Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo
Summary: Recent technological advancements on stem cell differentiation induction have been making great progress in stem cell research, regenerative medicine, and therapeutic applications. However, the risk of off-target differentiation limits the wide application of stem cell therapy strategies. H...
Ausführliche Beschreibung
Autor*in: |
Wanyi Tang [verfasserIn] Haipeng Wang [verfasserIn] Xiaohui Zhao [verfasserIn] Shiyue Liu [verfasserIn] Siu Kai Kong [verfasserIn] Aaron Ho [verfasserIn] Tunan Chen [verfasserIn] Hua Feng [verfasserIn] Hao He [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Cell Reports - Elsevier, 2015, 38(2022), 10, Seite 110486- |
---|---|
Übergeordnetes Werk: |
volume:38 ; year:2022 ; number:10 ; pages:110486- |
Links: |
---|
DOI / URN: |
10.1016/j.celrep.2022.110486 |
---|
Katalog-ID: |
DOAJ018401309 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ018401309 | ||
003 | DE-627 | ||
005 | 20230503000318.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.celrep.2022.110486 |2 doi | |
035 | |a (DE-627)DOAJ018401309 | ||
035 | |a (DE-599)DOAJ8a1b1de2ca1c4705a78cec88380663e2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Wanyi Tang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Summary: Recent technological advancements on stem cell differentiation induction have been making great progress in stem cell research, regenerative medicine, and therapeutic applications. However, the risk of off-target differentiation limits the wide application of stem cell therapy strategies. Here, we report a non-invasive all-optical strategy to induce stem cell differentiation in vitro and in vivo that activates individual target stem cells in situ by delivering a transient 100-ms irradiation of a tightly focused femtosecond laser to a submicron cytoplasmic region of primary adipose-derived stem cells (ADSCs). The ADSCs differentiate to osteoblasts with stable lineage commitment that cannot further transdifferentiate because of simultaneous initiation of multiple signaling pathways through specific Ca2+ kinetic patterns. This method can work in vivo to direct mouse cerebellar granule neuron progenitors to granule neurons in intact mouse cerebellums through the skull. Hence, this optical method without any genetic manipulations or exogenous biomaterials holds promising potential in biomedical research and cell-based therapies. | ||
650 | 4 | |a stem cell differentiation | |
650 | 4 | |a femtosecond laser | |
650 | 4 | |a in vivo differentiation | |
650 | 4 | |a multiphoton excitation | |
653 | 0 | |a Biology (General) | |
700 | 0 | |a Haipeng Wang |e verfasserin |4 aut | |
700 | 0 | |a Xiaohui Zhao |e verfasserin |4 aut | |
700 | 0 | |a Shiyue Liu |e verfasserin |4 aut | |
700 | 0 | |a Siu Kai Kong |e verfasserin |4 aut | |
700 | 0 | |a Aaron Ho |e verfasserin |4 aut | |
700 | 0 | |a Tunan Chen |e verfasserin |4 aut | |
700 | 0 | |a Hua Feng |e verfasserin |4 aut | |
700 | 0 | |a Hao He |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Cell Reports |d Elsevier, 2015 |g 38(2022), 10, Seite 110486- |w (DE-627)684964562 |w (DE-600)2649101-1 |x 22111247 |7 nnns |
773 | 1 | 8 | |g volume:38 |g year:2022 |g number:10 |g pages:110486- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.celrep.2022.110486 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8a1b1de2ca1c4705a78cec88380663e2 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2211124722002194 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2211-1247 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 38 |j 2022 |e 10 |h 110486- |
author_variant |
w t wt h w hw x z xz s l sl s k k skk a h ah t c tc h f hf h h hh |
---|---|
matchkey_str |
article:22111247:2022----::tmelifrnitowtcnitnlnaeomtetnuebalsoutaat |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QH |
publishDate |
2022 |
allfields |
10.1016/j.celrep.2022.110486 doi (DE-627)DOAJ018401309 (DE-599)DOAJ8a1b1de2ca1c4705a78cec88380663e2 DE-627 ger DE-627 rakwb eng QH301-705.5 Wanyi Tang verfasserin aut Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: Recent technological advancements on stem cell differentiation induction have been making great progress in stem cell research, regenerative medicine, and therapeutic applications. However, the risk of off-target differentiation limits the wide application of stem cell therapy strategies. Here, we report a non-invasive all-optical strategy to induce stem cell differentiation in vitro and in vivo that activates individual target stem cells in situ by delivering a transient 100-ms irradiation of a tightly focused femtosecond laser to a submicron cytoplasmic region of primary adipose-derived stem cells (ADSCs). The ADSCs differentiate to osteoblasts with stable lineage commitment that cannot further transdifferentiate because of simultaneous initiation of multiple signaling pathways through specific Ca2+ kinetic patterns. This method can work in vivo to direct mouse cerebellar granule neuron progenitors to granule neurons in intact mouse cerebellums through the skull. Hence, this optical method without any genetic manipulations or exogenous biomaterials holds promising potential in biomedical research and cell-based therapies. stem cell differentiation femtosecond laser in vivo differentiation multiphoton excitation Biology (General) Haipeng Wang verfasserin aut Xiaohui Zhao verfasserin aut Shiyue Liu verfasserin aut Siu Kai Kong verfasserin aut Aaron Ho verfasserin aut Tunan Chen verfasserin aut Hua Feng verfasserin aut Hao He verfasserin aut In Cell Reports Elsevier, 2015 38(2022), 10, Seite 110486- (DE-627)684964562 (DE-600)2649101-1 22111247 nnns volume:38 year:2022 number:10 pages:110486- https://doi.org/10.1016/j.celrep.2022.110486 kostenfrei https://doaj.org/article/8a1b1de2ca1c4705a78cec88380663e2 kostenfrei http://www.sciencedirect.com/science/article/pii/S2211124722002194 kostenfrei https://doaj.org/toc/2211-1247 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 38 2022 10 110486- |
spelling |
10.1016/j.celrep.2022.110486 doi (DE-627)DOAJ018401309 (DE-599)DOAJ8a1b1de2ca1c4705a78cec88380663e2 DE-627 ger DE-627 rakwb eng QH301-705.5 Wanyi Tang verfasserin aut Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: Recent technological advancements on stem cell differentiation induction have been making great progress in stem cell research, regenerative medicine, and therapeutic applications. However, the risk of off-target differentiation limits the wide application of stem cell therapy strategies. Here, we report a non-invasive all-optical strategy to induce stem cell differentiation in vitro and in vivo that activates individual target stem cells in situ by delivering a transient 100-ms irradiation of a tightly focused femtosecond laser to a submicron cytoplasmic region of primary adipose-derived stem cells (ADSCs). The ADSCs differentiate to osteoblasts with stable lineage commitment that cannot further transdifferentiate because of simultaneous initiation of multiple signaling pathways through specific Ca2+ kinetic patterns. This method can work in vivo to direct mouse cerebellar granule neuron progenitors to granule neurons in intact mouse cerebellums through the skull. Hence, this optical method without any genetic manipulations or exogenous biomaterials holds promising potential in biomedical research and cell-based therapies. stem cell differentiation femtosecond laser in vivo differentiation multiphoton excitation Biology (General) Haipeng Wang verfasserin aut Xiaohui Zhao verfasserin aut Shiyue Liu verfasserin aut Siu Kai Kong verfasserin aut Aaron Ho verfasserin aut Tunan Chen verfasserin aut Hua Feng verfasserin aut Hao He verfasserin aut In Cell Reports Elsevier, 2015 38(2022), 10, Seite 110486- (DE-627)684964562 (DE-600)2649101-1 22111247 nnns volume:38 year:2022 number:10 pages:110486- https://doi.org/10.1016/j.celrep.2022.110486 kostenfrei https://doaj.org/article/8a1b1de2ca1c4705a78cec88380663e2 kostenfrei http://www.sciencedirect.com/science/article/pii/S2211124722002194 kostenfrei https://doaj.org/toc/2211-1247 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 38 2022 10 110486- |
allfields_unstemmed |
10.1016/j.celrep.2022.110486 doi (DE-627)DOAJ018401309 (DE-599)DOAJ8a1b1de2ca1c4705a78cec88380663e2 DE-627 ger DE-627 rakwb eng QH301-705.5 Wanyi Tang verfasserin aut Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: Recent technological advancements on stem cell differentiation induction have been making great progress in stem cell research, regenerative medicine, and therapeutic applications. However, the risk of off-target differentiation limits the wide application of stem cell therapy strategies. Here, we report a non-invasive all-optical strategy to induce stem cell differentiation in vitro and in vivo that activates individual target stem cells in situ by delivering a transient 100-ms irradiation of a tightly focused femtosecond laser to a submicron cytoplasmic region of primary adipose-derived stem cells (ADSCs). The ADSCs differentiate to osteoblasts with stable lineage commitment that cannot further transdifferentiate because of simultaneous initiation of multiple signaling pathways through specific Ca2+ kinetic patterns. This method can work in vivo to direct mouse cerebellar granule neuron progenitors to granule neurons in intact mouse cerebellums through the skull. Hence, this optical method without any genetic manipulations or exogenous biomaterials holds promising potential in biomedical research and cell-based therapies. stem cell differentiation femtosecond laser in vivo differentiation multiphoton excitation Biology (General) Haipeng Wang verfasserin aut Xiaohui Zhao verfasserin aut Shiyue Liu verfasserin aut Siu Kai Kong verfasserin aut Aaron Ho verfasserin aut Tunan Chen verfasserin aut Hua Feng verfasserin aut Hao He verfasserin aut In Cell Reports Elsevier, 2015 38(2022), 10, Seite 110486- (DE-627)684964562 (DE-600)2649101-1 22111247 nnns volume:38 year:2022 number:10 pages:110486- https://doi.org/10.1016/j.celrep.2022.110486 kostenfrei https://doaj.org/article/8a1b1de2ca1c4705a78cec88380663e2 kostenfrei http://www.sciencedirect.com/science/article/pii/S2211124722002194 kostenfrei https://doaj.org/toc/2211-1247 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 38 2022 10 110486- |
allfieldsGer |
10.1016/j.celrep.2022.110486 doi (DE-627)DOAJ018401309 (DE-599)DOAJ8a1b1de2ca1c4705a78cec88380663e2 DE-627 ger DE-627 rakwb eng QH301-705.5 Wanyi Tang verfasserin aut Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: Recent technological advancements on stem cell differentiation induction have been making great progress in stem cell research, regenerative medicine, and therapeutic applications. However, the risk of off-target differentiation limits the wide application of stem cell therapy strategies. Here, we report a non-invasive all-optical strategy to induce stem cell differentiation in vitro and in vivo that activates individual target stem cells in situ by delivering a transient 100-ms irradiation of a tightly focused femtosecond laser to a submicron cytoplasmic region of primary adipose-derived stem cells (ADSCs). The ADSCs differentiate to osteoblasts with stable lineage commitment that cannot further transdifferentiate because of simultaneous initiation of multiple signaling pathways through specific Ca2+ kinetic patterns. This method can work in vivo to direct mouse cerebellar granule neuron progenitors to granule neurons in intact mouse cerebellums through the skull. Hence, this optical method without any genetic manipulations or exogenous biomaterials holds promising potential in biomedical research and cell-based therapies. stem cell differentiation femtosecond laser in vivo differentiation multiphoton excitation Biology (General) Haipeng Wang verfasserin aut Xiaohui Zhao verfasserin aut Shiyue Liu verfasserin aut Siu Kai Kong verfasserin aut Aaron Ho verfasserin aut Tunan Chen verfasserin aut Hua Feng verfasserin aut Hao He verfasserin aut In Cell Reports Elsevier, 2015 38(2022), 10, Seite 110486- (DE-627)684964562 (DE-600)2649101-1 22111247 nnns volume:38 year:2022 number:10 pages:110486- https://doi.org/10.1016/j.celrep.2022.110486 kostenfrei https://doaj.org/article/8a1b1de2ca1c4705a78cec88380663e2 kostenfrei http://www.sciencedirect.com/science/article/pii/S2211124722002194 kostenfrei https://doaj.org/toc/2211-1247 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 38 2022 10 110486- |
allfieldsSound |
10.1016/j.celrep.2022.110486 doi (DE-627)DOAJ018401309 (DE-599)DOAJ8a1b1de2ca1c4705a78cec88380663e2 DE-627 ger DE-627 rakwb eng QH301-705.5 Wanyi Tang verfasserin aut Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: Recent technological advancements on stem cell differentiation induction have been making great progress in stem cell research, regenerative medicine, and therapeutic applications. However, the risk of off-target differentiation limits the wide application of stem cell therapy strategies. Here, we report a non-invasive all-optical strategy to induce stem cell differentiation in vitro and in vivo that activates individual target stem cells in situ by delivering a transient 100-ms irradiation of a tightly focused femtosecond laser to a submicron cytoplasmic region of primary adipose-derived stem cells (ADSCs). The ADSCs differentiate to osteoblasts with stable lineage commitment that cannot further transdifferentiate because of simultaneous initiation of multiple signaling pathways through specific Ca2+ kinetic patterns. This method can work in vivo to direct mouse cerebellar granule neuron progenitors to granule neurons in intact mouse cerebellums through the skull. Hence, this optical method without any genetic manipulations or exogenous biomaterials holds promising potential in biomedical research and cell-based therapies. stem cell differentiation femtosecond laser in vivo differentiation multiphoton excitation Biology (General) Haipeng Wang verfasserin aut Xiaohui Zhao verfasserin aut Shiyue Liu verfasserin aut Siu Kai Kong verfasserin aut Aaron Ho verfasserin aut Tunan Chen verfasserin aut Hua Feng verfasserin aut Hao He verfasserin aut In Cell Reports Elsevier, 2015 38(2022), 10, Seite 110486- (DE-627)684964562 (DE-600)2649101-1 22111247 nnns volume:38 year:2022 number:10 pages:110486- https://doi.org/10.1016/j.celrep.2022.110486 kostenfrei https://doaj.org/article/8a1b1de2ca1c4705a78cec88380663e2 kostenfrei http://www.sciencedirect.com/science/article/pii/S2211124722002194 kostenfrei https://doaj.org/toc/2211-1247 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 38 2022 10 110486- |
language |
English |
source |
In Cell Reports 38(2022), 10, Seite 110486- volume:38 year:2022 number:10 pages:110486- |
sourceStr |
In Cell Reports 38(2022), 10, Seite 110486- volume:38 year:2022 number:10 pages:110486- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
stem cell differentiation femtosecond laser in vivo differentiation multiphoton excitation Biology (General) |
isfreeaccess_bool |
true |
container_title |
Cell Reports |
authorswithroles_txt_mv |
Wanyi Tang @@aut@@ Haipeng Wang @@aut@@ Xiaohui Zhao @@aut@@ Shiyue Liu @@aut@@ Siu Kai Kong @@aut@@ Aaron Ho @@aut@@ Tunan Chen @@aut@@ Hua Feng @@aut@@ Hao He @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
684964562 |
id |
DOAJ018401309 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018401309</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503000318.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.celrep.2022.110486</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018401309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8a1b1de2ca1c4705a78cec88380663e2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wanyi Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary: Recent technological advancements on stem cell differentiation induction have been making great progress in stem cell research, regenerative medicine, and therapeutic applications. However, the risk of off-target differentiation limits the wide application of stem cell therapy strategies. Here, we report a non-invasive all-optical strategy to induce stem cell differentiation in vitro and in vivo that activates individual target stem cells in situ by delivering a transient 100-ms irradiation of a tightly focused femtosecond laser to a submicron cytoplasmic region of primary adipose-derived stem cells (ADSCs). The ADSCs differentiate to osteoblasts with stable lineage commitment that cannot further transdifferentiate because of simultaneous initiation of multiple signaling pathways through specific Ca2+ kinetic patterns. This method can work in vivo to direct mouse cerebellar granule neuron progenitors to granule neurons in intact mouse cerebellums through the skull. Hence, this optical method without any genetic manipulations or exogenous biomaterials holds promising potential in biomedical research and cell-based therapies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stem cell differentiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">femtosecond laser</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in vivo differentiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiphoton excitation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haipeng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohui Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiyue Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Siu Kai Kong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aaron Ho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tunan Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hua Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hao He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cell Reports</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">38(2022), 10, Seite 110486-</subfield><subfield code="w">(DE-627)684964562</subfield><subfield code="w">(DE-600)2649101-1</subfield><subfield code="x">22111247</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:110486-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.celrep.2022.110486</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8a1b1de2ca1c4705a78cec88380663e2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2211124722002194</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2211-1247</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2022</subfield><subfield code="e">10</subfield><subfield code="h">110486-</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Wanyi Tang |
spellingShingle |
Wanyi Tang misc QH301-705.5 misc stem cell differentiation misc femtosecond laser misc in vivo differentiation misc multiphoton excitation misc Biology (General) Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo |
authorStr |
Wanyi Tang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)684964562 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
22111247 |
topic_title |
QH301-705.5 Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo stem cell differentiation femtosecond laser in vivo differentiation multiphoton excitation |
topic |
misc QH301-705.5 misc stem cell differentiation misc femtosecond laser misc in vivo differentiation misc multiphoton excitation misc Biology (General) |
topic_unstemmed |
misc QH301-705.5 misc stem cell differentiation misc femtosecond laser misc in vivo differentiation misc multiphoton excitation misc Biology (General) |
topic_browse |
misc QH301-705.5 misc stem cell differentiation misc femtosecond laser misc in vivo differentiation misc multiphoton excitation misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cell Reports |
hierarchy_parent_id |
684964562 |
hierarchy_top_title |
Cell Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)684964562 (DE-600)2649101-1 |
title |
Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo |
ctrlnum |
(DE-627)DOAJ018401309 (DE-599)DOAJ8a1b1de2ca1c4705a78cec88380663e2 |
title_full |
Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo |
author_sort |
Wanyi Tang |
journal |
Cell Reports |
journalStr |
Cell Reports |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
110486 |
author_browse |
Wanyi Tang Haipeng Wang Xiaohui Zhao Shiyue Liu Siu Kai Kong Aaron Ho Tunan Chen Hua Feng Hao He |
container_volume |
38 |
class |
QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Wanyi Tang |
doi_str_mv |
10.1016/j.celrep.2022.110486 |
author2-role |
verfasserin |
title_sort |
stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo |
callnumber |
QH301-705.5 |
title_auth |
Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo |
abstract |
Summary: Recent technological advancements on stem cell differentiation induction have been making great progress in stem cell research, regenerative medicine, and therapeutic applications. However, the risk of off-target differentiation limits the wide application of stem cell therapy strategies. Here, we report a non-invasive all-optical strategy to induce stem cell differentiation in vitro and in vivo that activates individual target stem cells in situ by delivering a transient 100-ms irradiation of a tightly focused femtosecond laser to a submicron cytoplasmic region of primary adipose-derived stem cells (ADSCs). The ADSCs differentiate to osteoblasts with stable lineage commitment that cannot further transdifferentiate because of simultaneous initiation of multiple signaling pathways through specific Ca2+ kinetic patterns. This method can work in vivo to direct mouse cerebellar granule neuron progenitors to granule neurons in intact mouse cerebellums through the skull. Hence, this optical method without any genetic manipulations or exogenous biomaterials holds promising potential in biomedical research and cell-based therapies. |
abstractGer |
Summary: Recent technological advancements on stem cell differentiation induction have been making great progress in stem cell research, regenerative medicine, and therapeutic applications. However, the risk of off-target differentiation limits the wide application of stem cell therapy strategies. Here, we report a non-invasive all-optical strategy to induce stem cell differentiation in vitro and in vivo that activates individual target stem cells in situ by delivering a transient 100-ms irradiation of a tightly focused femtosecond laser to a submicron cytoplasmic region of primary adipose-derived stem cells (ADSCs). The ADSCs differentiate to osteoblasts with stable lineage commitment that cannot further transdifferentiate because of simultaneous initiation of multiple signaling pathways through specific Ca2+ kinetic patterns. This method can work in vivo to direct mouse cerebellar granule neuron progenitors to granule neurons in intact mouse cerebellums through the skull. Hence, this optical method without any genetic manipulations or exogenous biomaterials holds promising potential in biomedical research and cell-based therapies. |
abstract_unstemmed |
Summary: Recent technological advancements on stem cell differentiation induction have been making great progress in stem cell research, regenerative medicine, and therapeutic applications. However, the risk of off-target differentiation limits the wide application of stem cell therapy strategies. Here, we report a non-invasive all-optical strategy to induce stem cell differentiation in vitro and in vivo that activates individual target stem cells in situ by delivering a transient 100-ms irradiation of a tightly focused femtosecond laser to a submicron cytoplasmic region of primary adipose-derived stem cells (ADSCs). The ADSCs differentiate to osteoblasts with stable lineage commitment that cannot further transdifferentiate because of simultaneous initiation of multiple signaling pathways through specific Ca2+ kinetic patterns. This method can work in vivo to direct mouse cerebellar granule neuron progenitors to granule neurons in intact mouse cerebellums through the skull. Hence, this optical method without any genetic manipulations or exogenous biomaterials holds promising potential in biomedical research and cell-based therapies. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
10 |
title_short |
Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo |
url |
https://doi.org/10.1016/j.celrep.2022.110486 https://doaj.org/article/8a1b1de2ca1c4705a78cec88380663e2 http://www.sciencedirect.com/science/article/pii/S2211124722002194 https://doaj.org/toc/2211-1247 |
remote_bool |
true |
author2 |
Haipeng Wang Xiaohui Zhao Shiyue Liu Siu Kai Kong Aaron Ho Tunan Chen Hua Feng Hao He |
author2Str |
Haipeng Wang Xiaohui Zhao Shiyue Liu Siu Kai Kong Aaron Ho Tunan Chen Hua Feng Hao He |
ppnlink |
684964562 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.celrep.2022.110486 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T17:43:16.164Z |
_version_ |
1803580705256505345 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018401309</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503000318.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.celrep.2022.110486</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018401309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8a1b1de2ca1c4705a78cec88380663e2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wanyi Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary: Recent technological advancements on stem cell differentiation induction have been making great progress in stem cell research, regenerative medicine, and therapeutic applications. However, the risk of off-target differentiation limits the wide application of stem cell therapy strategies. Here, we report a non-invasive all-optical strategy to induce stem cell differentiation in vitro and in vivo that activates individual target stem cells in situ by delivering a transient 100-ms irradiation of a tightly focused femtosecond laser to a submicron cytoplasmic region of primary adipose-derived stem cells (ADSCs). The ADSCs differentiate to osteoblasts with stable lineage commitment that cannot further transdifferentiate because of simultaneous initiation of multiple signaling pathways through specific Ca2+ kinetic patterns. This method can work in vivo to direct mouse cerebellar granule neuron progenitors to granule neurons in intact mouse cerebellums through the skull. Hence, this optical method without any genetic manipulations or exogenous biomaterials holds promising potential in biomedical research and cell-based therapies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stem cell differentiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">femtosecond laser</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in vivo differentiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiphoton excitation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haipeng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohui Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiyue Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Siu Kai Kong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aaron Ho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tunan Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hua Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hao He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cell Reports</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">38(2022), 10, Seite 110486-</subfield><subfield code="w">(DE-627)684964562</subfield><subfield code="w">(DE-600)2649101-1</subfield><subfield code="x">22111247</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:110486-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.celrep.2022.110486</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8a1b1de2ca1c4705a78cec88380663e2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2211124722002194</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2211-1247</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2022</subfield><subfield code="e">10</subfield><subfield code="h">110486-</subfield></datafield></record></collection>
|
score |
7.4017506 |