Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information
Multispectral imaging (MI) provides important information for burned-area mapping. Due to the severe conditions of burned areas and the limitations of sensors, the resolution of collected multispectral images is sometimes very rough, hindering the accurate determination of burned areas. Super-resolu...
Ausführliche Beschreibung
Autor*in: |
Peng Wang [verfasserIn] Rei ZhG [verfasserIn] Gong Zhang [verfasserIn] Benzhou Jin [verfasserIn] Henry Leung [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 11(2019), 22, p 2695 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2019 ; number:22, p 2695 |
Links: |
---|
DOI / URN: |
10.3390/rs11222695 |
---|
Katalog-ID: |
DOAJ018601375 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ018601375 | ||
003 | DE-627 | ||
005 | 20230310101458.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs11222695 |2 doi | |
035 | |a (DE-627)DOAJ018601375 | ||
035 | |a (DE-599)DOAJ99dc36a2fb604c6dbd4104bcd21352f0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Peng Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Multispectral imaging (MI) provides important information for burned-area mapping. Due to the severe conditions of burned areas and the limitations of sensors, the resolution of collected multispectral images is sometimes very rough, hindering the accurate determination of burned areas. Super-resolution mapping (SRM) has been proposed for mapping burned areas in rough images to solve this problem, allowing super-resolution burned-area mapping (SRBAM). However, the existing SRBAM methods do not use sufficiently accurate space information and detailed temperature information. To improve the mapping accuracy of burned areas, an improved SRBAM method utilizing space–temperature information (STI) is proposed here. STI contains two elements, a space element and a temperature element. We utilized the random-walker algorithm (RWA) to characterize the space element, which encompassed accurate object space information, while the temperature element with rich temperature information was derived by calculating the normalized burn ratio (NBR). The two elements were then merged to produce an objective function with space–temperature information. The particle swarm optimization algorithm (PSOA) was employed to handle the objective function and derive the burned-area mapping results. The dataset of the Landsat-8 Operational Land Imager (OLI) from Denali National Park, Alaska, was used for testing and showed that the STI method is superior to the traditional SRBAM method. | ||
650 | 4 | |a multispectral imaging | |
650 | 4 | |a super-resolution burned-area mapping | |
650 | 4 | |a space–temperature information | |
650 | 4 | |a random-walker algorithm | |
650 | 4 | |a normalized burn ratio | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Rei ZhG |e verfasserin |4 aut | |
700 | 0 | |a Gong Zhang |e verfasserin |4 aut | |
700 | 0 | |a Benzhou Jin |e verfasserin |4 aut | |
700 | 0 | |a Henry Leung |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 11(2019), 22, p 2695 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2019 |g number:22, p 2695 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs11222695 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/99dc36a2fb604c6dbd4104bcd21352f0 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/11/22/2695 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2019 |e 22, p 2695 |
author_variant |
p w pw r z rz g z gz b j bj h l hl |
---|---|
matchkey_str |
article:20724292:2019----::utsetaiaeuersltobreaempigaeosae |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.3390/rs11222695 doi (DE-627)DOAJ018601375 (DE-599)DOAJ99dc36a2fb604c6dbd4104bcd21352f0 DE-627 ger DE-627 rakwb eng Peng Wang verfasserin aut Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Multispectral imaging (MI) provides important information for burned-area mapping. Due to the severe conditions of burned areas and the limitations of sensors, the resolution of collected multispectral images is sometimes very rough, hindering the accurate determination of burned areas. Super-resolution mapping (SRM) has been proposed for mapping burned areas in rough images to solve this problem, allowing super-resolution burned-area mapping (SRBAM). However, the existing SRBAM methods do not use sufficiently accurate space information and detailed temperature information. To improve the mapping accuracy of burned areas, an improved SRBAM method utilizing space–temperature information (STI) is proposed here. STI contains two elements, a space element and a temperature element. We utilized the random-walker algorithm (RWA) to characterize the space element, which encompassed accurate object space information, while the temperature element with rich temperature information was derived by calculating the normalized burn ratio (NBR). The two elements were then merged to produce an objective function with space–temperature information. The particle swarm optimization algorithm (PSOA) was employed to handle the objective function and derive the burned-area mapping results. The dataset of the Landsat-8 Operational Land Imager (OLI) from Denali National Park, Alaska, was used for testing and showed that the STI method is superior to the traditional SRBAM method. multispectral imaging super-resolution burned-area mapping space–temperature information random-walker algorithm normalized burn ratio Science Q Rei ZhG verfasserin aut Gong Zhang verfasserin aut Benzhou Jin verfasserin aut Henry Leung verfasserin aut In Remote Sensing MDPI AG, 2009 11(2019), 22, p 2695 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2019 number:22, p 2695 https://doi.org/10.3390/rs11222695 kostenfrei https://doaj.org/article/99dc36a2fb604c6dbd4104bcd21352f0 kostenfrei https://www.mdpi.com/2072-4292/11/22/2695 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 22, p 2695 |
spelling |
10.3390/rs11222695 doi (DE-627)DOAJ018601375 (DE-599)DOAJ99dc36a2fb604c6dbd4104bcd21352f0 DE-627 ger DE-627 rakwb eng Peng Wang verfasserin aut Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Multispectral imaging (MI) provides important information for burned-area mapping. Due to the severe conditions of burned areas and the limitations of sensors, the resolution of collected multispectral images is sometimes very rough, hindering the accurate determination of burned areas. Super-resolution mapping (SRM) has been proposed for mapping burned areas in rough images to solve this problem, allowing super-resolution burned-area mapping (SRBAM). However, the existing SRBAM methods do not use sufficiently accurate space information and detailed temperature information. To improve the mapping accuracy of burned areas, an improved SRBAM method utilizing space–temperature information (STI) is proposed here. STI contains two elements, a space element and a temperature element. We utilized the random-walker algorithm (RWA) to characterize the space element, which encompassed accurate object space information, while the temperature element with rich temperature information was derived by calculating the normalized burn ratio (NBR). The two elements were then merged to produce an objective function with space–temperature information. The particle swarm optimization algorithm (PSOA) was employed to handle the objective function and derive the burned-area mapping results. The dataset of the Landsat-8 Operational Land Imager (OLI) from Denali National Park, Alaska, was used for testing and showed that the STI method is superior to the traditional SRBAM method. multispectral imaging super-resolution burned-area mapping space–temperature information random-walker algorithm normalized burn ratio Science Q Rei ZhG verfasserin aut Gong Zhang verfasserin aut Benzhou Jin verfasserin aut Henry Leung verfasserin aut In Remote Sensing MDPI AG, 2009 11(2019), 22, p 2695 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2019 number:22, p 2695 https://doi.org/10.3390/rs11222695 kostenfrei https://doaj.org/article/99dc36a2fb604c6dbd4104bcd21352f0 kostenfrei https://www.mdpi.com/2072-4292/11/22/2695 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 22, p 2695 |
allfields_unstemmed |
10.3390/rs11222695 doi (DE-627)DOAJ018601375 (DE-599)DOAJ99dc36a2fb604c6dbd4104bcd21352f0 DE-627 ger DE-627 rakwb eng Peng Wang verfasserin aut Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Multispectral imaging (MI) provides important information for burned-area mapping. Due to the severe conditions of burned areas and the limitations of sensors, the resolution of collected multispectral images is sometimes very rough, hindering the accurate determination of burned areas. Super-resolution mapping (SRM) has been proposed for mapping burned areas in rough images to solve this problem, allowing super-resolution burned-area mapping (SRBAM). However, the existing SRBAM methods do not use sufficiently accurate space information and detailed temperature information. To improve the mapping accuracy of burned areas, an improved SRBAM method utilizing space–temperature information (STI) is proposed here. STI contains two elements, a space element and a temperature element. We utilized the random-walker algorithm (RWA) to characterize the space element, which encompassed accurate object space information, while the temperature element with rich temperature information was derived by calculating the normalized burn ratio (NBR). The two elements were then merged to produce an objective function with space–temperature information. The particle swarm optimization algorithm (PSOA) was employed to handle the objective function and derive the burned-area mapping results. The dataset of the Landsat-8 Operational Land Imager (OLI) from Denali National Park, Alaska, was used for testing and showed that the STI method is superior to the traditional SRBAM method. multispectral imaging super-resolution burned-area mapping space–temperature information random-walker algorithm normalized burn ratio Science Q Rei ZhG verfasserin aut Gong Zhang verfasserin aut Benzhou Jin verfasserin aut Henry Leung verfasserin aut In Remote Sensing MDPI AG, 2009 11(2019), 22, p 2695 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2019 number:22, p 2695 https://doi.org/10.3390/rs11222695 kostenfrei https://doaj.org/article/99dc36a2fb604c6dbd4104bcd21352f0 kostenfrei https://www.mdpi.com/2072-4292/11/22/2695 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 22, p 2695 |
allfieldsGer |
10.3390/rs11222695 doi (DE-627)DOAJ018601375 (DE-599)DOAJ99dc36a2fb604c6dbd4104bcd21352f0 DE-627 ger DE-627 rakwb eng Peng Wang verfasserin aut Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Multispectral imaging (MI) provides important information for burned-area mapping. Due to the severe conditions of burned areas and the limitations of sensors, the resolution of collected multispectral images is sometimes very rough, hindering the accurate determination of burned areas. Super-resolution mapping (SRM) has been proposed for mapping burned areas in rough images to solve this problem, allowing super-resolution burned-area mapping (SRBAM). However, the existing SRBAM methods do not use sufficiently accurate space information and detailed temperature information. To improve the mapping accuracy of burned areas, an improved SRBAM method utilizing space–temperature information (STI) is proposed here. STI contains two elements, a space element and a temperature element. We utilized the random-walker algorithm (RWA) to characterize the space element, which encompassed accurate object space information, while the temperature element with rich temperature information was derived by calculating the normalized burn ratio (NBR). The two elements were then merged to produce an objective function with space–temperature information. The particle swarm optimization algorithm (PSOA) was employed to handle the objective function and derive the burned-area mapping results. The dataset of the Landsat-8 Operational Land Imager (OLI) from Denali National Park, Alaska, was used for testing and showed that the STI method is superior to the traditional SRBAM method. multispectral imaging super-resolution burned-area mapping space–temperature information random-walker algorithm normalized burn ratio Science Q Rei ZhG verfasserin aut Gong Zhang verfasserin aut Benzhou Jin verfasserin aut Henry Leung verfasserin aut In Remote Sensing MDPI AG, 2009 11(2019), 22, p 2695 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2019 number:22, p 2695 https://doi.org/10.3390/rs11222695 kostenfrei https://doaj.org/article/99dc36a2fb604c6dbd4104bcd21352f0 kostenfrei https://www.mdpi.com/2072-4292/11/22/2695 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 22, p 2695 |
allfieldsSound |
10.3390/rs11222695 doi (DE-627)DOAJ018601375 (DE-599)DOAJ99dc36a2fb604c6dbd4104bcd21352f0 DE-627 ger DE-627 rakwb eng Peng Wang verfasserin aut Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Multispectral imaging (MI) provides important information for burned-area mapping. Due to the severe conditions of burned areas and the limitations of sensors, the resolution of collected multispectral images is sometimes very rough, hindering the accurate determination of burned areas. Super-resolution mapping (SRM) has been proposed for mapping burned areas in rough images to solve this problem, allowing super-resolution burned-area mapping (SRBAM). However, the existing SRBAM methods do not use sufficiently accurate space information and detailed temperature information. To improve the mapping accuracy of burned areas, an improved SRBAM method utilizing space–temperature information (STI) is proposed here. STI contains two elements, a space element and a temperature element. We utilized the random-walker algorithm (RWA) to characterize the space element, which encompassed accurate object space information, while the temperature element with rich temperature information was derived by calculating the normalized burn ratio (NBR). The two elements were then merged to produce an objective function with space–temperature information. The particle swarm optimization algorithm (PSOA) was employed to handle the objective function and derive the burned-area mapping results. The dataset of the Landsat-8 Operational Land Imager (OLI) from Denali National Park, Alaska, was used for testing and showed that the STI method is superior to the traditional SRBAM method. multispectral imaging super-resolution burned-area mapping space–temperature information random-walker algorithm normalized burn ratio Science Q Rei ZhG verfasserin aut Gong Zhang verfasserin aut Benzhou Jin verfasserin aut Henry Leung verfasserin aut In Remote Sensing MDPI AG, 2009 11(2019), 22, p 2695 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2019 number:22, p 2695 https://doi.org/10.3390/rs11222695 kostenfrei https://doaj.org/article/99dc36a2fb604c6dbd4104bcd21352f0 kostenfrei https://www.mdpi.com/2072-4292/11/22/2695 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 22, p 2695 |
language |
English |
source |
In Remote Sensing 11(2019), 22, p 2695 volume:11 year:2019 number:22, p 2695 |
sourceStr |
In Remote Sensing 11(2019), 22, p 2695 volume:11 year:2019 number:22, p 2695 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
multispectral imaging super-resolution burned-area mapping space–temperature information random-walker algorithm normalized burn ratio Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Peng Wang @@aut@@ Rei ZhG @@aut@@ Gong Zhang @@aut@@ Benzhou Jin @@aut@@ Henry Leung @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ018601375 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018601375</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310101458.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs11222695</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018601375</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ99dc36a2fb604c6dbd4104bcd21352f0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Multispectral imaging (MI) provides important information for burned-area mapping. Due to the severe conditions of burned areas and the limitations of sensors, the resolution of collected multispectral images is sometimes very rough, hindering the accurate determination of burned areas. Super-resolution mapping (SRM) has been proposed for mapping burned areas in rough images to solve this problem, allowing super-resolution burned-area mapping (SRBAM). However, the existing SRBAM methods do not use sufficiently accurate space information and detailed temperature information. To improve the mapping accuracy of burned areas, an improved SRBAM method utilizing space–temperature information (STI) is proposed here. STI contains two elements, a space element and a temperature element. We utilized the random-walker algorithm (RWA) to characterize the space element, which encompassed accurate object space information, while the temperature element with rich temperature information was derived by calculating the normalized burn ratio (NBR). The two elements were then merged to produce an objective function with space–temperature information. The particle swarm optimization algorithm (PSOA) was employed to handle the objective function and derive the burned-area mapping results. The dataset of the Landsat-8 Operational Land Imager (OLI) from Denali National Park, Alaska, was used for testing and showed that the STI method is superior to the traditional SRBAM method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multispectral imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">super-resolution burned-area mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">space–temperature information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random-walker algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">normalized burn ratio</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rei ZhG</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benzhou Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Henry Leung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">11(2019), 22, p 2695</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:22, p 2695</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs11222695</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/99dc36a2fb604c6dbd4104bcd21352f0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/11/22/2695</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2019</subfield><subfield code="e">22, p 2695</subfield></datafield></record></collection>
|
author |
Peng Wang |
spellingShingle |
Peng Wang misc multispectral imaging misc super-resolution burned-area mapping misc space–temperature information misc random-walker algorithm misc normalized burn ratio misc Science misc Q Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information |
authorStr |
Peng Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information multispectral imaging super-resolution burned-area mapping space–temperature information random-walker algorithm normalized burn ratio |
topic |
misc multispectral imaging misc super-resolution burned-area mapping misc space–temperature information misc random-walker algorithm misc normalized burn ratio misc Science misc Q |
topic_unstemmed |
misc multispectral imaging misc super-resolution burned-area mapping misc space–temperature information misc random-walker algorithm misc normalized burn ratio misc Science misc Q |
topic_browse |
misc multispectral imaging misc super-resolution burned-area mapping misc space–temperature information misc random-walker algorithm misc normalized burn ratio misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information |
ctrlnum |
(DE-627)DOAJ018601375 (DE-599)DOAJ99dc36a2fb604c6dbd4104bcd21352f0 |
title_full |
Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information |
author_sort |
Peng Wang |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Peng Wang Rei ZhG Gong Zhang Benzhou Jin Henry Leung |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Peng Wang |
doi_str_mv |
10.3390/rs11222695 |
author2-role |
verfasserin |
title_sort |
multispectral image super-resolution burned-area mapping based on space-temperature information |
title_auth |
Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information |
abstract |
Multispectral imaging (MI) provides important information for burned-area mapping. Due to the severe conditions of burned areas and the limitations of sensors, the resolution of collected multispectral images is sometimes very rough, hindering the accurate determination of burned areas. Super-resolution mapping (SRM) has been proposed for mapping burned areas in rough images to solve this problem, allowing super-resolution burned-area mapping (SRBAM). However, the existing SRBAM methods do not use sufficiently accurate space information and detailed temperature information. To improve the mapping accuracy of burned areas, an improved SRBAM method utilizing space–temperature information (STI) is proposed here. STI contains two elements, a space element and a temperature element. We utilized the random-walker algorithm (RWA) to characterize the space element, which encompassed accurate object space information, while the temperature element with rich temperature information was derived by calculating the normalized burn ratio (NBR). The two elements were then merged to produce an objective function with space–temperature information. The particle swarm optimization algorithm (PSOA) was employed to handle the objective function and derive the burned-area mapping results. The dataset of the Landsat-8 Operational Land Imager (OLI) from Denali National Park, Alaska, was used for testing and showed that the STI method is superior to the traditional SRBAM method. |
abstractGer |
Multispectral imaging (MI) provides important information for burned-area mapping. Due to the severe conditions of burned areas and the limitations of sensors, the resolution of collected multispectral images is sometimes very rough, hindering the accurate determination of burned areas. Super-resolution mapping (SRM) has been proposed for mapping burned areas in rough images to solve this problem, allowing super-resolution burned-area mapping (SRBAM). However, the existing SRBAM methods do not use sufficiently accurate space information and detailed temperature information. To improve the mapping accuracy of burned areas, an improved SRBAM method utilizing space–temperature information (STI) is proposed here. STI contains two elements, a space element and a temperature element. We utilized the random-walker algorithm (RWA) to characterize the space element, which encompassed accurate object space information, while the temperature element with rich temperature information was derived by calculating the normalized burn ratio (NBR). The two elements were then merged to produce an objective function with space–temperature information. The particle swarm optimization algorithm (PSOA) was employed to handle the objective function and derive the burned-area mapping results. The dataset of the Landsat-8 Operational Land Imager (OLI) from Denali National Park, Alaska, was used for testing and showed that the STI method is superior to the traditional SRBAM method. |
abstract_unstemmed |
Multispectral imaging (MI) provides important information for burned-area mapping. Due to the severe conditions of burned areas and the limitations of sensors, the resolution of collected multispectral images is sometimes very rough, hindering the accurate determination of burned areas. Super-resolution mapping (SRM) has been proposed for mapping burned areas in rough images to solve this problem, allowing super-resolution burned-area mapping (SRBAM). However, the existing SRBAM methods do not use sufficiently accurate space information and detailed temperature information. To improve the mapping accuracy of burned areas, an improved SRBAM method utilizing space–temperature information (STI) is proposed here. STI contains two elements, a space element and a temperature element. We utilized the random-walker algorithm (RWA) to characterize the space element, which encompassed accurate object space information, while the temperature element with rich temperature information was derived by calculating the normalized burn ratio (NBR). The two elements were then merged to produce an objective function with space–temperature information. The particle swarm optimization algorithm (PSOA) was employed to handle the objective function and derive the burned-area mapping results. The dataset of the Landsat-8 Operational Land Imager (OLI) from Denali National Park, Alaska, was used for testing and showed that the STI method is superior to the traditional SRBAM method. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
22, p 2695 |
title_short |
Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information |
url |
https://doi.org/10.3390/rs11222695 https://doaj.org/article/99dc36a2fb604c6dbd4104bcd21352f0 https://www.mdpi.com/2072-4292/11/22/2695 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Rei ZhG Gong Zhang Benzhou Jin Henry Leung |
author2Str |
Rei ZhG Gong Zhang Benzhou Jin Henry Leung |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs11222695 |
up_date |
2024-07-03T18:50:50.403Z |
_version_ |
1803584956433170432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018601375</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310101458.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs11222695</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018601375</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ99dc36a2fb604c6dbd4104bcd21352f0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Multispectral imaging (MI) provides important information for burned-area mapping. Due to the severe conditions of burned areas and the limitations of sensors, the resolution of collected multispectral images is sometimes very rough, hindering the accurate determination of burned areas. Super-resolution mapping (SRM) has been proposed for mapping burned areas in rough images to solve this problem, allowing super-resolution burned-area mapping (SRBAM). However, the existing SRBAM methods do not use sufficiently accurate space information and detailed temperature information. To improve the mapping accuracy of burned areas, an improved SRBAM method utilizing space–temperature information (STI) is proposed here. STI contains two elements, a space element and a temperature element. We utilized the random-walker algorithm (RWA) to characterize the space element, which encompassed accurate object space information, while the temperature element with rich temperature information was derived by calculating the normalized burn ratio (NBR). The two elements were then merged to produce an objective function with space–temperature information. The particle swarm optimization algorithm (PSOA) was employed to handle the objective function and derive the burned-area mapping results. The dataset of the Landsat-8 Operational Land Imager (OLI) from Denali National Park, Alaska, was used for testing and showed that the STI method is superior to the traditional SRBAM method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multispectral imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">super-resolution burned-area mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">space–temperature information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random-walker algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">normalized burn ratio</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rei ZhG</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benzhou Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Henry Leung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">11(2019), 22, p 2695</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:22, p 2695</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs11222695</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/99dc36a2fb604c6dbd4104bcd21352f0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/11/22/2695</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2019</subfield><subfield code="e">22, p 2695</subfield></datafield></record></collection>
|
score |
7.402316 |