Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis
This work aimed to assess the water quality of the Tuojiang River Basin in recent years to provide a better understanding of its current pollution situation, and the potential pollution risks and causes. Water quality parameters such as dissolved oxygen (DO), ammonia–nitrogen (NH<sub<3</sub...
Ausführliche Beschreibung
Autor*in: |
Zheng Zeng [verfasserIn] Wei-Ge Luo [verfasserIn] Zhe Wang [verfasserIn] Fa-Cheng Yi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sustainability - MDPI AG, 2009, 13(2021), 2, p 792 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:2, p 792 |
Links: |
---|
DOI / URN: |
10.3390/su13020792 |
---|
Katalog-ID: |
DOAJ018512836 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ018512836 | ||
003 | DE-627 | ||
005 | 20240414075501.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/su13020792 |2 doi | |
035 | |a (DE-627)DOAJ018512836 | ||
035 | |a (DE-599)DOAJ2b2682e851d14b93bef9b0082ab7ad07 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD194-195 | |
050 | 0 | |a TJ807-830 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Zheng Zeng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This work aimed to assess the water quality of the Tuojiang River Basin in recent years to provide a better understanding of its current pollution situation, and the potential pollution risks and causes. Water quality parameters such as dissolved oxygen (DO), ammonia–nitrogen (NH<sub<3</sub<-N), total phosphorus (TP), the permanganate index (CODMn), five-day biochemical oxygen demand (BOD5), pH, and concentrations of various heavy metals were measured in the Tuojiang River, according to the national standards of the People’s Republic of China. Samples were collected between 2012 to 2018 at 11 national monitoring sites in the Tuojiang River Basin. The overall water pollution situation was evaluated with back propagation artificial neural network (BP-ANN) analysis. The pollution causes were analyzed considering both industrial wastewater discharge in the upper reaches and the current pollution situation. We found potential risks of excessive NH<sub<3</sub<-N, TP, Cd, Hg, and Pb concentrations in the Tuojiang River Basin. Moreover, corresponding water pollution control suggestions were given. | ||
650 | 4 | |a Tuojiang River | |
650 | 4 | |a water pollution | |
650 | 4 | |a heavy metal pollution | |
650 | 4 | |a BP-ANN evaluation | |
653 | 0 | |a Environmental effects of industries and plants | |
653 | 0 | |a Renewable energy sources | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Wei-Ge Luo |e verfasserin |4 aut | |
700 | 0 | |a Zhe Wang |e verfasserin |4 aut | |
700 | 0 | |a Fa-Cheng Yi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sustainability |d MDPI AG, 2009 |g 13(2021), 2, p 792 |w (DE-627)610604120 |w (DE-600)2518383-7 |x 20711050 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:2, p 792 |
856 | 4 | 0 | |u https://doi.org/10.3390/su13020792 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2b2682e851d14b93bef9b0082ab7ad07 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2071-1050/13/2/792 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2071-1050 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 2, p 792 |
author_variant |
z z zz w g l wgl z w zw f c y fcy |
---|---|
matchkey_str |
article:20711050:2021----::aepluinnisassnhtoinrvraicianrii |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TD |
publishDate |
2021 |
allfields |
10.3390/su13020792 doi (DE-627)DOAJ018512836 (DE-599)DOAJ2b2682e851d14b93bef9b0082ab7ad07 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Zheng Zeng verfasserin aut Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work aimed to assess the water quality of the Tuojiang River Basin in recent years to provide a better understanding of its current pollution situation, and the potential pollution risks and causes. Water quality parameters such as dissolved oxygen (DO), ammonia–nitrogen (NH<sub<3</sub<-N), total phosphorus (TP), the permanganate index (CODMn), five-day biochemical oxygen demand (BOD5), pH, and concentrations of various heavy metals were measured in the Tuojiang River, according to the national standards of the People’s Republic of China. Samples were collected between 2012 to 2018 at 11 national monitoring sites in the Tuojiang River Basin. The overall water pollution situation was evaluated with back propagation artificial neural network (BP-ANN) analysis. The pollution causes were analyzed considering both industrial wastewater discharge in the upper reaches and the current pollution situation. We found potential risks of excessive NH<sub<3</sub<-N, TP, Cd, Hg, and Pb concentrations in the Tuojiang River Basin. Moreover, corresponding water pollution control suggestions were given. Tuojiang River water pollution heavy metal pollution BP-ANN evaluation Environmental effects of industries and plants Renewable energy sources Environmental sciences Wei-Ge Luo verfasserin aut Zhe Wang verfasserin aut Fa-Cheng Yi verfasserin aut In Sustainability MDPI AG, 2009 13(2021), 2, p 792 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:13 year:2021 number:2, p 792 https://doi.org/10.3390/su13020792 kostenfrei https://doaj.org/article/2b2682e851d14b93bef9b0082ab7ad07 kostenfrei https://www.mdpi.com/2071-1050/13/2/792 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 2, p 792 |
spelling |
10.3390/su13020792 doi (DE-627)DOAJ018512836 (DE-599)DOAJ2b2682e851d14b93bef9b0082ab7ad07 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Zheng Zeng verfasserin aut Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work aimed to assess the water quality of the Tuojiang River Basin in recent years to provide a better understanding of its current pollution situation, and the potential pollution risks and causes. Water quality parameters such as dissolved oxygen (DO), ammonia–nitrogen (NH<sub<3</sub<-N), total phosphorus (TP), the permanganate index (CODMn), five-day biochemical oxygen demand (BOD5), pH, and concentrations of various heavy metals were measured in the Tuojiang River, according to the national standards of the People’s Republic of China. Samples were collected between 2012 to 2018 at 11 national monitoring sites in the Tuojiang River Basin. The overall water pollution situation was evaluated with back propagation artificial neural network (BP-ANN) analysis. The pollution causes were analyzed considering both industrial wastewater discharge in the upper reaches and the current pollution situation. We found potential risks of excessive NH<sub<3</sub<-N, TP, Cd, Hg, and Pb concentrations in the Tuojiang River Basin. Moreover, corresponding water pollution control suggestions were given. Tuojiang River water pollution heavy metal pollution BP-ANN evaluation Environmental effects of industries and plants Renewable energy sources Environmental sciences Wei-Ge Luo verfasserin aut Zhe Wang verfasserin aut Fa-Cheng Yi verfasserin aut In Sustainability MDPI AG, 2009 13(2021), 2, p 792 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:13 year:2021 number:2, p 792 https://doi.org/10.3390/su13020792 kostenfrei https://doaj.org/article/2b2682e851d14b93bef9b0082ab7ad07 kostenfrei https://www.mdpi.com/2071-1050/13/2/792 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 2, p 792 |
allfields_unstemmed |
10.3390/su13020792 doi (DE-627)DOAJ018512836 (DE-599)DOAJ2b2682e851d14b93bef9b0082ab7ad07 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Zheng Zeng verfasserin aut Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work aimed to assess the water quality of the Tuojiang River Basin in recent years to provide a better understanding of its current pollution situation, and the potential pollution risks and causes. Water quality parameters such as dissolved oxygen (DO), ammonia–nitrogen (NH<sub<3</sub<-N), total phosphorus (TP), the permanganate index (CODMn), five-day biochemical oxygen demand (BOD5), pH, and concentrations of various heavy metals were measured in the Tuojiang River, according to the national standards of the People’s Republic of China. Samples were collected between 2012 to 2018 at 11 national monitoring sites in the Tuojiang River Basin. The overall water pollution situation was evaluated with back propagation artificial neural network (BP-ANN) analysis. The pollution causes were analyzed considering both industrial wastewater discharge in the upper reaches and the current pollution situation. We found potential risks of excessive NH<sub<3</sub<-N, TP, Cd, Hg, and Pb concentrations in the Tuojiang River Basin. Moreover, corresponding water pollution control suggestions were given. Tuojiang River water pollution heavy metal pollution BP-ANN evaluation Environmental effects of industries and plants Renewable energy sources Environmental sciences Wei-Ge Luo verfasserin aut Zhe Wang verfasserin aut Fa-Cheng Yi verfasserin aut In Sustainability MDPI AG, 2009 13(2021), 2, p 792 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:13 year:2021 number:2, p 792 https://doi.org/10.3390/su13020792 kostenfrei https://doaj.org/article/2b2682e851d14b93bef9b0082ab7ad07 kostenfrei https://www.mdpi.com/2071-1050/13/2/792 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 2, p 792 |
allfieldsGer |
10.3390/su13020792 doi (DE-627)DOAJ018512836 (DE-599)DOAJ2b2682e851d14b93bef9b0082ab7ad07 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Zheng Zeng verfasserin aut Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work aimed to assess the water quality of the Tuojiang River Basin in recent years to provide a better understanding of its current pollution situation, and the potential pollution risks and causes. Water quality parameters such as dissolved oxygen (DO), ammonia–nitrogen (NH<sub<3</sub<-N), total phosphorus (TP), the permanganate index (CODMn), five-day biochemical oxygen demand (BOD5), pH, and concentrations of various heavy metals were measured in the Tuojiang River, according to the national standards of the People’s Republic of China. Samples were collected between 2012 to 2018 at 11 national monitoring sites in the Tuojiang River Basin. The overall water pollution situation was evaluated with back propagation artificial neural network (BP-ANN) analysis. The pollution causes were analyzed considering both industrial wastewater discharge in the upper reaches and the current pollution situation. We found potential risks of excessive NH<sub<3</sub<-N, TP, Cd, Hg, and Pb concentrations in the Tuojiang River Basin. Moreover, corresponding water pollution control suggestions were given. Tuojiang River water pollution heavy metal pollution BP-ANN evaluation Environmental effects of industries and plants Renewable energy sources Environmental sciences Wei-Ge Luo verfasserin aut Zhe Wang verfasserin aut Fa-Cheng Yi verfasserin aut In Sustainability MDPI AG, 2009 13(2021), 2, p 792 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:13 year:2021 number:2, p 792 https://doi.org/10.3390/su13020792 kostenfrei https://doaj.org/article/2b2682e851d14b93bef9b0082ab7ad07 kostenfrei https://www.mdpi.com/2071-1050/13/2/792 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 2, p 792 |
allfieldsSound |
10.3390/su13020792 doi (DE-627)DOAJ018512836 (DE-599)DOAJ2b2682e851d14b93bef9b0082ab7ad07 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Zheng Zeng verfasserin aut Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work aimed to assess the water quality of the Tuojiang River Basin in recent years to provide a better understanding of its current pollution situation, and the potential pollution risks and causes. Water quality parameters such as dissolved oxygen (DO), ammonia–nitrogen (NH<sub<3</sub<-N), total phosphorus (TP), the permanganate index (CODMn), five-day biochemical oxygen demand (BOD5), pH, and concentrations of various heavy metals were measured in the Tuojiang River, according to the national standards of the People’s Republic of China. Samples were collected between 2012 to 2018 at 11 national monitoring sites in the Tuojiang River Basin. The overall water pollution situation was evaluated with back propagation artificial neural network (BP-ANN) analysis. The pollution causes were analyzed considering both industrial wastewater discharge in the upper reaches and the current pollution situation. We found potential risks of excessive NH<sub<3</sub<-N, TP, Cd, Hg, and Pb concentrations in the Tuojiang River Basin. Moreover, corresponding water pollution control suggestions were given. Tuojiang River water pollution heavy metal pollution BP-ANN evaluation Environmental effects of industries and plants Renewable energy sources Environmental sciences Wei-Ge Luo verfasserin aut Zhe Wang verfasserin aut Fa-Cheng Yi verfasserin aut In Sustainability MDPI AG, 2009 13(2021), 2, p 792 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:13 year:2021 number:2, p 792 https://doi.org/10.3390/su13020792 kostenfrei https://doaj.org/article/2b2682e851d14b93bef9b0082ab7ad07 kostenfrei https://www.mdpi.com/2071-1050/13/2/792 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 2, p 792 |
language |
English |
source |
In Sustainability 13(2021), 2, p 792 volume:13 year:2021 number:2, p 792 |
sourceStr |
In Sustainability 13(2021), 2, p 792 volume:13 year:2021 number:2, p 792 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Tuojiang River water pollution heavy metal pollution BP-ANN evaluation Environmental effects of industries and plants Renewable energy sources Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Sustainability |
authorswithroles_txt_mv |
Zheng Zeng @@aut@@ Wei-Ge Luo @@aut@@ Zhe Wang @@aut@@ Fa-Cheng Yi @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
610604120 |
id |
DOAJ018512836 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018512836</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414075501.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su13020792</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018512836</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2b2682e851d14b93bef9b0082ab7ad07</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zheng Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work aimed to assess the water quality of the Tuojiang River Basin in recent years to provide a better understanding of its current pollution situation, and the potential pollution risks and causes. Water quality parameters such as dissolved oxygen (DO), ammonia–nitrogen (NH<sub<3</sub<-N), total phosphorus (TP), the permanganate index (CODMn), five-day biochemical oxygen demand (BOD5), pH, and concentrations of various heavy metals were measured in the Tuojiang River, according to the national standards of the People’s Republic of China. Samples were collected between 2012 to 2018 at 11 national monitoring sites in the Tuojiang River Basin. The overall water pollution situation was evaluated with back propagation artificial neural network (BP-ANN) analysis. The pollution causes were analyzed considering both industrial wastewater discharge in the upper reaches and the current pollution situation. We found potential risks of excessive NH<sub<3</sub<-N, TP, Cd, Hg, and Pb concentrations in the Tuojiang River Basin. Moreover, corresponding water pollution control suggestions were given.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tuojiang River</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water pollution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heavy metal pollution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BP-ANN evaluation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei-Ge Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhe Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fa-Cheng Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2021), 2, p 792</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2, p 792</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su13020792</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2b2682e851d14b93bef9b0082ab7ad07</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/13/2/792</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">2, p 792</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Zheng Zeng |
spellingShingle |
Zheng Zeng misc TD194-195 misc TJ807-830 misc GE1-350 misc Tuojiang River misc water pollution misc heavy metal pollution misc BP-ANN evaluation misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis |
authorStr |
Zheng Zeng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604120 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD194-195 |
illustrated |
Not Illustrated |
issn |
20711050 |
topic_title |
TD194-195 TJ807-830 GE1-350 Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis Tuojiang River water pollution heavy metal pollution BP-ANN evaluation |
topic |
misc TD194-195 misc TJ807-830 misc GE1-350 misc Tuojiang River misc water pollution misc heavy metal pollution misc BP-ANN evaluation misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_unstemmed |
misc TD194-195 misc TJ807-830 misc GE1-350 misc Tuojiang River misc water pollution misc heavy metal pollution misc BP-ANN evaluation misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_browse |
misc TD194-195 misc TJ807-830 misc GE1-350 misc Tuojiang River misc water pollution misc heavy metal pollution misc BP-ANN evaluation misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sustainability |
hierarchy_parent_id |
610604120 |
hierarchy_top_title |
Sustainability |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604120 (DE-600)2518383-7 |
title |
Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis |
ctrlnum |
(DE-627)DOAJ018512836 (DE-599)DOAJ2b2682e851d14b93bef9b0082ab7ad07 |
title_full |
Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis |
author_sort |
Zheng Zeng |
journal |
Sustainability |
journalStr |
Sustainability |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Zheng Zeng Wei-Ge Luo Zhe Wang Fa-Cheng Yi |
container_volume |
13 |
class |
TD194-195 TJ807-830 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Zheng Zeng |
doi_str_mv |
10.3390/su13020792 |
author2-role |
verfasserin |
title_sort |
water pollution and its causes in the tuojiang river basin, china: an artificial neural network analysis |
callnumber |
TD194-195 |
title_auth |
Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis |
abstract |
This work aimed to assess the water quality of the Tuojiang River Basin in recent years to provide a better understanding of its current pollution situation, and the potential pollution risks and causes. Water quality parameters such as dissolved oxygen (DO), ammonia–nitrogen (NH<sub<3</sub<-N), total phosphorus (TP), the permanganate index (CODMn), five-day biochemical oxygen demand (BOD5), pH, and concentrations of various heavy metals were measured in the Tuojiang River, according to the national standards of the People’s Republic of China. Samples were collected between 2012 to 2018 at 11 national monitoring sites in the Tuojiang River Basin. The overall water pollution situation was evaluated with back propagation artificial neural network (BP-ANN) analysis. The pollution causes were analyzed considering both industrial wastewater discharge in the upper reaches and the current pollution situation. We found potential risks of excessive NH<sub<3</sub<-N, TP, Cd, Hg, and Pb concentrations in the Tuojiang River Basin. Moreover, corresponding water pollution control suggestions were given. |
abstractGer |
This work aimed to assess the water quality of the Tuojiang River Basin in recent years to provide a better understanding of its current pollution situation, and the potential pollution risks and causes. Water quality parameters such as dissolved oxygen (DO), ammonia–nitrogen (NH<sub<3</sub<-N), total phosphorus (TP), the permanganate index (CODMn), five-day biochemical oxygen demand (BOD5), pH, and concentrations of various heavy metals were measured in the Tuojiang River, according to the national standards of the People’s Republic of China. Samples were collected between 2012 to 2018 at 11 national monitoring sites in the Tuojiang River Basin. The overall water pollution situation was evaluated with back propagation artificial neural network (BP-ANN) analysis. The pollution causes were analyzed considering both industrial wastewater discharge in the upper reaches and the current pollution situation. We found potential risks of excessive NH<sub<3</sub<-N, TP, Cd, Hg, and Pb concentrations in the Tuojiang River Basin. Moreover, corresponding water pollution control suggestions were given. |
abstract_unstemmed |
This work aimed to assess the water quality of the Tuojiang River Basin in recent years to provide a better understanding of its current pollution situation, and the potential pollution risks and causes. Water quality parameters such as dissolved oxygen (DO), ammonia–nitrogen (NH<sub<3</sub<-N), total phosphorus (TP), the permanganate index (CODMn), five-day biochemical oxygen demand (BOD5), pH, and concentrations of various heavy metals were measured in the Tuojiang River, according to the national standards of the People’s Republic of China. Samples were collected between 2012 to 2018 at 11 national monitoring sites in the Tuojiang River Basin. The overall water pollution situation was evaluated with back propagation artificial neural network (BP-ANN) analysis. The pollution causes were analyzed considering both industrial wastewater discharge in the upper reaches and the current pollution situation. We found potential risks of excessive NH<sub<3</sub<-N, TP, Cd, Hg, and Pb concentrations in the Tuojiang River Basin. Moreover, corresponding water pollution control suggestions were given. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 792 |
title_short |
Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis |
url |
https://doi.org/10.3390/su13020792 https://doaj.org/article/2b2682e851d14b93bef9b0082ab7ad07 https://www.mdpi.com/2071-1050/13/2/792 https://doaj.org/toc/2071-1050 |
remote_bool |
true |
author2 |
Wei-Ge Luo Zhe Wang Fa-Cheng Yi |
author2Str |
Wei-Ge Luo Zhe Wang Fa-Cheng Yi |
ppnlink |
610604120 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/su13020792 |
callnumber-a |
TD194-195 |
up_date |
2024-07-03T18:20:25.236Z |
_version_ |
1803583042627829760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018512836</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414075501.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su13020792</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018512836</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2b2682e851d14b93bef9b0082ab7ad07</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zheng Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work aimed to assess the water quality of the Tuojiang River Basin in recent years to provide a better understanding of its current pollution situation, and the potential pollution risks and causes. Water quality parameters such as dissolved oxygen (DO), ammonia–nitrogen (NH<sub<3</sub<-N), total phosphorus (TP), the permanganate index (CODMn), five-day biochemical oxygen demand (BOD5), pH, and concentrations of various heavy metals were measured in the Tuojiang River, according to the national standards of the People’s Republic of China. Samples were collected between 2012 to 2018 at 11 national monitoring sites in the Tuojiang River Basin. The overall water pollution situation was evaluated with back propagation artificial neural network (BP-ANN) analysis. The pollution causes were analyzed considering both industrial wastewater discharge in the upper reaches and the current pollution situation. We found potential risks of excessive NH<sub<3</sub<-N, TP, Cd, Hg, and Pb concentrations in the Tuojiang River Basin. Moreover, corresponding water pollution control suggestions were given.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tuojiang River</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water pollution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heavy metal pollution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BP-ANN evaluation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei-Ge Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhe Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fa-Cheng Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2021), 2, p 792</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2, p 792</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su13020792</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2b2682e851d14b93bef9b0082ab7ad07</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/13/2/792</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">2, p 792</subfield></datafield></record></collection>
|
score |
7.402669 |