Grafted human pluripotent stem cell‐derived cortical neurons integrate into adult human cortical neural circuitry
Abstract Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might b...
Ausführliche Beschreibung
Autor*in: |
Marita Grønning Hansen [verfasserIn] Cecilia Laterza [verfasserIn] Sara Palma‐Tortosa [verfasserIn] Giedre Kvist [verfasserIn] Emanuela Monni [verfasserIn] Oleg Tsupykov [verfasserIn] Daniel Tornero [verfasserIn] Naomi Uoshima [verfasserIn] Jordi Soriano [verfasserIn] Johan Bengzon [verfasserIn] Gianvito Martino [verfasserIn] Galyna Skibo [verfasserIn] Olle Lindvall [verfasserIn] Zaal Kokaia [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Stem Cells Translational Medicine - Oxford University Press, 2017, 9(2020), 11, Seite 1365-1377 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2020 ; number:11 ; pages:1365-1377 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1002/sctm.20-0134 |
---|
Katalog-ID: |
DOAJ018341918 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ018341918 | ||
003 | DE-627 | ||
005 | 20230310095749.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/sctm.20-0134 |2 doi | |
035 | |a (DE-627)DOAJ018341918 | ||
035 | |a (DE-599)DOAJ181e28f31b85430e89ba814c4933f424 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R5-920 | |
050 | 0 | |a QH573-671 | |
100 | 0 | |a Marita Grønning Hansen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Grafted human pluripotent stem cell‐derived cortical neurons integrate into adult human cortical neural circuitry |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long‐term neuroepithelial‐like stem (lt‐NES) cell‐derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke‐injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell‐derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt‐NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer‐specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno‐electron microscopy, rabies virus retrograde monosynaptic tracing, and whole‐cell patch‐clamp recordings. Our findings provide the first evidence that pluripotent stem cell‐derived neurons can integrate into adult host neural networks also in a human‐to‐human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain. | ||
650 | 4 | |a cerebral cortex | |
650 | 4 | |a human | |
650 | 4 | |a iPS cells | |
650 | 4 | |a neural circuitry | |
650 | 4 | |a regeneration | |
650 | 4 | |a transplantation | |
653 | 0 | |a Medicine (General) | |
653 | 0 | |a Cytology | |
700 | 0 | |a Cecilia Laterza |e verfasserin |4 aut | |
700 | 0 | |a Sara Palma‐Tortosa |e verfasserin |4 aut | |
700 | 0 | |a Giedre Kvist |e verfasserin |4 aut | |
700 | 0 | |a Emanuela Monni |e verfasserin |4 aut | |
700 | 0 | |a Oleg Tsupykov |e verfasserin |4 aut | |
700 | 0 | |a Daniel Tornero |e verfasserin |4 aut | |
700 | 0 | |a Naomi Uoshima |e verfasserin |4 aut | |
700 | 0 | |a Jordi Soriano |e verfasserin |4 aut | |
700 | 0 | |a Johan Bengzon |e verfasserin |4 aut | |
700 | 0 | |a Gianvito Martino |e verfasserin |4 aut | |
700 | 0 | |a Galyna Skibo |e verfasserin |4 aut | |
700 | 0 | |a Olle Lindvall |e verfasserin |4 aut | |
700 | 0 | |a Zaal Kokaia |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Stem Cells Translational Medicine |d Oxford University Press, 2017 |g 9(2020), 11, Seite 1365-1377 |w (DE-627)680320539 |w (DE-600)2642270-0 |x 21576580 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2020 |g number:11 |g pages:1365-1377 |
856 | 4 | 0 | |u https://doi.org/10.1002/sctm.20-0134 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/181e28f31b85430e89ba814c4933f424 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/sctm.20-0134 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2157-6564 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2157-6580 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2020 |e 11 |h 1365-1377 |
author_variant |
m g h mgh c l cl s p sp g k gk e m em o t ot d t dt n u nu j s js j b jb g m gm g s gs o l ol z k zk |
---|---|
matchkey_str |
article:21576580:2020----::rfehmnlrptnsecldrvdotclernitgaenodlh |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
R |
publishDate |
2020 |
allfields |
10.1002/sctm.20-0134 doi (DE-627)DOAJ018341918 (DE-599)DOAJ181e28f31b85430e89ba814c4933f424 DE-627 ger DE-627 rakwb eng R5-920 QH573-671 Marita Grønning Hansen verfasserin aut Grafted human pluripotent stem cell‐derived cortical neurons integrate into adult human cortical neural circuitry 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long‐term neuroepithelial‐like stem (lt‐NES) cell‐derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke‐injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell‐derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt‐NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer‐specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno‐electron microscopy, rabies virus retrograde monosynaptic tracing, and whole‐cell patch‐clamp recordings. Our findings provide the first evidence that pluripotent stem cell‐derived neurons can integrate into adult host neural networks also in a human‐to‐human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain. cerebral cortex human iPS cells neural circuitry regeneration transplantation Medicine (General) Cytology Cecilia Laterza verfasserin aut Sara Palma‐Tortosa verfasserin aut Giedre Kvist verfasserin aut Emanuela Monni verfasserin aut Oleg Tsupykov verfasserin aut Daniel Tornero verfasserin aut Naomi Uoshima verfasserin aut Jordi Soriano verfasserin aut Johan Bengzon verfasserin aut Gianvito Martino verfasserin aut Galyna Skibo verfasserin aut Olle Lindvall verfasserin aut Zaal Kokaia verfasserin aut In Stem Cells Translational Medicine Oxford University Press, 2017 9(2020), 11, Seite 1365-1377 (DE-627)680320539 (DE-600)2642270-0 21576580 nnns volume:9 year:2020 number:11 pages:1365-1377 https://doi.org/10.1002/sctm.20-0134 kostenfrei https://doaj.org/article/181e28f31b85430e89ba814c4933f424 kostenfrei https://doi.org/10.1002/sctm.20-0134 kostenfrei https://doaj.org/toc/2157-6564 Journal toc kostenfrei https://doaj.org/toc/2157-6580 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 11 1365-1377 |
spelling |
10.1002/sctm.20-0134 doi (DE-627)DOAJ018341918 (DE-599)DOAJ181e28f31b85430e89ba814c4933f424 DE-627 ger DE-627 rakwb eng R5-920 QH573-671 Marita Grønning Hansen verfasserin aut Grafted human pluripotent stem cell‐derived cortical neurons integrate into adult human cortical neural circuitry 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long‐term neuroepithelial‐like stem (lt‐NES) cell‐derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke‐injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell‐derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt‐NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer‐specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno‐electron microscopy, rabies virus retrograde monosynaptic tracing, and whole‐cell patch‐clamp recordings. Our findings provide the first evidence that pluripotent stem cell‐derived neurons can integrate into adult host neural networks also in a human‐to‐human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain. cerebral cortex human iPS cells neural circuitry regeneration transplantation Medicine (General) Cytology Cecilia Laterza verfasserin aut Sara Palma‐Tortosa verfasserin aut Giedre Kvist verfasserin aut Emanuela Monni verfasserin aut Oleg Tsupykov verfasserin aut Daniel Tornero verfasserin aut Naomi Uoshima verfasserin aut Jordi Soriano verfasserin aut Johan Bengzon verfasserin aut Gianvito Martino verfasserin aut Galyna Skibo verfasserin aut Olle Lindvall verfasserin aut Zaal Kokaia verfasserin aut In Stem Cells Translational Medicine Oxford University Press, 2017 9(2020), 11, Seite 1365-1377 (DE-627)680320539 (DE-600)2642270-0 21576580 nnns volume:9 year:2020 number:11 pages:1365-1377 https://doi.org/10.1002/sctm.20-0134 kostenfrei https://doaj.org/article/181e28f31b85430e89ba814c4933f424 kostenfrei https://doi.org/10.1002/sctm.20-0134 kostenfrei https://doaj.org/toc/2157-6564 Journal toc kostenfrei https://doaj.org/toc/2157-6580 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 11 1365-1377 |
allfields_unstemmed |
10.1002/sctm.20-0134 doi (DE-627)DOAJ018341918 (DE-599)DOAJ181e28f31b85430e89ba814c4933f424 DE-627 ger DE-627 rakwb eng R5-920 QH573-671 Marita Grønning Hansen verfasserin aut Grafted human pluripotent stem cell‐derived cortical neurons integrate into adult human cortical neural circuitry 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long‐term neuroepithelial‐like stem (lt‐NES) cell‐derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke‐injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell‐derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt‐NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer‐specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno‐electron microscopy, rabies virus retrograde monosynaptic tracing, and whole‐cell patch‐clamp recordings. Our findings provide the first evidence that pluripotent stem cell‐derived neurons can integrate into adult host neural networks also in a human‐to‐human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain. cerebral cortex human iPS cells neural circuitry regeneration transplantation Medicine (General) Cytology Cecilia Laterza verfasserin aut Sara Palma‐Tortosa verfasserin aut Giedre Kvist verfasserin aut Emanuela Monni verfasserin aut Oleg Tsupykov verfasserin aut Daniel Tornero verfasserin aut Naomi Uoshima verfasserin aut Jordi Soriano verfasserin aut Johan Bengzon verfasserin aut Gianvito Martino verfasserin aut Galyna Skibo verfasserin aut Olle Lindvall verfasserin aut Zaal Kokaia verfasserin aut In Stem Cells Translational Medicine Oxford University Press, 2017 9(2020), 11, Seite 1365-1377 (DE-627)680320539 (DE-600)2642270-0 21576580 nnns volume:9 year:2020 number:11 pages:1365-1377 https://doi.org/10.1002/sctm.20-0134 kostenfrei https://doaj.org/article/181e28f31b85430e89ba814c4933f424 kostenfrei https://doi.org/10.1002/sctm.20-0134 kostenfrei https://doaj.org/toc/2157-6564 Journal toc kostenfrei https://doaj.org/toc/2157-6580 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 11 1365-1377 |
allfieldsGer |
10.1002/sctm.20-0134 doi (DE-627)DOAJ018341918 (DE-599)DOAJ181e28f31b85430e89ba814c4933f424 DE-627 ger DE-627 rakwb eng R5-920 QH573-671 Marita Grønning Hansen verfasserin aut Grafted human pluripotent stem cell‐derived cortical neurons integrate into adult human cortical neural circuitry 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long‐term neuroepithelial‐like stem (lt‐NES) cell‐derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke‐injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell‐derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt‐NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer‐specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno‐electron microscopy, rabies virus retrograde monosynaptic tracing, and whole‐cell patch‐clamp recordings. Our findings provide the first evidence that pluripotent stem cell‐derived neurons can integrate into adult host neural networks also in a human‐to‐human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain. cerebral cortex human iPS cells neural circuitry regeneration transplantation Medicine (General) Cytology Cecilia Laterza verfasserin aut Sara Palma‐Tortosa verfasserin aut Giedre Kvist verfasserin aut Emanuela Monni verfasserin aut Oleg Tsupykov verfasserin aut Daniel Tornero verfasserin aut Naomi Uoshima verfasserin aut Jordi Soriano verfasserin aut Johan Bengzon verfasserin aut Gianvito Martino verfasserin aut Galyna Skibo verfasserin aut Olle Lindvall verfasserin aut Zaal Kokaia verfasserin aut In Stem Cells Translational Medicine Oxford University Press, 2017 9(2020), 11, Seite 1365-1377 (DE-627)680320539 (DE-600)2642270-0 21576580 nnns volume:9 year:2020 number:11 pages:1365-1377 https://doi.org/10.1002/sctm.20-0134 kostenfrei https://doaj.org/article/181e28f31b85430e89ba814c4933f424 kostenfrei https://doi.org/10.1002/sctm.20-0134 kostenfrei https://doaj.org/toc/2157-6564 Journal toc kostenfrei https://doaj.org/toc/2157-6580 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 11 1365-1377 |
allfieldsSound |
10.1002/sctm.20-0134 doi (DE-627)DOAJ018341918 (DE-599)DOAJ181e28f31b85430e89ba814c4933f424 DE-627 ger DE-627 rakwb eng R5-920 QH573-671 Marita Grønning Hansen verfasserin aut Grafted human pluripotent stem cell‐derived cortical neurons integrate into adult human cortical neural circuitry 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long‐term neuroepithelial‐like stem (lt‐NES) cell‐derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke‐injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell‐derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt‐NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer‐specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno‐electron microscopy, rabies virus retrograde monosynaptic tracing, and whole‐cell patch‐clamp recordings. Our findings provide the first evidence that pluripotent stem cell‐derived neurons can integrate into adult host neural networks also in a human‐to‐human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain. cerebral cortex human iPS cells neural circuitry regeneration transplantation Medicine (General) Cytology Cecilia Laterza verfasserin aut Sara Palma‐Tortosa verfasserin aut Giedre Kvist verfasserin aut Emanuela Monni verfasserin aut Oleg Tsupykov verfasserin aut Daniel Tornero verfasserin aut Naomi Uoshima verfasserin aut Jordi Soriano verfasserin aut Johan Bengzon verfasserin aut Gianvito Martino verfasserin aut Galyna Skibo verfasserin aut Olle Lindvall verfasserin aut Zaal Kokaia verfasserin aut In Stem Cells Translational Medicine Oxford University Press, 2017 9(2020), 11, Seite 1365-1377 (DE-627)680320539 (DE-600)2642270-0 21576580 nnns volume:9 year:2020 number:11 pages:1365-1377 https://doi.org/10.1002/sctm.20-0134 kostenfrei https://doaj.org/article/181e28f31b85430e89ba814c4933f424 kostenfrei https://doi.org/10.1002/sctm.20-0134 kostenfrei https://doaj.org/toc/2157-6564 Journal toc kostenfrei https://doaj.org/toc/2157-6580 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 11 1365-1377 |
language |
English |
source |
In Stem Cells Translational Medicine 9(2020), 11, Seite 1365-1377 volume:9 year:2020 number:11 pages:1365-1377 |
sourceStr |
In Stem Cells Translational Medicine 9(2020), 11, Seite 1365-1377 volume:9 year:2020 number:11 pages:1365-1377 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
cerebral cortex human iPS cells neural circuitry regeneration transplantation Medicine (General) Cytology |
isfreeaccess_bool |
true |
container_title |
Stem Cells Translational Medicine |
authorswithroles_txt_mv |
Marita Grønning Hansen @@aut@@ Cecilia Laterza @@aut@@ Sara Palma‐Tortosa @@aut@@ Giedre Kvist @@aut@@ Emanuela Monni @@aut@@ Oleg Tsupykov @@aut@@ Daniel Tornero @@aut@@ Naomi Uoshima @@aut@@ Jordi Soriano @@aut@@ Johan Bengzon @@aut@@ Gianvito Martino @@aut@@ Galyna Skibo @@aut@@ Olle Lindvall @@aut@@ Zaal Kokaia @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
680320539 |
id |
DOAJ018341918 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018341918</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310095749.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/sctm.20-0134</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018341918</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ181e28f31b85430e89ba814c4933f424</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH573-671</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Marita Grønning Hansen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Grafted human pluripotent stem cell‐derived cortical neurons integrate into adult human cortical neural circuitry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long‐term neuroepithelial‐like stem (lt‐NES) cell‐derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke‐injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell‐derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt‐NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer‐specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno‐electron microscopy, rabies virus retrograde monosynaptic tracing, and whole‐cell patch‐clamp recordings. Our findings provide the first evidence that pluripotent stem cell‐derived neurons can integrate into adult host neural networks also in a human‐to‐human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cerebral cortex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">human</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iPS cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neural circuitry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regeneration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transplantation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Cytology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cecilia Laterza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sara Palma‐Tortosa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giedre Kvist</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Emanuela Monni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oleg Tsupykov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel Tornero</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Naomi Uoshima</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jordi Soriano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johan Bengzon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gianvito Martino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Galyna Skibo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Olle Lindvall</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zaal Kokaia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Stem Cells Translational Medicine</subfield><subfield code="d">Oxford University Press, 2017</subfield><subfield code="g">9(2020), 11, Seite 1365-1377</subfield><subfield code="w">(DE-627)680320539</subfield><subfield code="w">(DE-600)2642270-0</subfield><subfield code="x">21576580</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:1365-1377</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/sctm.20-0134</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/181e28f31b85430e89ba814c4933f424</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/sctm.20-0134</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2157-6564</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2157-6580</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">11</subfield><subfield code="h">1365-1377</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Marita Grønning Hansen |
spellingShingle |
Marita Grønning Hansen misc R5-920 misc QH573-671 misc cerebral cortex misc human misc iPS cells misc neural circuitry misc regeneration misc transplantation misc Medicine (General) misc Cytology Grafted human pluripotent stem cell‐derived cortical neurons integrate into adult human cortical neural circuitry |
authorStr |
Marita Grønning Hansen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)680320539 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R5-920 |
illustrated |
Not Illustrated |
issn |
21576580 |
topic_title |
R5-920 QH573-671 Grafted human pluripotent stem cell‐derived cortical neurons integrate into adult human cortical neural circuitry cerebral cortex human iPS cells neural circuitry regeneration transplantation |
topic |
misc R5-920 misc QH573-671 misc cerebral cortex misc human misc iPS cells misc neural circuitry misc regeneration misc transplantation misc Medicine (General) misc Cytology |
topic_unstemmed |
misc R5-920 misc QH573-671 misc cerebral cortex misc human misc iPS cells misc neural circuitry misc regeneration misc transplantation misc Medicine (General) misc Cytology |
topic_browse |
misc R5-920 misc QH573-671 misc cerebral cortex misc human misc iPS cells misc neural circuitry misc regeneration misc transplantation misc Medicine (General) misc Cytology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Stem Cells Translational Medicine |
hierarchy_parent_id |
680320539 |
hierarchy_top_title |
Stem Cells Translational Medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)680320539 (DE-600)2642270-0 |
title |
Grafted human pluripotent stem cell‐derived cortical neurons integrate into adult human cortical neural circuitry |
ctrlnum |
(DE-627)DOAJ018341918 (DE-599)DOAJ181e28f31b85430e89ba814c4933f424 |
title_full |
Grafted human pluripotent stem cell‐derived cortical neurons integrate into adult human cortical neural circuitry |
author_sort |
Marita Grønning Hansen |
journal |
Stem Cells Translational Medicine |
journalStr |
Stem Cells Translational Medicine |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
1365 |
author_browse |
Marita Grønning Hansen Cecilia Laterza Sara Palma‐Tortosa Giedre Kvist Emanuela Monni Oleg Tsupykov Daniel Tornero Naomi Uoshima Jordi Soriano Johan Bengzon Gianvito Martino Galyna Skibo Olle Lindvall Zaal Kokaia |
container_volume |
9 |
class |
R5-920 QH573-671 |
format_se |
Elektronische Aufsätze |
author-letter |
Marita Grønning Hansen |
doi_str_mv |
10.1002/sctm.20-0134 |
author2-role |
verfasserin |
title_sort |
grafted human pluripotent stem cell‐derived cortical neurons integrate into adult human cortical neural circuitry |
callnumber |
R5-920 |
title_auth |
Grafted human pluripotent stem cell‐derived cortical neurons integrate into adult human cortical neural circuitry |
abstract |
Abstract Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long‐term neuroepithelial‐like stem (lt‐NES) cell‐derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke‐injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell‐derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt‐NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer‐specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno‐electron microscopy, rabies virus retrograde monosynaptic tracing, and whole‐cell patch‐clamp recordings. Our findings provide the first evidence that pluripotent stem cell‐derived neurons can integrate into adult host neural networks also in a human‐to‐human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain. |
abstractGer |
Abstract Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long‐term neuroepithelial‐like stem (lt‐NES) cell‐derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke‐injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell‐derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt‐NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer‐specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno‐electron microscopy, rabies virus retrograde monosynaptic tracing, and whole‐cell patch‐clamp recordings. Our findings provide the first evidence that pluripotent stem cell‐derived neurons can integrate into adult host neural networks also in a human‐to‐human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain. |
abstract_unstemmed |
Abstract Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long‐term neuroepithelial‐like stem (lt‐NES) cell‐derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke‐injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell‐derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt‐NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer‐specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno‐electron microscopy, rabies virus retrograde monosynaptic tracing, and whole‐cell patch‐clamp recordings. Our findings provide the first evidence that pluripotent stem cell‐derived neurons can integrate into adult host neural networks also in a human‐to‐human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11 |
title_short |
Grafted human pluripotent stem cell‐derived cortical neurons integrate into adult human cortical neural circuitry |
url |
https://doi.org/10.1002/sctm.20-0134 https://doaj.org/article/181e28f31b85430e89ba814c4933f424 https://doaj.org/toc/2157-6564 https://doaj.org/toc/2157-6580 |
remote_bool |
true |
author2 |
Cecilia Laterza Sara Palma‐Tortosa Giedre Kvist Emanuela Monni Oleg Tsupykov Daniel Tornero Naomi Uoshima Jordi Soriano Johan Bengzon Gianvito Martino Galyna Skibo Olle Lindvall Zaal Kokaia |
author2Str |
Cecilia Laterza Sara Palma‐Tortosa Giedre Kvist Emanuela Monni Oleg Tsupykov Daniel Tornero Naomi Uoshima Jordi Soriano Johan Bengzon Gianvito Martino Galyna Skibo Olle Lindvall Zaal Kokaia |
ppnlink |
680320539 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/sctm.20-0134 |
callnumber-a |
R5-920 |
up_date |
2024-07-03T17:22:00.409Z |
_version_ |
1803579367527284736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018341918</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310095749.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/sctm.20-0134</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018341918</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ181e28f31b85430e89ba814c4933f424</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH573-671</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Marita Grønning Hansen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Grafted human pluripotent stem cell‐derived cortical neurons integrate into adult human cortical neural circuitry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long‐term neuroepithelial‐like stem (lt‐NES) cell‐derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke‐injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell‐derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt‐NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer‐specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno‐electron microscopy, rabies virus retrograde monosynaptic tracing, and whole‐cell patch‐clamp recordings. Our findings provide the first evidence that pluripotent stem cell‐derived neurons can integrate into adult host neural networks also in a human‐to‐human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cerebral cortex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">human</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iPS cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neural circuitry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regeneration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transplantation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Cytology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cecilia Laterza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sara Palma‐Tortosa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giedre Kvist</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Emanuela Monni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oleg Tsupykov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel Tornero</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Naomi Uoshima</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jordi Soriano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johan Bengzon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gianvito Martino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Galyna Skibo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Olle Lindvall</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zaal Kokaia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Stem Cells Translational Medicine</subfield><subfield code="d">Oxford University Press, 2017</subfield><subfield code="g">9(2020), 11, Seite 1365-1377</subfield><subfield code="w">(DE-627)680320539</subfield><subfield code="w">(DE-600)2642270-0</subfield><subfield code="x">21576580</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:1365-1377</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/sctm.20-0134</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/181e28f31b85430e89ba814c4933f424</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/sctm.20-0134</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2157-6564</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2157-6580</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">11</subfield><subfield code="h">1365-1377</subfield></datafield></record></collection>
|
score |
7.402237 |