generator With Uncertain Fault Scenarios 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The terminal-connected series dynamic braking resistor (SDBR) is applied to assist the low-voltage ride-through (LVRT) of the doubly-fed induction generator (DFIG). With the fault current and switch-in of the SDBR, the stator voltage oscillates, thus the constant stator voltage drop assumption is invalid and the effect of the converter current control is weakened with the changing voltage-oriented reference frame. In this paper, the xy frame of the point of common coupling is applied to the converter control to avoid oscillation of the reference frame. The analytical expression of fault current with the SDBR and constant converter current control is derived. To evaluate the LVRT effect, the analytical analysis of the LVRT transient is carried out. The resistance of the SDBR is optimized based on an index combining the capabilities of the DFIG to provide the active power support and damp the electromagnetic torque oscillation. The uncertainties of the fault scenario are considered in the optimization algorithm by applying the probabilistic method. Simulation results show that the improved LVRT effect of the DFIG is realized with optimization to the SDBR resistance and its switch-in criterion. Doubly-fed induction generator low-voltage ride-through series dynamic braking resistor constant current control analytical fault current expression fault uncertainties Electrical engineering. Electronics. Nuclear engineering Lei Zhang verfasserin aut Shun Sang verfasserin aut Xiaocen Xue verfasserin aut Xinsong Zhang verfasserin aut Tingting Sun verfasserin aut Weimin Wu verfasserin aut Ning Gao verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 22533-22546 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:22533-22546 https://doi.org/10.1109/ACCESS.2022.3154042 kostenfrei https://doaj.org/article/18b56af5d70b4bf9894847a682a30990 kostenfrei https://ieeexplore.ieee.org/document/9720980/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 22533-22546 |
allfieldsSound |
10.1109/ACCESS.2022.3154042 doi (DE-627)DOAJ018300197 (DE-599)DOAJ18b56af5d70b4bf9894847a682a30990 DE-627 ger DE-627 rakwb eng TK1-9971 Jiejie Huang verfasserin aut Optimized Series Dynamic Braking Resistor for LVRT of Doubly-Fed Induction Generator With Uncertain Fault Scenarios 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The terminal-connected series dynamic braking resistor (SDBR) is applied to assist the low-voltage ride-through (LVRT) of the doubly-fed induction generator (DFIG). With the fault current and switch-in of the SDBR, the stator voltage oscillates, thus the constant stator voltage drop assumption is invalid and the effect of the converter current control is weakened with the changing voltage-oriented reference frame. In this paper, the xy frame of the point of common coupling is applied to the converter control to avoid oscillation of the reference frame. The analytical expression of fault current with the SDBR and constant converter current control is derived. To evaluate the LVRT effect, the analytical analysis of the LVRT transient is carried out. The resistance of the SDBR is optimized based on an index combining the capabilities of the DFIG to provide the active power support and damp the electromagnetic torque oscillation. The uncertainties of the fault scenario are considered in the optimization algorithm by applying the probabilistic method. Simulation results show that the improved LVRT effect of the DFIG is realized with optimization to the SDBR resistance and its switch-in criterion. Doubly-fed induction generator low-voltage ride-through series dynamic braking resistor constant current control analytical fault current expression fault uncertainties Electrical engineering. Electronics. Nuclear engineering Lei Zhang verfasserin aut Shun Sang verfasserin aut Xiaocen Xue verfasserin aut Xinsong Zhang verfasserin aut Tingting Sun verfasserin aut Weimin Wu verfasserin aut Ning Gao verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 22533-22546 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:22533-22546 https://doi.org/10.1109/ACCESS.2022.3154042 kostenfrei https://doaj.org/article/18b56af5d70b4bf9894847a682a30990 kostenfrei https://ieeexplore.ieee.org/document/9720980/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 22533-22546 |
language |
English |
source |
In IEEE Access 10(2022), Seite 22533-22546 volume:10 year:2022 pages:22533-22546 |
sourceStr |
In IEEE Access 10(2022), Seite 22533-22546 volume:10 year:2022 pages:22533-22546 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Doubly-fed induction generator low-voltage ride-through series dynamic braking resistor constant current control analytical fault current expression fault uncertainties Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Jiejie Huang @@aut@@ Lei Zhang @@aut@@ Shun Sang @@aut@@ Xiaocen Xue @@aut@@ Xinsong Zhang @@aut@@ Tingting Sun @@aut@@ Weimin Wu @@aut@@ Ning Gao @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ018300197 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018300197</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310095509.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3154042</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018300197</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ18b56af5d70b4bf9894847a682a30990</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiejie Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimized Series Dynamic Braking Resistor for LVRT of Doubly-Fed Induction Generator With Uncertain Fault Scenarios</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The terminal-connected series dynamic braking resistor (SDBR) is applied to assist the low-voltage ride-through (LVRT) of the doubly-fed induction generator (DFIG). With the fault current and switch-in of the SDBR, the stator voltage oscillates, thus the constant stator voltage drop assumption is invalid and the effect of the converter current control is weakened with the changing voltage-oriented reference frame. In this paper, the xy frame of the point of common coupling is applied to the converter control to avoid oscillation of the reference frame. The analytical expression of fault current with the SDBR and constant converter current control is derived. To evaluate the LVRT effect, the analytical analysis of the LVRT transient is carried out. The resistance of the SDBR is optimized based on an index combining the capabilities of the DFIG to provide the active power support and damp the electromagnetic torque oscillation. The uncertainties of the fault scenario are considered in the optimization algorithm by applying the probabilistic method. Simulation results show that the improved LVRT effect of the DFIG is realized with optimization to the SDBR resistance and its switch-in criterion.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doubly-fed induction generator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low-voltage ride-through</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">series dynamic braking resistor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">constant current control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analytical fault current expression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault uncertainties</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shun Sang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaocen Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinsong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tingting Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weimin Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ning Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 22533-22546</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:22533-22546</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3154042</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/18b56af5d70b4bf9894847a682a30990</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9720980/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">22533-22546</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jiejie Huang |
spellingShingle |
Jiejie Huang misc TK1-9971 misc Doubly-fed induction generator misc low-voltage ride-through misc series dynamic braking resistor misc constant current control misc analytical fault current expression misc fault uncertainties misc Electrical engineering. Electronics. Nuclear engineering Optimized Series Dynamic Braking Resistor for LVRT of Doubly-Fed Induction Generator With Uncertain Fault Scenarios |
authorStr |
Jiejie Huang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Optimized Series Dynamic Braking Resistor for LVRT of Doubly-Fed Induction Generator With Uncertain Fault Scenarios Doubly-fed induction generator low-voltage ride-through series dynamic braking resistor constant current control analytical fault current expression fault uncertainties |
topic |
misc TK1-9971 misc Doubly-fed induction generator misc low-voltage ride-through misc series dynamic braking resistor misc constant current control misc analytical fault current expression misc fault uncertainties misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Doubly-fed induction generator misc low-voltage ride-through misc series dynamic braking resistor misc constant current control misc analytical fault current expression misc fault uncertainties misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Doubly-fed induction generator misc low-voltage ride-through misc series dynamic braking resistor misc constant current control misc analytical fault current expression misc fault uncertainties misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Optimized Series Dynamic Braking Resistor for LVRT of Doubly-Fed Induction Generator With Uncertain Fault Scenarios |
ctrlnum |
(DE-627)DOAJ018300197 (DE-599)DOAJ18b56af5d70b4bf9894847a682a30990 |
title_full |
Optimized Series Dynamic Braking Resistor for LVRT of Doubly-Fed Induction Generator With Uncertain Fault Scenarios |
author_sort |
Jiejie Huang |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
22533 |
author_browse |
Jiejie Huang Lei Zhang Shun Sang Xiaocen Xue Xinsong Zhang Tingting Sun Weimin Wu Ning Gao |
container_volume |
10 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Jiejie Huang |
doi_str_mv |
10.1109/ACCESS.2022.3154042 |
author2-role |
verfasserin |
title_sort |
optimized series dynamic braking resistor for lvrt of doubly-fed induction generator with uncertain fault scenarios |
callnumber |
TK1-9971 |
title_auth |
Optimized Series Dynamic Braking Resistor for LVRT of Doubly-Fed Induction Generator With Uncertain Fault Scenarios |
abstract |
The terminal-connected series dynamic braking resistor (SDBR) is applied to assist the low-voltage ride-through (LVRT) of the doubly-fed induction generator (DFIG). With the fault current and switch-in of the SDBR, the stator voltage oscillates, thus the constant stator voltage drop assumption is invalid and the effect of the converter current control is weakened with the changing voltage-oriented reference frame. In this paper, the xy frame of the point of common coupling is applied to the converter control to avoid oscillation of the reference frame. The analytical expression of fault current with the SDBR and constant converter current control is derived. To evaluate the LVRT effect, the analytical analysis of the LVRT transient is carried out. The resistance of the SDBR is optimized based on an index combining the capabilities of the DFIG to provide the active power support and damp the electromagnetic torque oscillation. The uncertainties of the fault scenario are considered in the optimization algorithm by applying the probabilistic method. Simulation results show that the improved LVRT effect of the DFIG is realized with optimization to the SDBR resistance and its switch-in criterion. |
abstractGer |
The terminal-connected series dynamic braking resistor (SDBR) is applied to assist the low-voltage ride-through (LVRT) of the doubly-fed induction generator (DFIG). With the fault current and switch-in of the SDBR, the stator voltage oscillates, thus the constant stator voltage drop assumption is invalid and the effect of the converter current control is weakened with the changing voltage-oriented reference frame. In this paper, the xy frame of the point of common coupling is applied to the converter control to avoid oscillation of the reference frame. The analytical expression of fault current with the SDBR and constant converter current control is derived. To evaluate the LVRT effect, the analytical analysis of the LVRT transient is carried out. The resistance of the SDBR is optimized based on an index combining the capabilities of the DFIG to provide the active power support and damp the electromagnetic torque oscillation. The uncertainties of the fault scenario are considered in the optimization algorithm by applying the probabilistic method. Simulation results show that the improved LVRT effect of the DFIG is realized with optimization to the SDBR resistance and its switch-in criterion. |
abstract_unstemmed |
The terminal-connected series dynamic braking resistor (SDBR) is applied to assist the low-voltage ride-through (LVRT) of the doubly-fed induction generator (DFIG). With the fault current and switch-in of the SDBR, the stator voltage oscillates, thus the constant stator voltage drop assumption is invalid and the effect of the converter current control is weakened with the changing voltage-oriented reference frame. In this paper, the xy frame of the point of common coupling is applied to the converter control to avoid oscillation of the reference frame. The analytical expression of fault current with the SDBR and constant converter current control is derived. To evaluate the LVRT effect, the analytical analysis of the LVRT transient is carried out. The resistance of the SDBR is optimized based on an index combining the capabilities of the DFIG to provide the active power support and damp the electromagnetic torque oscillation. The uncertainties of the fault scenario are considered in the optimization algorithm by applying the probabilistic method. Simulation results show that the improved LVRT effect of the DFIG is realized with optimization to the SDBR resistance and its switch-in criterion. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Optimized Series Dynamic Braking Resistor for LVRT of Doubly-Fed Induction Generator With Uncertain Fault Scenarios |
url |
https://doi.org/10.1109/ACCESS.2022.3154042 https://doaj.org/article/18b56af5d70b4bf9894847a682a30990 https://ieeexplore.ieee.org/document/9720980/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Lei Zhang Shun Sang Xiaocen Xue Xinsong Zhang Tingting Sun Weimin Wu Ning Gao |
author2Str |
Lei Zhang Shun Sang Xiaocen Xue Xinsong Zhang Tingting Sun Weimin Wu Ning Gao |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2022.3154042 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T17:06:44.818Z |
_version_ |
1803578407460536320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018300197</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310095509.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3154042</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018300197</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ18b56af5d70b4bf9894847a682a30990</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiejie Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimized Series Dynamic Braking Resistor for LVRT of Doubly-Fed Induction Generator With Uncertain Fault Scenarios</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The terminal-connected series dynamic braking resistor (SDBR) is applied to assist the low-voltage ride-through (LVRT) of the doubly-fed induction generator (DFIG). With the fault current and switch-in of the SDBR, the stator voltage oscillates, thus the constant stator voltage drop assumption is invalid and the effect of the converter current control is weakened with the changing voltage-oriented reference frame. In this paper, the xy frame of the point of common coupling is applied to the converter control to avoid oscillation of the reference frame. The analytical expression of fault current with the SDBR and constant converter current control is derived. To evaluate the LVRT effect, the analytical analysis of the LVRT transient is carried out. The resistance of the SDBR is optimized based on an index combining the capabilities of the DFIG to provide the active power support and damp the electromagnetic torque oscillation. The uncertainties of the fault scenario are considered in the optimization algorithm by applying the probabilistic method. Simulation results show that the improved LVRT effect of the DFIG is realized with optimization to the SDBR resistance and its switch-in criterion.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doubly-fed induction generator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low-voltage ride-through</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">series dynamic braking resistor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">constant current control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analytical fault current expression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault uncertainties</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shun Sang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaocen Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinsong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tingting Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weimin Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ning Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 22533-22546</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:22533-22546</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3154042</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/18b56af5d70b4bf9894847a682a30990</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9720980/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">22533-22546</subfield></datafield></record></collection>
|
score |
7.4015865 |