On the dynamics of systems with one-sided non-integrable constraints
In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also f...
Ausführliche Beschreibung
Autor*in: |
Kozlov Valery V. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Theoretical and Applied Mechanics - Serbian Society of Mechanics & Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, 2017, 46(2019), 1, Seite 14 |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2019 ; number:1 ; pages:14 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.2298/TAM190123005K |
---|
Katalog-ID: |
DOAJ018708099 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ018708099 | ||
003 | DE-627 | ||
005 | 20230310102313.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2298/TAM190123005K |2 doi | |
035 | |a (DE-627)DOAJ018708099 | ||
035 | |a (DE-599)DOAJ3a7114431c614d37bd1bf3b557090aa6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA349-359 | |
100 | 0 | |a Kozlov Valery V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the dynamics of systems with one-sided non-integrable constraints |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also for systems with servoconstraints (according to B/eghin), we present the conditions under which the system leaves two-sided differential constraints. As an example, we consider the Chaplygin sleigh with a one-sided constraint, which is realized by means of an anisotropic force of viscous friction. Variational principles for the determination of motion of systems with one-sided differential constraints are presented. | ||
650 | 4 | |a non-integrable constraints | |
650 | 4 | |a servoconstraints | |
650 | 4 | |a non-holonomic mechanics | |
650 | 4 | |a vakonomic mechanics | |
650 | 4 | |a one-sided constraint | |
650 | 4 | |a unilateral constraint | |
653 | 0 | |a Mechanics of engineering. Applied mechanics | |
773 | 0 | 8 | |i In |t Theoretical and Applied Mechanics |d Serbian Society of Mechanics & Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, 2017 |g 46(2019), 1, Seite 14 |w (DE-627)539001236 |w (DE-600)2381446-9 |x 24060925 |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2019 |g number:1 |g pages:14 |
856 | 4 | 0 | |u https://doi.org/10.2298/TAM190123005K |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3a7114431c614d37bd1bf3b557090aa6 |z kostenfrei |
856 | 4 | 0 | |u http://www.doiserbia.nb.rs/img/doi/1450-5584/2019/1450-55841900005K.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1450-5584 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2406-0925 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 46 |j 2019 |e 1 |h 14 |
author_variant |
k v v kvv |
---|---|
matchkey_str |
article:24060925:2019----::nhdnmcossesihnsddoitg |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TA |
publishDate |
2019 |
allfields |
10.2298/TAM190123005K doi (DE-627)DOAJ018708099 (DE-599)DOAJ3a7114431c614d37bd1bf3b557090aa6 DE-627 ger DE-627 rakwb eng TA349-359 Kozlov Valery V. verfasserin aut On the dynamics of systems with one-sided non-integrable constraints 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also for systems with servoconstraints (according to B/eghin), we present the conditions under which the system leaves two-sided differential constraints. As an example, we consider the Chaplygin sleigh with a one-sided constraint, which is realized by means of an anisotropic force of viscous friction. Variational principles for the determination of motion of systems with one-sided differential constraints are presented. non-integrable constraints servoconstraints non-holonomic mechanics vakonomic mechanics one-sided constraint unilateral constraint Mechanics of engineering. Applied mechanics In Theoretical and Applied Mechanics Serbian Society of Mechanics & Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, 2017 46(2019), 1, Seite 14 (DE-627)539001236 (DE-600)2381446-9 24060925 nnns volume:46 year:2019 number:1 pages:14 https://doi.org/10.2298/TAM190123005K kostenfrei https://doaj.org/article/3a7114431c614d37bd1bf3b557090aa6 kostenfrei http://www.doiserbia.nb.rs/img/doi/1450-5584/2019/1450-55841900005K.pdf kostenfrei https://doaj.org/toc/1450-5584 Journal toc kostenfrei https://doaj.org/toc/2406-0925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 46 2019 1 14 |
spelling |
10.2298/TAM190123005K doi (DE-627)DOAJ018708099 (DE-599)DOAJ3a7114431c614d37bd1bf3b557090aa6 DE-627 ger DE-627 rakwb eng TA349-359 Kozlov Valery V. verfasserin aut On the dynamics of systems with one-sided non-integrable constraints 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also for systems with servoconstraints (according to B/eghin), we present the conditions under which the system leaves two-sided differential constraints. As an example, we consider the Chaplygin sleigh with a one-sided constraint, which is realized by means of an anisotropic force of viscous friction. Variational principles for the determination of motion of systems with one-sided differential constraints are presented. non-integrable constraints servoconstraints non-holonomic mechanics vakonomic mechanics one-sided constraint unilateral constraint Mechanics of engineering. Applied mechanics In Theoretical and Applied Mechanics Serbian Society of Mechanics & Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, 2017 46(2019), 1, Seite 14 (DE-627)539001236 (DE-600)2381446-9 24060925 nnns volume:46 year:2019 number:1 pages:14 https://doi.org/10.2298/TAM190123005K kostenfrei https://doaj.org/article/3a7114431c614d37bd1bf3b557090aa6 kostenfrei http://www.doiserbia.nb.rs/img/doi/1450-5584/2019/1450-55841900005K.pdf kostenfrei https://doaj.org/toc/1450-5584 Journal toc kostenfrei https://doaj.org/toc/2406-0925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 46 2019 1 14 |
allfields_unstemmed |
10.2298/TAM190123005K doi (DE-627)DOAJ018708099 (DE-599)DOAJ3a7114431c614d37bd1bf3b557090aa6 DE-627 ger DE-627 rakwb eng TA349-359 Kozlov Valery V. verfasserin aut On the dynamics of systems with one-sided non-integrable constraints 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also for systems with servoconstraints (according to B/eghin), we present the conditions under which the system leaves two-sided differential constraints. As an example, we consider the Chaplygin sleigh with a one-sided constraint, which is realized by means of an anisotropic force of viscous friction. Variational principles for the determination of motion of systems with one-sided differential constraints are presented. non-integrable constraints servoconstraints non-holonomic mechanics vakonomic mechanics one-sided constraint unilateral constraint Mechanics of engineering. Applied mechanics In Theoretical and Applied Mechanics Serbian Society of Mechanics & Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, 2017 46(2019), 1, Seite 14 (DE-627)539001236 (DE-600)2381446-9 24060925 nnns volume:46 year:2019 number:1 pages:14 https://doi.org/10.2298/TAM190123005K kostenfrei https://doaj.org/article/3a7114431c614d37bd1bf3b557090aa6 kostenfrei http://www.doiserbia.nb.rs/img/doi/1450-5584/2019/1450-55841900005K.pdf kostenfrei https://doaj.org/toc/1450-5584 Journal toc kostenfrei https://doaj.org/toc/2406-0925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 46 2019 1 14 |
allfieldsGer |
10.2298/TAM190123005K doi (DE-627)DOAJ018708099 (DE-599)DOAJ3a7114431c614d37bd1bf3b557090aa6 DE-627 ger DE-627 rakwb eng TA349-359 Kozlov Valery V. verfasserin aut On the dynamics of systems with one-sided non-integrable constraints 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also for systems with servoconstraints (according to B/eghin), we present the conditions under which the system leaves two-sided differential constraints. As an example, we consider the Chaplygin sleigh with a one-sided constraint, which is realized by means of an anisotropic force of viscous friction. Variational principles for the determination of motion of systems with one-sided differential constraints are presented. non-integrable constraints servoconstraints non-holonomic mechanics vakonomic mechanics one-sided constraint unilateral constraint Mechanics of engineering. Applied mechanics In Theoretical and Applied Mechanics Serbian Society of Mechanics & Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, 2017 46(2019), 1, Seite 14 (DE-627)539001236 (DE-600)2381446-9 24060925 nnns volume:46 year:2019 number:1 pages:14 https://doi.org/10.2298/TAM190123005K kostenfrei https://doaj.org/article/3a7114431c614d37bd1bf3b557090aa6 kostenfrei http://www.doiserbia.nb.rs/img/doi/1450-5584/2019/1450-55841900005K.pdf kostenfrei https://doaj.org/toc/1450-5584 Journal toc kostenfrei https://doaj.org/toc/2406-0925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 46 2019 1 14 |
allfieldsSound |
10.2298/TAM190123005K doi (DE-627)DOAJ018708099 (DE-599)DOAJ3a7114431c614d37bd1bf3b557090aa6 DE-627 ger DE-627 rakwb eng TA349-359 Kozlov Valery V. verfasserin aut On the dynamics of systems with one-sided non-integrable constraints 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also for systems with servoconstraints (according to B/eghin), we present the conditions under which the system leaves two-sided differential constraints. As an example, we consider the Chaplygin sleigh with a one-sided constraint, which is realized by means of an anisotropic force of viscous friction. Variational principles for the determination of motion of systems with one-sided differential constraints are presented. non-integrable constraints servoconstraints non-holonomic mechanics vakonomic mechanics one-sided constraint unilateral constraint Mechanics of engineering. Applied mechanics In Theoretical and Applied Mechanics Serbian Society of Mechanics & Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, 2017 46(2019), 1, Seite 14 (DE-627)539001236 (DE-600)2381446-9 24060925 nnns volume:46 year:2019 number:1 pages:14 https://doi.org/10.2298/TAM190123005K kostenfrei https://doaj.org/article/3a7114431c614d37bd1bf3b557090aa6 kostenfrei http://www.doiserbia.nb.rs/img/doi/1450-5584/2019/1450-55841900005K.pdf kostenfrei https://doaj.org/toc/1450-5584 Journal toc kostenfrei https://doaj.org/toc/2406-0925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 46 2019 1 14 |
language |
English |
source |
In Theoretical and Applied Mechanics 46(2019), 1, Seite 14 volume:46 year:2019 number:1 pages:14 |
sourceStr |
In Theoretical and Applied Mechanics 46(2019), 1, Seite 14 volume:46 year:2019 number:1 pages:14 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
non-integrable constraints servoconstraints non-holonomic mechanics vakonomic mechanics one-sided constraint unilateral constraint Mechanics of engineering. Applied mechanics |
isfreeaccess_bool |
true |
container_title |
Theoretical and Applied Mechanics |
authorswithroles_txt_mv |
Kozlov Valery V. @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
539001236 |
id |
DOAJ018708099 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018708099</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310102313.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2298/TAM190123005K</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018708099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3a7114431c614d37bd1bf3b557090aa6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA349-359</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kozlov Valery V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the dynamics of systems with one-sided non-integrable constraints</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also for systems with servoconstraints (according to B/eghin), we present the conditions under which the system leaves two-sided differential constraints. As an example, we consider the Chaplygin sleigh with a one-sided constraint, which is realized by means of an anisotropic force of viscous friction. Variational principles for the determination of motion of systems with one-sided differential constraints are presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-integrable constraints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">servoconstraints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-holonomic mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vakonomic mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">one-sided constraint</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unilateral constraint</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanics of engineering. Applied mechanics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Theoretical and Applied Mechanics</subfield><subfield code="d">Serbian Society of Mechanics & Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, 2017</subfield><subfield code="g">46(2019), 1, Seite 14</subfield><subfield code="w">(DE-627)539001236</subfield><subfield code="w">(DE-600)2381446-9</subfield><subfield code="x">24060925</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2298/TAM190123005K</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3a7114431c614d37bd1bf3b557090aa6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.doiserbia.nb.rs/img/doi/1450-5584/2019/1450-55841900005K.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1450-5584</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2406-0925</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">14</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Kozlov Valery V. |
spellingShingle |
Kozlov Valery V. misc TA349-359 misc non-integrable constraints misc servoconstraints misc non-holonomic mechanics misc vakonomic mechanics misc one-sided constraint misc unilateral constraint misc Mechanics of engineering. Applied mechanics On the dynamics of systems with one-sided non-integrable constraints |
authorStr |
Kozlov Valery V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)539001236 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA349-359 |
illustrated |
Not Illustrated |
issn |
24060925 |
topic_title |
TA349-359 On the dynamics of systems with one-sided non-integrable constraints non-integrable constraints servoconstraints non-holonomic mechanics vakonomic mechanics one-sided constraint unilateral constraint |
topic |
misc TA349-359 misc non-integrable constraints misc servoconstraints misc non-holonomic mechanics misc vakonomic mechanics misc one-sided constraint misc unilateral constraint misc Mechanics of engineering. Applied mechanics |
topic_unstemmed |
misc TA349-359 misc non-integrable constraints misc servoconstraints misc non-holonomic mechanics misc vakonomic mechanics misc one-sided constraint misc unilateral constraint misc Mechanics of engineering. Applied mechanics |
topic_browse |
misc TA349-359 misc non-integrable constraints misc servoconstraints misc non-holonomic mechanics misc vakonomic mechanics misc one-sided constraint misc unilateral constraint misc Mechanics of engineering. Applied mechanics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Theoretical and Applied Mechanics |
hierarchy_parent_id |
539001236 |
hierarchy_top_title |
Theoretical and Applied Mechanics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)539001236 (DE-600)2381446-9 |
title |
On the dynamics of systems with one-sided non-integrable constraints |
ctrlnum |
(DE-627)DOAJ018708099 (DE-599)DOAJ3a7114431c614d37bd1bf3b557090aa6 |
title_full |
On the dynamics of systems with one-sided non-integrable constraints |
author_sort |
Kozlov Valery V. |
journal |
Theoretical and Applied Mechanics |
journalStr |
Theoretical and Applied Mechanics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
14 |
author_browse |
Kozlov Valery V. |
container_volume |
46 |
class |
TA349-359 |
format_se |
Elektronische Aufsätze |
author-letter |
Kozlov Valery V. |
doi_str_mv |
10.2298/TAM190123005K |
title_sort |
on the dynamics of systems with one-sided non-integrable constraints |
callnumber |
TA349-359 |
title_auth |
On the dynamics of systems with one-sided non-integrable constraints |
abstract |
In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also for systems with servoconstraints (according to B/eghin), we present the conditions under which the system leaves two-sided differential constraints. As an example, we consider the Chaplygin sleigh with a one-sided constraint, which is realized by means of an anisotropic force of viscous friction. Variational principles for the determination of motion of systems with one-sided differential constraints are presented. |
abstractGer |
In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also for systems with servoconstraints (according to B/eghin), we present the conditions under which the system leaves two-sided differential constraints. As an example, we consider the Chaplygin sleigh with a one-sided constraint, which is realized by means of an anisotropic force of viscous friction. Variational principles for the determination of motion of systems with one-sided differential constraints are presented. |
abstract_unstemmed |
In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also for systems with servoconstraints (according to B/eghin), we present the conditions under which the system leaves two-sided differential constraints. As an example, we consider the Chaplygin sleigh with a one-sided constraint, which is realized by means of an anisotropic force of viscous friction. Variational principles for the determination of motion of systems with one-sided differential constraints are presented. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
On the dynamics of systems with one-sided non-integrable constraints |
url |
https://doi.org/10.2298/TAM190123005K https://doaj.org/article/3a7114431c614d37bd1bf3b557090aa6 http://www.doiserbia.nb.rs/img/doi/1450-5584/2019/1450-55841900005K.pdf https://doaj.org/toc/1450-5584 https://doaj.org/toc/2406-0925 |
remote_bool |
true |
ppnlink |
539001236 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2298/TAM190123005K |
callnumber-a |
TA349-359 |
up_date |
2024-07-03T19:27:56.487Z |
_version_ |
1803587290650378241 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018708099</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310102313.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2298/TAM190123005K</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018708099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3a7114431c614d37bd1bf3b557090aa6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA349-359</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kozlov Valery V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the dynamics of systems with one-sided non-integrable constraints</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also for systems with servoconstraints (according to B/eghin), we present the conditions under which the system leaves two-sided differential constraints. As an example, we consider the Chaplygin sleigh with a one-sided constraint, which is realized by means of an anisotropic force of viscous friction. Variational principles for the determination of motion of systems with one-sided differential constraints are presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-integrable constraints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">servoconstraints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-holonomic mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vakonomic mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">one-sided constraint</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unilateral constraint</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanics of engineering. Applied mechanics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Theoretical and Applied Mechanics</subfield><subfield code="d">Serbian Society of Mechanics & Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, 2017</subfield><subfield code="g">46(2019), 1, Seite 14</subfield><subfield code="w">(DE-627)539001236</subfield><subfield code="w">(DE-600)2381446-9</subfield><subfield code="x">24060925</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2298/TAM190123005K</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3a7114431c614d37bd1bf3b557090aa6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.doiserbia.nb.rs/img/doi/1450-5584/2019/1450-55841900005K.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1450-5584</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2406-0925</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">14</subfield></datafield></record></collection>
|
score |
7.402667 |