Credibility of Causal Estimates from Regression Discontinuity Designs with Multiple Assignment Variables
In this paper, we determine treatment effects when the treatment assignment is based on two or more cut-off points of covariates rather than on one cut-off point of one assignment variable. using methods that are referred to as multivariate regression discontinuity designs (MRDD). One major finding...
Ausführliche Beschreibung
Autor*in: |
Albert Whata [verfasserIn] Charles Chimedza [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
multivariate regression discontinuity designs |
---|
Übergeordnetes Werk: |
In: Stats - MDPI AG, 2020, 4(2021), 4, Seite 893-915 |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2021 ; number:4 ; pages:893-915 |
Links: |
---|
DOI / URN: |
10.3390/stats4040052 |
---|
Katalog-ID: |
DOAJ018777139 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ018777139 | ||
003 | DE-627 | ||
005 | 20240414222236.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/stats4040052 |2 doi | |
035 | |a (DE-627)DOAJ018777139 | ||
035 | |a (DE-599)DOAJbd17345632924162a05a8c856763fa93 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a HA1-4737 | |
100 | 0 | |a Albert Whata |e verfasserin |4 aut | |
245 | 1 | 0 | |a Credibility of Causal Estimates from Regression Discontinuity Designs with Multiple Assignment Variables |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, we determine treatment effects when the treatment assignment is based on two or more cut-off points of covariates rather than on one cut-off point of one assignment variable. using methods that are referred to as multivariate regression discontinuity designs (MRDD). One major finding of this paper is the discovery of new evidence that both matric points and household income have a huge impact on the probability of eligibility for funding from the National Student Financial Aid Scheme (NSFAS) to study for a bachelor’s degree program at universities in South Africa. This evidence will inform policymakers and educational practitioners on the effects of matric points and household income on the eligibility for NSFAS funding. The availability of the NSFAS grant impacts greatly students’ decisions to attend university or seek other opportunities elsewhere. Using the frontier MRDD analytical results, barely scoring matric points greater than or equal to 25 points compared to scoring matric points less than 25 for students whose household income is less than R350,000 (≈US$2500) increases the probability of eligibility for NSFAS funding by a significant 3.75 ( <i<p</i<-value = 0.0001 < 0.05) percentage points. Therefore, we have shown that the frontier MRDD can be employed to determine the causal effects of barely meeting the requirements of one assignment variable, among the subjects that either meet or fail to meet the requirements of the other assignment variable. | ||
650 | 4 | |a multivariate regression discontinuity designs | |
650 | 4 | |a frontier regression discontinuity | |
650 | 4 | |a supplementary analyses | |
650 | 4 | |a credibility | |
653 | 0 | |a Statistics | |
700 | 0 | |a Charles Chimedza |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Stats |d MDPI AG, 2020 |g 4(2021), 4, Seite 893-915 |w (DE-627)1025564405 |x 2571905X |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2021 |g number:4 |g pages:893-915 |
856 | 4 | 0 | |u https://doi.org/10.3390/stats4040052 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/bd17345632924162a05a8c856763fa93 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2571-905X/4/4/52 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2571-905X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2021 |e 4 |h 893-915 |
author_variant |
a w aw c c cc |
---|---|
matchkey_str |
article:2571905X:2021----::rdbltocuaetmtsrmersinicniutdsgsihu |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
HA |
publishDate |
2021 |
allfields |
10.3390/stats4040052 doi (DE-627)DOAJ018777139 (DE-599)DOAJbd17345632924162a05a8c856763fa93 DE-627 ger DE-627 rakwb eng HA1-4737 Albert Whata verfasserin aut Credibility of Causal Estimates from Regression Discontinuity Designs with Multiple Assignment Variables 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we determine treatment effects when the treatment assignment is based on two or more cut-off points of covariates rather than on one cut-off point of one assignment variable. using methods that are referred to as multivariate regression discontinuity designs (MRDD). One major finding of this paper is the discovery of new evidence that both matric points and household income have a huge impact on the probability of eligibility for funding from the National Student Financial Aid Scheme (NSFAS) to study for a bachelor’s degree program at universities in South Africa. This evidence will inform policymakers and educational practitioners on the effects of matric points and household income on the eligibility for NSFAS funding. The availability of the NSFAS grant impacts greatly students’ decisions to attend university or seek other opportunities elsewhere. Using the frontier MRDD analytical results, barely scoring matric points greater than or equal to 25 points compared to scoring matric points less than 25 for students whose household income is less than R350,000 (≈US$2500) increases the probability of eligibility for NSFAS funding by a significant 3.75 ( <i<p</i<-value = 0.0001 < 0.05) percentage points. Therefore, we have shown that the frontier MRDD can be employed to determine the causal effects of barely meeting the requirements of one assignment variable, among the subjects that either meet or fail to meet the requirements of the other assignment variable. multivariate regression discontinuity designs frontier regression discontinuity supplementary analyses credibility Statistics Charles Chimedza verfasserin aut In Stats MDPI AG, 2020 4(2021), 4, Seite 893-915 (DE-627)1025564405 2571905X nnns volume:4 year:2021 number:4 pages:893-915 https://doi.org/10.3390/stats4040052 kostenfrei https://doaj.org/article/bd17345632924162a05a8c856763fa93 kostenfrei https://www.mdpi.com/2571-905X/4/4/52 kostenfrei https://doaj.org/toc/2571-905X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 4 893-915 |
spelling |
10.3390/stats4040052 doi (DE-627)DOAJ018777139 (DE-599)DOAJbd17345632924162a05a8c856763fa93 DE-627 ger DE-627 rakwb eng HA1-4737 Albert Whata verfasserin aut Credibility of Causal Estimates from Regression Discontinuity Designs with Multiple Assignment Variables 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we determine treatment effects when the treatment assignment is based on two or more cut-off points of covariates rather than on one cut-off point of one assignment variable. using methods that are referred to as multivariate regression discontinuity designs (MRDD). One major finding of this paper is the discovery of new evidence that both matric points and household income have a huge impact on the probability of eligibility for funding from the National Student Financial Aid Scheme (NSFAS) to study for a bachelor’s degree program at universities in South Africa. This evidence will inform policymakers and educational practitioners on the effects of matric points and household income on the eligibility for NSFAS funding. The availability of the NSFAS grant impacts greatly students’ decisions to attend university or seek other opportunities elsewhere. Using the frontier MRDD analytical results, barely scoring matric points greater than or equal to 25 points compared to scoring matric points less than 25 for students whose household income is less than R350,000 (≈US$2500) increases the probability of eligibility for NSFAS funding by a significant 3.75 ( <i<p</i<-value = 0.0001 < 0.05) percentage points. Therefore, we have shown that the frontier MRDD can be employed to determine the causal effects of barely meeting the requirements of one assignment variable, among the subjects that either meet or fail to meet the requirements of the other assignment variable. multivariate regression discontinuity designs frontier regression discontinuity supplementary analyses credibility Statistics Charles Chimedza verfasserin aut In Stats MDPI AG, 2020 4(2021), 4, Seite 893-915 (DE-627)1025564405 2571905X nnns volume:4 year:2021 number:4 pages:893-915 https://doi.org/10.3390/stats4040052 kostenfrei https://doaj.org/article/bd17345632924162a05a8c856763fa93 kostenfrei https://www.mdpi.com/2571-905X/4/4/52 kostenfrei https://doaj.org/toc/2571-905X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 4 893-915 |
allfields_unstemmed |
10.3390/stats4040052 doi (DE-627)DOAJ018777139 (DE-599)DOAJbd17345632924162a05a8c856763fa93 DE-627 ger DE-627 rakwb eng HA1-4737 Albert Whata verfasserin aut Credibility of Causal Estimates from Regression Discontinuity Designs with Multiple Assignment Variables 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we determine treatment effects when the treatment assignment is based on two or more cut-off points of covariates rather than on one cut-off point of one assignment variable. using methods that are referred to as multivariate regression discontinuity designs (MRDD). One major finding of this paper is the discovery of new evidence that both matric points and household income have a huge impact on the probability of eligibility for funding from the National Student Financial Aid Scheme (NSFAS) to study for a bachelor’s degree program at universities in South Africa. This evidence will inform policymakers and educational practitioners on the effects of matric points and household income on the eligibility for NSFAS funding. The availability of the NSFAS grant impacts greatly students’ decisions to attend university or seek other opportunities elsewhere. Using the frontier MRDD analytical results, barely scoring matric points greater than or equal to 25 points compared to scoring matric points less than 25 for students whose household income is less than R350,000 (≈US$2500) increases the probability of eligibility for NSFAS funding by a significant 3.75 ( <i<p</i<-value = 0.0001 < 0.05) percentage points. Therefore, we have shown that the frontier MRDD can be employed to determine the causal effects of barely meeting the requirements of one assignment variable, among the subjects that either meet or fail to meet the requirements of the other assignment variable. multivariate regression discontinuity designs frontier regression discontinuity supplementary analyses credibility Statistics Charles Chimedza verfasserin aut In Stats MDPI AG, 2020 4(2021), 4, Seite 893-915 (DE-627)1025564405 2571905X nnns volume:4 year:2021 number:4 pages:893-915 https://doi.org/10.3390/stats4040052 kostenfrei https://doaj.org/article/bd17345632924162a05a8c856763fa93 kostenfrei https://www.mdpi.com/2571-905X/4/4/52 kostenfrei https://doaj.org/toc/2571-905X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 4 893-915 |
allfieldsGer |
10.3390/stats4040052 doi (DE-627)DOAJ018777139 (DE-599)DOAJbd17345632924162a05a8c856763fa93 DE-627 ger DE-627 rakwb eng HA1-4737 Albert Whata verfasserin aut Credibility of Causal Estimates from Regression Discontinuity Designs with Multiple Assignment Variables 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we determine treatment effects when the treatment assignment is based on two or more cut-off points of covariates rather than on one cut-off point of one assignment variable. using methods that are referred to as multivariate regression discontinuity designs (MRDD). One major finding of this paper is the discovery of new evidence that both matric points and household income have a huge impact on the probability of eligibility for funding from the National Student Financial Aid Scheme (NSFAS) to study for a bachelor’s degree program at universities in South Africa. This evidence will inform policymakers and educational practitioners on the effects of matric points and household income on the eligibility for NSFAS funding. The availability of the NSFAS grant impacts greatly students’ decisions to attend university or seek other opportunities elsewhere. Using the frontier MRDD analytical results, barely scoring matric points greater than or equal to 25 points compared to scoring matric points less than 25 for students whose household income is less than R350,000 (≈US$2500) increases the probability of eligibility for NSFAS funding by a significant 3.75 ( <i<p</i<-value = 0.0001 < 0.05) percentage points. Therefore, we have shown that the frontier MRDD can be employed to determine the causal effects of barely meeting the requirements of one assignment variable, among the subjects that either meet or fail to meet the requirements of the other assignment variable. multivariate regression discontinuity designs frontier regression discontinuity supplementary analyses credibility Statistics Charles Chimedza verfasserin aut In Stats MDPI AG, 2020 4(2021), 4, Seite 893-915 (DE-627)1025564405 2571905X nnns volume:4 year:2021 number:4 pages:893-915 https://doi.org/10.3390/stats4040052 kostenfrei https://doaj.org/article/bd17345632924162a05a8c856763fa93 kostenfrei https://www.mdpi.com/2571-905X/4/4/52 kostenfrei https://doaj.org/toc/2571-905X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 4 893-915 |
allfieldsSound |
10.3390/stats4040052 doi (DE-627)DOAJ018777139 (DE-599)DOAJbd17345632924162a05a8c856763fa93 DE-627 ger DE-627 rakwb eng HA1-4737 Albert Whata verfasserin aut Credibility of Causal Estimates from Regression Discontinuity Designs with Multiple Assignment Variables 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we determine treatment effects when the treatment assignment is based on two or more cut-off points of covariates rather than on one cut-off point of one assignment variable. using methods that are referred to as multivariate regression discontinuity designs (MRDD). One major finding of this paper is the discovery of new evidence that both matric points and household income have a huge impact on the probability of eligibility for funding from the National Student Financial Aid Scheme (NSFAS) to study for a bachelor’s degree program at universities in South Africa. This evidence will inform policymakers and educational practitioners on the effects of matric points and household income on the eligibility for NSFAS funding. The availability of the NSFAS grant impacts greatly students’ decisions to attend university or seek other opportunities elsewhere. Using the frontier MRDD analytical results, barely scoring matric points greater than or equal to 25 points compared to scoring matric points less than 25 for students whose household income is less than R350,000 (≈US$2500) increases the probability of eligibility for NSFAS funding by a significant 3.75 ( <i<p</i<-value = 0.0001 < 0.05) percentage points. Therefore, we have shown that the frontier MRDD can be employed to determine the causal effects of barely meeting the requirements of one assignment variable, among the subjects that either meet or fail to meet the requirements of the other assignment variable. multivariate regression discontinuity designs frontier regression discontinuity supplementary analyses credibility Statistics Charles Chimedza verfasserin aut In Stats MDPI AG, 2020 4(2021), 4, Seite 893-915 (DE-627)1025564405 2571905X nnns volume:4 year:2021 number:4 pages:893-915 https://doi.org/10.3390/stats4040052 kostenfrei https://doaj.org/article/bd17345632924162a05a8c856763fa93 kostenfrei https://www.mdpi.com/2571-905X/4/4/52 kostenfrei https://doaj.org/toc/2571-905X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 4 893-915 |
language |
English |
source |
In Stats 4(2021), 4, Seite 893-915 volume:4 year:2021 number:4 pages:893-915 |
sourceStr |
In Stats 4(2021), 4, Seite 893-915 volume:4 year:2021 number:4 pages:893-915 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
multivariate regression discontinuity designs frontier regression discontinuity supplementary analyses credibility Statistics |
isfreeaccess_bool |
true |
container_title |
Stats |
authorswithroles_txt_mv |
Albert Whata @@aut@@ Charles Chimedza @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1025564405 |
id |
DOAJ018777139 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018777139</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414222236.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/stats4040052</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018777139</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbd17345632924162a05a8c856763fa93</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HA1-4737</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Albert Whata</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Credibility of Causal Estimates from Regression Discontinuity Designs with Multiple Assignment Variables</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we determine treatment effects when the treatment assignment is based on two or more cut-off points of covariates rather than on one cut-off point of one assignment variable. using methods that are referred to as multivariate regression discontinuity designs (MRDD). One major finding of this paper is the discovery of new evidence that both matric points and household income have a huge impact on the probability of eligibility for funding from the National Student Financial Aid Scheme (NSFAS) to study for a bachelor’s degree program at universities in South Africa. This evidence will inform policymakers and educational practitioners on the effects of matric points and household income on the eligibility for NSFAS funding. The availability of the NSFAS grant impacts greatly students’ decisions to attend university or seek other opportunities elsewhere. Using the frontier MRDD analytical results, barely scoring matric points greater than or equal to 25 points compared to scoring matric points less than 25 for students whose household income is less than R350,000 (≈US$2500) increases the probability of eligibility for NSFAS funding by a significant 3.75 ( <i<p</i<-value = 0.0001 < 0.05) percentage points. Therefore, we have shown that the frontier MRDD can be employed to determine the causal effects of barely meeting the requirements of one assignment variable, among the subjects that either meet or fail to meet the requirements of the other assignment variable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multivariate regression discontinuity designs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frontier regression discontinuity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">supplementary analyses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">credibility</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Statistics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charles Chimedza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Stats</subfield><subfield code="d">MDPI AG, 2020</subfield><subfield code="g">4(2021), 4, Seite 893-915</subfield><subfield code="w">(DE-627)1025564405</subfield><subfield code="x">2571905X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:893-915</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/stats4040052</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bd17345632924162a05a8c856763fa93</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2571-905X/4/4/52</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2571-905X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="h">893-915</subfield></datafield></record></collection>
|
callnumber-first |
H - Social Science |
author |
Albert Whata |
spellingShingle |
Albert Whata misc HA1-4737 misc multivariate regression discontinuity designs misc frontier regression discontinuity misc supplementary analyses misc credibility misc Statistics Credibility of Causal Estimates from Regression Discontinuity Designs with Multiple Assignment Variables |
authorStr |
Albert Whata |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1025564405 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
HA1-4737 |
illustrated |
Not Illustrated |
issn |
2571905X |
topic_title |
HA1-4737 Credibility of Causal Estimates from Regression Discontinuity Designs with Multiple Assignment Variables multivariate regression discontinuity designs frontier regression discontinuity supplementary analyses credibility |
topic |
misc HA1-4737 misc multivariate regression discontinuity designs misc frontier regression discontinuity misc supplementary analyses misc credibility misc Statistics |
topic_unstemmed |
misc HA1-4737 misc multivariate regression discontinuity designs misc frontier regression discontinuity misc supplementary analyses misc credibility misc Statistics |
topic_browse |
misc HA1-4737 misc multivariate regression discontinuity designs misc frontier regression discontinuity misc supplementary analyses misc credibility misc Statistics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Stats |
hierarchy_parent_id |
1025564405 |
hierarchy_top_title |
Stats |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1025564405 |
title |
Credibility of Causal Estimates from Regression Discontinuity Designs with Multiple Assignment Variables |
ctrlnum |
(DE-627)DOAJ018777139 (DE-599)DOAJbd17345632924162a05a8c856763fa93 |
title_full |
Credibility of Causal Estimates from Regression Discontinuity Designs with Multiple Assignment Variables |
author_sort |
Albert Whata |
journal |
Stats |
journalStr |
Stats |
callnumber-first-code |
H |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
893 |
author_browse |
Albert Whata Charles Chimedza |
container_volume |
4 |
class |
HA1-4737 |
format_se |
Elektronische Aufsätze |
author-letter |
Albert Whata |
doi_str_mv |
10.3390/stats4040052 |
author2-role |
verfasserin |
title_sort |
credibility of causal estimates from regression discontinuity designs with multiple assignment variables |
callnumber |
HA1-4737 |
title_auth |
Credibility of Causal Estimates from Regression Discontinuity Designs with Multiple Assignment Variables |
abstract |
In this paper, we determine treatment effects when the treatment assignment is based on two or more cut-off points of covariates rather than on one cut-off point of one assignment variable. using methods that are referred to as multivariate regression discontinuity designs (MRDD). One major finding of this paper is the discovery of new evidence that both matric points and household income have a huge impact on the probability of eligibility for funding from the National Student Financial Aid Scheme (NSFAS) to study for a bachelor’s degree program at universities in South Africa. This evidence will inform policymakers and educational practitioners on the effects of matric points and household income on the eligibility for NSFAS funding. The availability of the NSFAS grant impacts greatly students’ decisions to attend university or seek other opportunities elsewhere. Using the frontier MRDD analytical results, barely scoring matric points greater than or equal to 25 points compared to scoring matric points less than 25 for students whose household income is less than R350,000 (≈US$2500) increases the probability of eligibility for NSFAS funding by a significant 3.75 ( <i<p</i<-value = 0.0001 < 0.05) percentage points. Therefore, we have shown that the frontier MRDD can be employed to determine the causal effects of barely meeting the requirements of one assignment variable, among the subjects that either meet or fail to meet the requirements of the other assignment variable. |
abstractGer |
In this paper, we determine treatment effects when the treatment assignment is based on two or more cut-off points of covariates rather than on one cut-off point of one assignment variable. using methods that are referred to as multivariate regression discontinuity designs (MRDD). One major finding of this paper is the discovery of new evidence that both matric points and household income have a huge impact on the probability of eligibility for funding from the National Student Financial Aid Scheme (NSFAS) to study for a bachelor’s degree program at universities in South Africa. This evidence will inform policymakers and educational practitioners on the effects of matric points and household income on the eligibility for NSFAS funding. The availability of the NSFAS grant impacts greatly students’ decisions to attend university or seek other opportunities elsewhere. Using the frontier MRDD analytical results, barely scoring matric points greater than or equal to 25 points compared to scoring matric points less than 25 for students whose household income is less than R350,000 (≈US$2500) increases the probability of eligibility for NSFAS funding by a significant 3.75 ( <i<p</i<-value = 0.0001 < 0.05) percentage points. Therefore, we have shown that the frontier MRDD can be employed to determine the causal effects of barely meeting the requirements of one assignment variable, among the subjects that either meet or fail to meet the requirements of the other assignment variable. |
abstract_unstemmed |
In this paper, we determine treatment effects when the treatment assignment is based on two or more cut-off points of covariates rather than on one cut-off point of one assignment variable. using methods that are referred to as multivariate regression discontinuity designs (MRDD). One major finding of this paper is the discovery of new evidence that both matric points and household income have a huge impact on the probability of eligibility for funding from the National Student Financial Aid Scheme (NSFAS) to study for a bachelor’s degree program at universities in South Africa. This evidence will inform policymakers and educational practitioners on the effects of matric points and household income on the eligibility for NSFAS funding. The availability of the NSFAS grant impacts greatly students’ decisions to attend university or seek other opportunities elsewhere. Using the frontier MRDD analytical results, barely scoring matric points greater than or equal to 25 points compared to scoring matric points less than 25 for students whose household income is less than R350,000 (≈US$2500) increases the probability of eligibility for NSFAS funding by a significant 3.75 ( <i<p</i<-value = 0.0001 < 0.05) percentage points. Therefore, we have shown that the frontier MRDD can be employed to determine the causal effects of barely meeting the requirements of one assignment variable, among the subjects that either meet or fail to meet the requirements of the other assignment variable. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Credibility of Causal Estimates from Regression Discontinuity Designs with Multiple Assignment Variables |
url |
https://doi.org/10.3390/stats4040052 https://doaj.org/article/bd17345632924162a05a8c856763fa93 https://www.mdpi.com/2571-905X/4/4/52 https://doaj.org/toc/2571-905X |
remote_bool |
true |
author2 |
Charles Chimedza |
author2Str |
Charles Chimedza |
ppnlink |
1025564405 |
callnumber-subject |
HA - Statistics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/stats4040052 |
callnumber-a |
HA1-4737 |
up_date |
2024-07-03T19:54:27.934Z |
_version_ |
1803588959406653440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018777139</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414222236.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/stats4040052</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018777139</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbd17345632924162a05a8c856763fa93</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HA1-4737</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Albert Whata</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Credibility of Causal Estimates from Regression Discontinuity Designs with Multiple Assignment Variables</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we determine treatment effects when the treatment assignment is based on two or more cut-off points of covariates rather than on one cut-off point of one assignment variable. using methods that are referred to as multivariate regression discontinuity designs (MRDD). One major finding of this paper is the discovery of new evidence that both matric points and household income have a huge impact on the probability of eligibility for funding from the National Student Financial Aid Scheme (NSFAS) to study for a bachelor’s degree program at universities in South Africa. This evidence will inform policymakers and educational practitioners on the effects of matric points and household income on the eligibility for NSFAS funding. The availability of the NSFAS grant impacts greatly students’ decisions to attend university or seek other opportunities elsewhere. Using the frontier MRDD analytical results, barely scoring matric points greater than or equal to 25 points compared to scoring matric points less than 25 for students whose household income is less than R350,000 (≈US$2500) increases the probability of eligibility for NSFAS funding by a significant 3.75 ( <i<p</i<-value = 0.0001 < 0.05) percentage points. Therefore, we have shown that the frontier MRDD can be employed to determine the causal effects of barely meeting the requirements of one assignment variable, among the subjects that either meet or fail to meet the requirements of the other assignment variable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multivariate regression discontinuity designs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frontier regression discontinuity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">supplementary analyses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">credibility</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Statistics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charles Chimedza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Stats</subfield><subfield code="d">MDPI AG, 2020</subfield><subfield code="g">4(2021), 4, Seite 893-915</subfield><subfield code="w">(DE-627)1025564405</subfield><subfield code="x">2571905X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:893-915</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/stats4040052</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bd17345632924162a05a8c856763fa93</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2571-905X/4/4/52</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2571-905X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="h">893-915</subfield></datafield></record></collection>
|
score |
7.399907 |