Application of genetic algorithms in optimization of SFR nuclear reactor design
This work presents a demonstrational application of genetic algorithms (GAs) to solve sample optimization problems in the generation IV nuclear reactor core design. The new software was developed implementing novel GAs, and it was applied to show their capabilities by presenting an example solution...
Ausführliche Beschreibung
Autor*in: |
Żurkowski Wojciech [verfasserIn] Sawicki Piotr [verfasserIn] Kubiński Wojciech [verfasserIn] Darnowski Piotr [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nukleonika - Sciendo, 2015, 66(2021), 4, Seite 139-145 |
---|---|
Übergeordnetes Werk: |
volume:66 ; year:2021 ; number:4 ; pages:139-145 |
Links: |
---|
DOI / URN: |
10.2478/nuka-2021-0021 |
---|
Katalog-ID: |
DOAJ018339034 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ018339034 | ||
003 | DE-627 | ||
005 | 20230310095740.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2478/nuka-2021-0021 |2 doi | |
035 | |a (DE-627)DOAJ018339034 | ||
035 | |a (DE-599)DOAJ7c82514d43dd41e692fe926b1acf8045 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Żurkowski Wojciech |e verfasserin |4 aut | |
245 | 1 | 0 | |a Application of genetic algorithms in optimization of SFR nuclear reactor design |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This work presents a demonstrational application of genetic algorithms (GAs) to solve sample optimization problems in the generation IV nuclear reactor core design. The new software was developed implementing novel GAs, and it was applied to show their capabilities by presenting an example solution of two selected problems to check whether GAs can be used successfully in reactor engineering as an optimization tool. The 3600 MWth oxide core, which was based on the OECD/NEA sodium-cooled fast reactor (SFR) benchmark, was used a reference design [1]. The first problem was the optimization of the fuel isotopic inventory in terms of minimizing the volume share of long-lived actinides, while maximizing the effective neutron multiplication factor. The second task was the optimization of the boron shield distribution around the reactor core to minimize the sodium void reactivity effect (SVRE). Neutron transport and fuel depletion simulations were performed using Monte Carlo neutron transport code SERPENT2. The simulation resulted in an optimized fuel mixture composition for the selected parameters, which demonstrates the functionality of the algorithm. The results show the efficiency and universality of GAs in multidimensional optimization problems in nuclear engineering. | ||
650 | 4 | |a genetic algorithms | |
650 | 4 | |a nuclear reactor | |
650 | 4 | |a optimization | |
650 | 4 | |a sodium-cooled fast reactor | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Sawicki Piotr |e verfasserin |4 aut | |
700 | 0 | |a Kubiński Wojciech |e verfasserin |4 aut | |
700 | 0 | |a Darnowski Piotr |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nukleonika |d Sciendo, 2015 |g 66(2021), 4, Seite 139-145 |w (DE-627)518634310 |w (DE-600)2253628-0 |x 15085791 |7 nnns |
773 | 1 | 8 | |g volume:66 |g year:2021 |g number:4 |g pages:139-145 |
856 | 4 | 0 | |u https://doi.org/10.2478/nuka-2021-0021 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7c82514d43dd41e692fe926b1acf8045 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.2478/nuka-2021-0021 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1508-5791 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 66 |j 2021 |e 4 |h 139-145 |
author_variant |
ż w żw s p sp k w kw d p dp |
---|---|
matchkey_str |
article:15085791:2021----::plctoogntcloihsnpiiainffn |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.2478/nuka-2021-0021 doi (DE-627)DOAJ018339034 (DE-599)DOAJ7c82514d43dd41e692fe926b1acf8045 DE-627 ger DE-627 rakwb eng Żurkowski Wojciech verfasserin aut Application of genetic algorithms in optimization of SFR nuclear reactor design 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work presents a demonstrational application of genetic algorithms (GAs) to solve sample optimization problems in the generation IV nuclear reactor core design. The new software was developed implementing novel GAs, and it was applied to show their capabilities by presenting an example solution of two selected problems to check whether GAs can be used successfully in reactor engineering as an optimization tool. The 3600 MWth oxide core, which was based on the OECD/NEA sodium-cooled fast reactor (SFR) benchmark, was used a reference design [1]. The first problem was the optimization of the fuel isotopic inventory in terms of minimizing the volume share of long-lived actinides, while maximizing the effective neutron multiplication factor. The second task was the optimization of the boron shield distribution around the reactor core to minimize the sodium void reactivity effect (SVRE). Neutron transport and fuel depletion simulations were performed using Monte Carlo neutron transport code SERPENT2. The simulation resulted in an optimized fuel mixture composition for the selected parameters, which demonstrates the functionality of the algorithm. The results show the efficiency and universality of GAs in multidimensional optimization problems in nuclear engineering. genetic algorithms nuclear reactor optimization sodium-cooled fast reactor Science Q Sawicki Piotr verfasserin aut Kubiński Wojciech verfasserin aut Darnowski Piotr verfasserin aut In Nukleonika Sciendo, 2015 66(2021), 4, Seite 139-145 (DE-627)518634310 (DE-600)2253628-0 15085791 nnns volume:66 year:2021 number:4 pages:139-145 https://doi.org/10.2478/nuka-2021-0021 kostenfrei https://doaj.org/article/7c82514d43dd41e692fe926b1acf8045 kostenfrei https://doi.org/10.2478/nuka-2021-0021 kostenfrei https://doaj.org/toc/1508-5791 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 66 2021 4 139-145 |
spelling |
10.2478/nuka-2021-0021 doi (DE-627)DOAJ018339034 (DE-599)DOAJ7c82514d43dd41e692fe926b1acf8045 DE-627 ger DE-627 rakwb eng Żurkowski Wojciech verfasserin aut Application of genetic algorithms in optimization of SFR nuclear reactor design 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work presents a demonstrational application of genetic algorithms (GAs) to solve sample optimization problems in the generation IV nuclear reactor core design. The new software was developed implementing novel GAs, and it was applied to show their capabilities by presenting an example solution of two selected problems to check whether GAs can be used successfully in reactor engineering as an optimization tool. The 3600 MWth oxide core, which was based on the OECD/NEA sodium-cooled fast reactor (SFR) benchmark, was used a reference design [1]. The first problem was the optimization of the fuel isotopic inventory in terms of minimizing the volume share of long-lived actinides, while maximizing the effective neutron multiplication factor. The second task was the optimization of the boron shield distribution around the reactor core to minimize the sodium void reactivity effect (SVRE). Neutron transport and fuel depletion simulations were performed using Monte Carlo neutron transport code SERPENT2. The simulation resulted in an optimized fuel mixture composition for the selected parameters, which demonstrates the functionality of the algorithm. The results show the efficiency and universality of GAs in multidimensional optimization problems in nuclear engineering. genetic algorithms nuclear reactor optimization sodium-cooled fast reactor Science Q Sawicki Piotr verfasserin aut Kubiński Wojciech verfasserin aut Darnowski Piotr verfasserin aut In Nukleonika Sciendo, 2015 66(2021), 4, Seite 139-145 (DE-627)518634310 (DE-600)2253628-0 15085791 nnns volume:66 year:2021 number:4 pages:139-145 https://doi.org/10.2478/nuka-2021-0021 kostenfrei https://doaj.org/article/7c82514d43dd41e692fe926b1acf8045 kostenfrei https://doi.org/10.2478/nuka-2021-0021 kostenfrei https://doaj.org/toc/1508-5791 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 66 2021 4 139-145 |
allfields_unstemmed |
10.2478/nuka-2021-0021 doi (DE-627)DOAJ018339034 (DE-599)DOAJ7c82514d43dd41e692fe926b1acf8045 DE-627 ger DE-627 rakwb eng Żurkowski Wojciech verfasserin aut Application of genetic algorithms in optimization of SFR nuclear reactor design 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work presents a demonstrational application of genetic algorithms (GAs) to solve sample optimization problems in the generation IV nuclear reactor core design. The new software was developed implementing novel GAs, and it was applied to show their capabilities by presenting an example solution of two selected problems to check whether GAs can be used successfully in reactor engineering as an optimization tool. The 3600 MWth oxide core, which was based on the OECD/NEA sodium-cooled fast reactor (SFR) benchmark, was used a reference design [1]. The first problem was the optimization of the fuel isotopic inventory in terms of minimizing the volume share of long-lived actinides, while maximizing the effective neutron multiplication factor. The second task was the optimization of the boron shield distribution around the reactor core to minimize the sodium void reactivity effect (SVRE). Neutron transport and fuel depletion simulations were performed using Monte Carlo neutron transport code SERPENT2. The simulation resulted in an optimized fuel mixture composition for the selected parameters, which demonstrates the functionality of the algorithm. The results show the efficiency and universality of GAs in multidimensional optimization problems in nuclear engineering. genetic algorithms nuclear reactor optimization sodium-cooled fast reactor Science Q Sawicki Piotr verfasserin aut Kubiński Wojciech verfasserin aut Darnowski Piotr verfasserin aut In Nukleonika Sciendo, 2015 66(2021), 4, Seite 139-145 (DE-627)518634310 (DE-600)2253628-0 15085791 nnns volume:66 year:2021 number:4 pages:139-145 https://doi.org/10.2478/nuka-2021-0021 kostenfrei https://doaj.org/article/7c82514d43dd41e692fe926b1acf8045 kostenfrei https://doi.org/10.2478/nuka-2021-0021 kostenfrei https://doaj.org/toc/1508-5791 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 66 2021 4 139-145 |
allfieldsGer |
10.2478/nuka-2021-0021 doi (DE-627)DOAJ018339034 (DE-599)DOAJ7c82514d43dd41e692fe926b1acf8045 DE-627 ger DE-627 rakwb eng Żurkowski Wojciech verfasserin aut Application of genetic algorithms in optimization of SFR nuclear reactor design 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work presents a demonstrational application of genetic algorithms (GAs) to solve sample optimization problems in the generation IV nuclear reactor core design. The new software was developed implementing novel GAs, and it was applied to show their capabilities by presenting an example solution of two selected problems to check whether GAs can be used successfully in reactor engineering as an optimization tool. The 3600 MWth oxide core, which was based on the OECD/NEA sodium-cooled fast reactor (SFR) benchmark, was used a reference design [1]. The first problem was the optimization of the fuel isotopic inventory in terms of minimizing the volume share of long-lived actinides, while maximizing the effective neutron multiplication factor. The second task was the optimization of the boron shield distribution around the reactor core to minimize the sodium void reactivity effect (SVRE). Neutron transport and fuel depletion simulations were performed using Monte Carlo neutron transport code SERPENT2. The simulation resulted in an optimized fuel mixture composition for the selected parameters, which demonstrates the functionality of the algorithm. The results show the efficiency and universality of GAs in multidimensional optimization problems in nuclear engineering. genetic algorithms nuclear reactor optimization sodium-cooled fast reactor Science Q Sawicki Piotr verfasserin aut Kubiński Wojciech verfasserin aut Darnowski Piotr verfasserin aut In Nukleonika Sciendo, 2015 66(2021), 4, Seite 139-145 (DE-627)518634310 (DE-600)2253628-0 15085791 nnns volume:66 year:2021 number:4 pages:139-145 https://doi.org/10.2478/nuka-2021-0021 kostenfrei https://doaj.org/article/7c82514d43dd41e692fe926b1acf8045 kostenfrei https://doi.org/10.2478/nuka-2021-0021 kostenfrei https://doaj.org/toc/1508-5791 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 66 2021 4 139-145 |
allfieldsSound |
10.2478/nuka-2021-0021 doi (DE-627)DOAJ018339034 (DE-599)DOAJ7c82514d43dd41e692fe926b1acf8045 DE-627 ger DE-627 rakwb eng Żurkowski Wojciech verfasserin aut Application of genetic algorithms in optimization of SFR nuclear reactor design 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work presents a demonstrational application of genetic algorithms (GAs) to solve sample optimization problems in the generation IV nuclear reactor core design. The new software was developed implementing novel GAs, and it was applied to show their capabilities by presenting an example solution of two selected problems to check whether GAs can be used successfully in reactor engineering as an optimization tool. The 3600 MWth oxide core, which was based on the OECD/NEA sodium-cooled fast reactor (SFR) benchmark, was used a reference design [1]. The first problem was the optimization of the fuel isotopic inventory in terms of minimizing the volume share of long-lived actinides, while maximizing the effective neutron multiplication factor. The second task was the optimization of the boron shield distribution around the reactor core to minimize the sodium void reactivity effect (SVRE). Neutron transport and fuel depletion simulations were performed using Monte Carlo neutron transport code SERPENT2. The simulation resulted in an optimized fuel mixture composition for the selected parameters, which demonstrates the functionality of the algorithm. The results show the efficiency and universality of GAs in multidimensional optimization problems in nuclear engineering. genetic algorithms nuclear reactor optimization sodium-cooled fast reactor Science Q Sawicki Piotr verfasserin aut Kubiński Wojciech verfasserin aut Darnowski Piotr verfasserin aut In Nukleonika Sciendo, 2015 66(2021), 4, Seite 139-145 (DE-627)518634310 (DE-600)2253628-0 15085791 nnns volume:66 year:2021 number:4 pages:139-145 https://doi.org/10.2478/nuka-2021-0021 kostenfrei https://doaj.org/article/7c82514d43dd41e692fe926b1acf8045 kostenfrei https://doi.org/10.2478/nuka-2021-0021 kostenfrei https://doaj.org/toc/1508-5791 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 66 2021 4 139-145 |
language |
English |
source |
In Nukleonika 66(2021), 4, Seite 139-145 volume:66 year:2021 number:4 pages:139-145 |
sourceStr |
In Nukleonika 66(2021), 4, Seite 139-145 volume:66 year:2021 number:4 pages:139-145 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
genetic algorithms nuclear reactor optimization sodium-cooled fast reactor Science Q |
isfreeaccess_bool |
true |
container_title |
Nukleonika |
authorswithroles_txt_mv |
Żurkowski Wojciech @@aut@@ Sawicki Piotr @@aut@@ Kubiński Wojciech @@aut@@ Darnowski Piotr @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
518634310 |
id |
DOAJ018339034 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018339034</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310095740.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2478/nuka-2021-0021</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018339034</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7c82514d43dd41e692fe926b1acf8045</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Żurkowski Wojciech</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of genetic algorithms in optimization of SFR nuclear reactor design</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work presents a demonstrational application of genetic algorithms (GAs) to solve sample optimization problems in the generation IV nuclear reactor core design. The new software was developed implementing novel GAs, and it was applied to show their capabilities by presenting an example solution of two selected problems to check whether GAs can be used successfully in reactor engineering as an optimization tool. The 3600 MWth oxide core, which was based on the OECD/NEA sodium-cooled fast reactor (SFR) benchmark, was used a reference design [1]. The first problem was the optimization of the fuel isotopic inventory in terms of minimizing the volume share of long-lived actinides, while maximizing the effective neutron multiplication factor. The second task was the optimization of the boron shield distribution around the reactor core to minimize the sodium void reactivity effect (SVRE). Neutron transport and fuel depletion simulations were performed using Monte Carlo neutron transport code SERPENT2. The simulation resulted in an optimized fuel mixture composition for the selected parameters, which demonstrates the functionality of the algorithm. The results show the efficiency and universality of GAs in multidimensional optimization problems in nuclear engineering.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nuclear reactor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sodium-cooled fast reactor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sawicki Piotr</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kubiński Wojciech</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Darnowski Piotr</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nukleonika</subfield><subfield code="d">Sciendo, 2015</subfield><subfield code="g">66(2021), 4, Seite 139-145</subfield><subfield code="w">(DE-627)518634310</subfield><subfield code="w">(DE-600)2253628-0</subfield><subfield code="x">15085791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:139-145</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/nuka-2021-0021</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7c82514d43dd41e692fe926b1acf8045</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/nuka-2021-0021</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1508-5791</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="h">139-145</subfield></datafield></record></collection>
|
author |
Żurkowski Wojciech |
spellingShingle |
Żurkowski Wojciech misc genetic algorithms misc nuclear reactor misc optimization misc sodium-cooled fast reactor misc Science misc Q Application of genetic algorithms in optimization of SFR nuclear reactor design |
authorStr |
Żurkowski Wojciech |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)518634310 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
15085791 |
topic_title |
Application of genetic algorithms in optimization of SFR nuclear reactor design genetic algorithms nuclear reactor optimization sodium-cooled fast reactor |
topic |
misc genetic algorithms misc nuclear reactor misc optimization misc sodium-cooled fast reactor misc Science misc Q |
topic_unstemmed |
misc genetic algorithms misc nuclear reactor misc optimization misc sodium-cooled fast reactor misc Science misc Q |
topic_browse |
misc genetic algorithms misc nuclear reactor misc optimization misc sodium-cooled fast reactor misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nukleonika |
hierarchy_parent_id |
518634310 |
hierarchy_top_title |
Nukleonika |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)518634310 (DE-600)2253628-0 |
title |
Application of genetic algorithms in optimization of SFR nuclear reactor design |
ctrlnum |
(DE-627)DOAJ018339034 (DE-599)DOAJ7c82514d43dd41e692fe926b1acf8045 |
title_full |
Application of genetic algorithms in optimization of SFR nuclear reactor design |
author_sort |
Żurkowski Wojciech |
journal |
Nukleonika |
journalStr |
Nukleonika |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
139 |
author_browse |
Żurkowski Wojciech Sawicki Piotr Kubiński Wojciech Darnowski Piotr |
container_volume |
66 |
format_se |
Elektronische Aufsätze |
author-letter |
Żurkowski Wojciech |
doi_str_mv |
10.2478/nuka-2021-0021 |
author2-role |
verfasserin |
title_sort |
application of genetic algorithms in optimization of sfr nuclear reactor design |
title_auth |
Application of genetic algorithms in optimization of SFR nuclear reactor design |
abstract |
This work presents a demonstrational application of genetic algorithms (GAs) to solve sample optimization problems in the generation IV nuclear reactor core design. The new software was developed implementing novel GAs, and it was applied to show their capabilities by presenting an example solution of two selected problems to check whether GAs can be used successfully in reactor engineering as an optimization tool. The 3600 MWth oxide core, which was based on the OECD/NEA sodium-cooled fast reactor (SFR) benchmark, was used a reference design [1]. The first problem was the optimization of the fuel isotopic inventory in terms of minimizing the volume share of long-lived actinides, while maximizing the effective neutron multiplication factor. The second task was the optimization of the boron shield distribution around the reactor core to minimize the sodium void reactivity effect (SVRE). Neutron transport and fuel depletion simulations were performed using Monte Carlo neutron transport code SERPENT2. The simulation resulted in an optimized fuel mixture composition for the selected parameters, which demonstrates the functionality of the algorithm. The results show the efficiency and universality of GAs in multidimensional optimization problems in nuclear engineering. |
abstractGer |
This work presents a demonstrational application of genetic algorithms (GAs) to solve sample optimization problems in the generation IV nuclear reactor core design. The new software was developed implementing novel GAs, and it was applied to show their capabilities by presenting an example solution of two selected problems to check whether GAs can be used successfully in reactor engineering as an optimization tool. The 3600 MWth oxide core, which was based on the OECD/NEA sodium-cooled fast reactor (SFR) benchmark, was used a reference design [1]. The first problem was the optimization of the fuel isotopic inventory in terms of minimizing the volume share of long-lived actinides, while maximizing the effective neutron multiplication factor. The second task was the optimization of the boron shield distribution around the reactor core to minimize the sodium void reactivity effect (SVRE). Neutron transport and fuel depletion simulations were performed using Monte Carlo neutron transport code SERPENT2. The simulation resulted in an optimized fuel mixture composition for the selected parameters, which demonstrates the functionality of the algorithm. The results show the efficiency and universality of GAs in multidimensional optimization problems in nuclear engineering. |
abstract_unstemmed |
This work presents a demonstrational application of genetic algorithms (GAs) to solve sample optimization problems in the generation IV nuclear reactor core design. The new software was developed implementing novel GAs, and it was applied to show their capabilities by presenting an example solution of two selected problems to check whether GAs can be used successfully in reactor engineering as an optimization tool. The 3600 MWth oxide core, which was based on the OECD/NEA sodium-cooled fast reactor (SFR) benchmark, was used a reference design [1]. The first problem was the optimization of the fuel isotopic inventory in terms of minimizing the volume share of long-lived actinides, while maximizing the effective neutron multiplication factor. The second task was the optimization of the boron shield distribution around the reactor core to minimize the sodium void reactivity effect (SVRE). Neutron transport and fuel depletion simulations were performed using Monte Carlo neutron transport code SERPENT2. The simulation resulted in an optimized fuel mixture composition for the selected parameters, which demonstrates the functionality of the algorithm. The results show the efficiency and universality of GAs in multidimensional optimization problems in nuclear engineering. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Application of genetic algorithms in optimization of SFR nuclear reactor design |
url |
https://doi.org/10.2478/nuka-2021-0021 https://doaj.org/article/7c82514d43dd41e692fe926b1acf8045 https://doaj.org/toc/1508-5791 |
remote_bool |
true |
author2 |
Sawicki Piotr Kubiński Wojciech Darnowski Piotr |
author2Str |
Sawicki Piotr Kubiński Wojciech Darnowski Piotr |
ppnlink |
518634310 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2478/nuka-2021-0021 |
up_date |
2024-07-03T17:20:37.430Z |
_version_ |
1803579280520642560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018339034</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310095740.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2478/nuka-2021-0021</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018339034</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7c82514d43dd41e692fe926b1acf8045</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Żurkowski Wojciech</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of genetic algorithms in optimization of SFR nuclear reactor design</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work presents a demonstrational application of genetic algorithms (GAs) to solve sample optimization problems in the generation IV nuclear reactor core design. The new software was developed implementing novel GAs, and it was applied to show their capabilities by presenting an example solution of two selected problems to check whether GAs can be used successfully in reactor engineering as an optimization tool. The 3600 MWth oxide core, which was based on the OECD/NEA sodium-cooled fast reactor (SFR) benchmark, was used a reference design [1]. The first problem was the optimization of the fuel isotopic inventory in terms of minimizing the volume share of long-lived actinides, while maximizing the effective neutron multiplication factor. The second task was the optimization of the boron shield distribution around the reactor core to minimize the sodium void reactivity effect (SVRE). Neutron transport and fuel depletion simulations were performed using Monte Carlo neutron transport code SERPENT2. The simulation resulted in an optimized fuel mixture composition for the selected parameters, which demonstrates the functionality of the algorithm. The results show the efficiency and universality of GAs in multidimensional optimization problems in nuclear engineering.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nuclear reactor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sodium-cooled fast reactor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sawicki Piotr</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kubiński Wojciech</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Darnowski Piotr</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nukleonika</subfield><subfield code="d">Sciendo, 2015</subfield><subfield code="g">66(2021), 4, Seite 139-145</subfield><subfield code="w">(DE-627)518634310</subfield><subfield code="w">(DE-600)2253628-0</subfield><subfield code="x">15085791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:139-145</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/nuka-2021-0021</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7c82514d43dd41e692fe926b1acf8045</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/nuka-2021-0021</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1508-5791</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="h">139-145</subfield></datafield></record></collection>
|
score |
7.401124 |