An accurate fuzzy rule-based classification systems for heart disease diagnosis
Physicians and healthcare providers need to better understand the thought processes and methods used in clinical decision-making. This allows physicians to diagnose and detect diseases early, especially heart disease that causes death. The diversity and availability of healthcare data encourage clin...
Ausführliche Beschreibung
Autor*in: |
Khalid Bahani [verfasserIn] Mohammed Moujabbir [verfasserIn] Mohammed Ramdani [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Scientific African - Elsevier, 2018, 14(2021), Seite e01019- |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2021 ; pages:e01019- |
Links: |
---|
DOI / URN: |
10.1016/j.sciaf.2021.e01019 |
---|
Katalog-ID: |
DOAJ018783961 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ018783961 | ||
003 | DE-627 | ||
005 | 20230310102837.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.sciaf.2021.e01019 |2 doi | |
035 | |a (DE-627)DOAJ018783961 | ||
035 | |a (DE-599)DOAJa912020d484d423da65a7d69a0920d3a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Khalid Bahani |e verfasserin |4 aut | |
245 | 1 | 3 | |a An accurate fuzzy rule-based classification systems for heart disease diagnosis |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Physicians and healthcare providers need to better understand the thought processes and methods used in clinical decision-making. This allows physicians to diagnose and detect diseases early, especially heart disease that causes death. The diversity and availability of healthcare data encourage clinicians to use healthcare applications in the diagnosis process. Most of these applications use machine learning techniques to make accurate and fast decisions. On the other hand, Explainability in healthcare applications increase the level of clinician confidence and reduces the risk of making wrong decisions, thus expands the scope and efficiency of healthcare applications. In this paper, we propose a novel data-driven method based on fuzzy clustering and linguistic modifiers to design a fuzzy rule-based classification system for heart disease diagnosis. The proposed system provides an interpretable knowledge base to explain the decision-making process. Regarding the experiment, we have used Cleveland, Hungarian and Va long beach heart disease datasets to compare the proposed method with five known machine learning methods for predicting heart disease: Artificial neural network, Support Vector Machine, K-Nearest Neighbor, Naïve Bayes, and Random Forest. The findings show that the proposed model is superior in terms of balancing interpretability and precision. | ||
650 | 4 | |a Heart disease prediction | |
650 | 4 | |a Fuzzy rule-based classification systems | |
650 | 4 | |a Classification rules learning | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Explainable artificial intelligence | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Mohammed Moujabbir |e verfasserin |4 aut | |
700 | 0 | |a Mohammed Ramdani |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Scientific African |d Elsevier, 2018 |g 14(2021), Seite e01019- |w (DE-627)1047200163 |x 24682276 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2021 |g pages:e01019- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.sciaf.2021.e01019 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a912020d484d423da65a7d69a0920d3a |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2468227621003203 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2468-2276 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2021 |h e01019- |
author_variant |
k b kb m m mm m r mr |
---|---|
matchkey_str |
article:24682276:2021----::ncuaeuzrlbsdlsiiainytmfre |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1016/j.sciaf.2021.e01019 doi (DE-627)DOAJ018783961 (DE-599)DOAJa912020d484d423da65a7d69a0920d3a DE-627 ger DE-627 rakwb eng Khalid Bahani verfasserin aut An accurate fuzzy rule-based classification systems for heart disease diagnosis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Physicians and healthcare providers need to better understand the thought processes and methods used in clinical decision-making. This allows physicians to diagnose and detect diseases early, especially heart disease that causes death. The diversity and availability of healthcare data encourage clinicians to use healthcare applications in the diagnosis process. Most of these applications use machine learning techniques to make accurate and fast decisions. On the other hand, Explainability in healthcare applications increase the level of clinician confidence and reduces the risk of making wrong decisions, thus expands the scope and efficiency of healthcare applications. In this paper, we propose a novel data-driven method based on fuzzy clustering and linguistic modifiers to design a fuzzy rule-based classification system for heart disease diagnosis. The proposed system provides an interpretable knowledge base to explain the decision-making process. Regarding the experiment, we have used Cleveland, Hungarian and Va long beach heart disease datasets to compare the proposed method with five known machine learning methods for predicting heart disease: Artificial neural network, Support Vector Machine, K-Nearest Neighbor, Naïve Bayes, and Random Forest. The findings show that the proposed model is superior in terms of balancing interpretability and precision. Heart disease prediction Fuzzy rule-based classification systems Classification rules learning Machine learning Explainable artificial intelligence Science Q Mohammed Moujabbir verfasserin aut Mohammed Ramdani verfasserin aut In Scientific African Elsevier, 2018 14(2021), Seite e01019- (DE-627)1047200163 24682276 nnns volume:14 year:2021 pages:e01019- https://doi.org/10.1016/j.sciaf.2021.e01019 kostenfrei https://doaj.org/article/a912020d484d423da65a7d69a0920d3a kostenfrei http://www.sciencedirect.com/science/article/pii/S2468227621003203 kostenfrei https://doaj.org/toc/2468-2276 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 e01019- |
spelling |
10.1016/j.sciaf.2021.e01019 doi (DE-627)DOAJ018783961 (DE-599)DOAJa912020d484d423da65a7d69a0920d3a DE-627 ger DE-627 rakwb eng Khalid Bahani verfasserin aut An accurate fuzzy rule-based classification systems for heart disease diagnosis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Physicians and healthcare providers need to better understand the thought processes and methods used in clinical decision-making. This allows physicians to diagnose and detect diseases early, especially heart disease that causes death. The diversity and availability of healthcare data encourage clinicians to use healthcare applications in the diagnosis process. Most of these applications use machine learning techniques to make accurate and fast decisions. On the other hand, Explainability in healthcare applications increase the level of clinician confidence and reduces the risk of making wrong decisions, thus expands the scope and efficiency of healthcare applications. In this paper, we propose a novel data-driven method based on fuzzy clustering and linguistic modifiers to design a fuzzy rule-based classification system for heart disease diagnosis. The proposed system provides an interpretable knowledge base to explain the decision-making process. Regarding the experiment, we have used Cleveland, Hungarian and Va long beach heart disease datasets to compare the proposed method with five known machine learning methods for predicting heart disease: Artificial neural network, Support Vector Machine, K-Nearest Neighbor, Naïve Bayes, and Random Forest. The findings show that the proposed model is superior in terms of balancing interpretability and precision. Heart disease prediction Fuzzy rule-based classification systems Classification rules learning Machine learning Explainable artificial intelligence Science Q Mohammed Moujabbir verfasserin aut Mohammed Ramdani verfasserin aut In Scientific African Elsevier, 2018 14(2021), Seite e01019- (DE-627)1047200163 24682276 nnns volume:14 year:2021 pages:e01019- https://doi.org/10.1016/j.sciaf.2021.e01019 kostenfrei https://doaj.org/article/a912020d484d423da65a7d69a0920d3a kostenfrei http://www.sciencedirect.com/science/article/pii/S2468227621003203 kostenfrei https://doaj.org/toc/2468-2276 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 e01019- |
allfields_unstemmed |
10.1016/j.sciaf.2021.e01019 doi (DE-627)DOAJ018783961 (DE-599)DOAJa912020d484d423da65a7d69a0920d3a DE-627 ger DE-627 rakwb eng Khalid Bahani verfasserin aut An accurate fuzzy rule-based classification systems for heart disease diagnosis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Physicians and healthcare providers need to better understand the thought processes and methods used in clinical decision-making. This allows physicians to diagnose and detect diseases early, especially heart disease that causes death. The diversity and availability of healthcare data encourage clinicians to use healthcare applications in the diagnosis process. Most of these applications use machine learning techniques to make accurate and fast decisions. On the other hand, Explainability in healthcare applications increase the level of clinician confidence and reduces the risk of making wrong decisions, thus expands the scope and efficiency of healthcare applications. In this paper, we propose a novel data-driven method based on fuzzy clustering and linguistic modifiers to design a fuzzy rule-based classification system for heart disease diagnosis. The proposed system provides an interpretable knowledge base to explain the decision-making process. Regarding the experiment, we have used Cleveland, Hungarian and Va long beach heart disease datasets to compare the proposed method with five known machine learning methods for predicting heart disease: Artificial neural network, Support Vector Machine, K-Nearest Neighbor, Naïve Bayes, and Random Forest. The findings show that the proposed model is superior in terms of balancing interpretability and precision. Heart disease prediction Fuzzy rule-based classification systems Classification rules learning Machine learning Explainable artificial intelligence Science Q Mohammed Moujabbir verfasserin aut Mohammed Ramdani verfasserin aut In Scientific African Elsevier, 2018 14(2021), Seite e01019- (DE-627)1047200163 24682276 nnns volume:14 year:2021 pages:e01019- https://doi.org/10.1016/j.sciaf.2021.e01019 kostenfrei https://doaj.org/article/a912020d484d423da65a7d69a0920d3a kostenfrei http://www.sciencedirect.com/science/article/pii/S2468227621003203 kostenfrei https://doaj.org/toc/2468-2276 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 e01019- |
allfieldsGer |
10.1016/j.sciaf.2021.e01019 doi (DE-627)DOAJ018783961 (DE-599)DOAJa912020d484d423da65a7d69a0920d3a DE-627 ger DE-627 rakwb eng Khalid Bahani verfasserin aut An accurate fuzzy rule-based classification systems for heart disease diagnosis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Physicians and healthcare providers need to better understand the thought processes and methods used in clinical decision-making. This allows physicians to diagnose and detect diseases early, especially heart disease that causes death. The diversity and availability of healthcare data encourage clinicians to use healthcare applications in the diagnosis process. Most of these applications use machine learning techniques to make accurate and fast decisions. On the other hand, Explainability in healthcare applications increase the level of clinician confidence and reduces the risk of making wrong decisions, thus expands the scope and efficiency of healthcare applications. In this paper, we propose a novel data-driven method based on fuzzy clustering and linguistic modifiers to design a fuzzy rule-based classification system for heart disease diagnosis. The proposed system provides an interpretable knowledge base to explain the decision-making process. Regarding the experiment, we have used Cleveland, Hungarian and Va long beach heart disease datasets to compare the proposed method with five known machine learning methods for predicting heart disease: Artificial neural network, Support Vector Machine, K-Nearest Neighbor, Naïve Bayes, and Random Forest. The findings show that the proposed model is superior in terms of balancing interpretability and precision. Heart disease prediction Fuzzy rule-based classification systems Classification rules learning Machine learning Explainable artificial intelligence Science Q Mohammed Moujabbir verfasserin aut Mohammed Ramdani verfasserin aut In Scientific African Elsevier, 2018 14(2021), Seite e01019- (DE-627)1047200163 24682276 nnns volume:14 year:2021 pages:e01019- https://doi.org/10.1016/j.sciaf.2021.e01019 kostenfrei https://doaj.org/article/a912020d484d423da65a7d69a0920d3a kostenfrei http://www.sciencedirect.com/science/article/pii/S2468227621003203 kostenfrei https://doaj.org/toc/2468-2276 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 e01019- |
allfieldsSound |
10.1016/j.sciaf.2021.e01019 doi (DE-627)DOAJ018783961 (DE-599)DOAJa912020d484d423da65a7d69a0920d3a DE-627 ger DE-627 rakwb eng Khalid Bahani verfasserin aut An accurate fuzzy rule-based classification systems for heart disease diagnosis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Physicians and healthcare providers need to better understand the thought processes and methods used in clinical decision-making. This allows physicians to diagnose and detect diseases early, especially heart disease that causes death. The diversity and availability of healthcare data encourage clinicians to use healthcare applications in the diagnosis process. Most of these applications use machine learning techniques to make accurate and fast decisions. On the other hand, Explainability in healthcare applications increase the level of clinician confidence and reduces the risk of making wrong decisions, thus expands the scope and efficiency of healthcare applications. In this paper, we propose a novel data-driven method based on fuzzy clustering and linguistic modifiers to design a fuzzy rule-based classification system for heart disease diagnosis. The proposed system provides an interpretable knowledge base to explain the decision-making process. Regarding the experiment, we have used Cleveland, Hungarian and Va long beach heart disease datasets to compare the proposed method with five known machine learning methods for predicting heart disease: Artificial neural network, Support Vector Machine, K-Nearest Neighbor, Naïve Bayes, and Random Forest. The findings show that the proposed model is superior in terms of balancing interpretability and precision. Heart disease prediction Fuzzy rule-based classification systems Classification rules learning Machine learning Explainable artificial intelligence Science Q Mohammed Moujabbir verfasserin aut Mohammed Ramdani verfasserin aut In Scientific African Elsevier, 2018 14(2021), Seite e01019- (DE-627)1047200163 24682276 nnns volume:14 year:2021 pages:e01019- https://doi.org/10.1016/j.sciaf.2021.e01019 kostenfrei https://doaj.org/article/a912020d484d423da65a7d69a0920d3a kostenfrei http://www.sciencedirect.com/science/article/pii/S2468227621003203 kostenfrei https://doaj.org/toc/2468-2276 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 e01019- |
language |
English |
source |
In Scientific African 14(2021), Seite e01019- volume:14 year:2021 pages:e01019- |
sourceStr |
In Scientific African 14(2021), Seite e01019- volume:14 year:2021 pages:e01019- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Heart disease prediction Fuzzy rule-based classification systems Classification rules learning Machine learning Explainable artificial intelligence Science Q |
isfreeaccess_bool |
true |
container_title |
Scientific African |
authorswithroles_txt_mv |
Khalid Bahani @@aut@@ Mohammed Moujabbir @@aut@@ Mohammed Ramdani @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1047200163 |
id |
DOAJ018783961 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018783961</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310102837.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.sciaf.2021.e01019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018783961</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa912020d484d423da65a7d69a0920d3a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Khalid Bahani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An accurate fuzzy rule-based classification systems for heart disease diagnosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Physicians and healthcare providers need to better understand the thought processes and methods used in clinical decision-making. This allows physicians to diagnose and detect diseases early, especially heart disease that causes death. The diversity and availability of healthcare data encourage clinicians to use healthcare applications in the diagnosis process. Most of these applications use machine learning techniques to make accurate and fast decisions. On the other hand, Explainability in healthcare applications increase the level of clinician confidence and reduces the risk of making wrong decisions, thus expands the scope and efficiency of healthcare applications. In this paper, we propose a novel data-driven method based on fuzzy clustering and linguistic modifiers to design a fuzzy rule-based classification system for heart disease diagnosis. The proposed system provides an interpretable knowledge base to explain the decision-making process. Regarding the experiment, we have used Cleveland, Hungarian and Va long beach heart disease datasets to compare the proposed method with five known machine learning methods for predicting heart disease: Artificial neural network, Support Vector Machine, K-Nearest Neighbor, Naïve Bayes, and Random Forest. The findings show that the proposed model is superior in terms of balancing interpretability and precision.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heart disease prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy rule-based classification systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification rules learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Explainable artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammed Moujabbir</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammed Ramdani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific African</subfield><subfield code="d">Elsevier, 2018</subfield><subfield code="g">14(2021), Seite e01019-</subfield><subfield code="w">(DE-627)1047200163</subfield><subfield code="x">24682276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:e01019-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.sciaf.2021.e01019</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a912020d484d423da65a7d69a0920d3a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2468227621003203</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2468-2276</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2021</subfield><subfield code="h">e01019-</subfield></datafield></record></collection>
|
author |
Khalid Bahani |
spellingShingle |
Khalid Bahani misc Heart disease prediction misc Fuzzy rule-based classification systems misc Classification rules learning misc Machine learning misc Explainable artificial intelligence misc Science misc Q An accurate fuzzy rule-based classification systems for heart disease diagnosis |
authorStr |
Khalid Bahani |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1047200163 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
24682276 |
topic_title |
An accurate fuzzy rule-based classification systems for heart disease diagnosis Heart disease prediction Fuzzy rule-based classification systems Classification rules learning Machine learning Explainable artificial intelligence |
topic |
misc Heart disease prediction misc Fuzzy rule-based classification systems misc Classification rules learning misc Machine learning misc Explainable artificial intelligence misc Science misc Q |
topic_unstemmed |
misc Heart disease prediction misc Fuzzy rule-based classification systems misc Classification rules learning misc Machine learning misc Explainable artificial intelligence misc Science misc Q |
topic_browse |
misc Heart disease prediction misc Fuzzy rule-based classification systems misc Classification rules learning misc Machine learning misc Explainable artificial intelligence misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Scientific African |
hierarchy_parent_id |
1047200163 |
hierarchy_top_title |
Scientific African |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1047200163 |
title |
An accurate fuzzy rule-based classification systems for heart disease diagnosis |
ctrlnum |
(DE-627)DOAJ018783961 (DE-599)DOAJa912020d484d423da65a7d69a0920d3a |
title_full |
An accurate fuzzy rule-based classification systems for heart disease diagnosis |
author_sort |
Khalid Bahani |
journal |
Scientific African |
journalStr |
Scientific African |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Khalid Bahani Mohammed Moujabbir Mohammed Ramdani |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Khalid Bahani |
doi_str_mv |
10.1016/j.sciaf.2021.e01019 |
author2-role |
verfasserin |
title_sort |
accurate fuzzy rule-based classification systems for heart disease diagnosis |
title_auth |
An accurate fuzzy rule-based classification systems for heart disease diagnosis |
abstract |
Physicians and healthcare providers need to better understand the thought processes and methods used in clinical decision-making. This allows physicians to diagnose and detect diseases early, especially heart disease that causes death. The diversity and availability of healthcare data encourage clinicians to use healthcare applications in the diagnosis process. Most of these applications use machine learning techniques to make accurate and fast decisions. On the other hand, Explainability in healthcare applications increase the level of clinician confidence and reduces the risk of making wrong decisions, thus expands the scope and efficiency of healthcare applications. In this paper, we propose a novel data-driven method based on fuzzy clustering and linguistic modifiers to design a fuzzy rule-based classification system for heart disease diagnosis. The proposed system provides an interpretable knowledge base to explain the decision-making process. Regarding the experiment, we have used Cleveland, Hungarian and Va long beach heart disease datasets to compare the proposed method with five known machine learning methods for predicting heart disease: Artificial neural network, Support Vector Machine, K-Nearest Neighbor, Naïve Bayes, and Random Forest. The findings show that the proposed model is superior in terms of balancing interpretability and precision. |
abstractGer |
Physicians and healthcare providers need to better understand the thought processes and methods used in clinical decision-making. This allows physicians to diagnose and detect diseases early, especially heart disease that causes death. The diversity and availability of healthcare data encourage clinicians to use healthcare applications in the diagnosis process. Most of these applications use machine learning techniques to make accurate and fast decisions. On the other hand, Explainability in healthcare applications increase the level of clinician confidence and reduces the risk of making wrong decisions, thus expands the scope and efficiency of healthcare applications. In this paper, we propose a novel data-driven method based on fuzzy clustering and linguistic modifiers to design a fuzzy rule-based classification system for heart disease diagnosis. The proposed system provides an interpretable knowledge base to explain the decision-making process. Regarding the experiment, we have used Cleveland, Hungarian and Va long beach heart disease datasets to compare the proposed method with five known machine learning methods for predicting heart disease: Artificial neural network, Support Vector Machine, K-Nearest Neighbor, Naïve Bayes, and Random Forest. The findings show that the proposed model is superior in terms of balancing interpretability and precision. |
abstract_unstemmed |
Physicians and healthcare providers need to better understand the thought processes and methods used in clinical decision-making. This allows physicians to diagnose and detect diseases early, especially heart disease that causes death. The diversity and availability of healthcare data encourage clinicians to use healthcare applications in the diagnosis process. Most of these applications use machine learning techniques to make accurate and fast decisions. On the other hand, Explainability in healthcare applications increase the level of clinician confidence and reduces the risk of making wrong decisions, thus expands the scope and efficiency of healthcare applications. In this paper, we propose a novel data-driven method based on fuzzy clustering and linguistic modifiers to design a fuzzy rule-based classification system for heart disease diagnosis. The proposed system provides an interpretable knowledge base to explain the decision-making process. Regarding the experiment, we have used Cleveland, Hungarian and Va long beach heart disease datasets to compare the proposed method with five known machine learning methods for predicting heart disease: Artificial neural network, Support Vector Machine, K-Nearest Neighbor, Naïve Bayes, and Random Forest. The findings show that the proposed model is superior in terms of balancing interpretability and precision. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
An accurate fuzzy rule-based classification systems for heart disease diagnosis |
url |
https://doi.org/10.1016/j.sciaf.2021.e01019 https://doaj.org/article/a912020d484d423da65a7d69a0920d3a http://www.sciencedirect.com/science/article/pii/S2468227621003203 https://doaj.org/toc/2468-2276 |
remote_bool |
true |
author2 |
Mohammed Moujabbir Mohammed Ramdani |
author2Str |
Mohammed Moujabbir Mohammed Ramdani |
ppnlink |
1047200163 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.sciaf.2021.e01019 |
up_date |
2024-07-03T19:57:17.783Z |
_version_ |
1803589137510432768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018783961</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310102837.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.sciaf.2021.e01019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018783961</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa912020d484d423da65a7d69a0920d3a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Khalid Bahani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An accurate fuzzy rule-based classification systems for heart disease diagnosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Physicians and healthcare providers need to better understand the thought processes and methods used in clinical decision-making. This allows physicians to diagnose and detect diseases early, especially heart disease that causes death. The diversity and availability of healthcare data encourage clinicians to use healthcare applications in the diagnosis process. Most of these applications use machine learning techniques to make accurate and fast decisions. On the other hand, Explainability in healthcare applications increase the level of clinician confidence and reduces the risk of making wrong decisions, thus expands the scope and efficiency of healthcare applications. In this paper, we propose a novel data-driven method based on fuzzy clustering and linguistic modifiers to design a fuzzy rule-based classification system for heart disease diagnosis. The proposed system provides an interpretable knowledge base to explain the decision-making process. Regarding the experiment, we have used Cleveland, Hungarian and Va long beach heart disease datasets to compare the proposed method with five known machine learning methods for predicting heart disease: Artificial neural network, Support Vector Machine, K-Nearest Neighbor, Naïve Bayes, and Random Forest. The findings show that the proposed model is superior in terms of balancing interpretability and precision.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heart disease prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy rule-based classification systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification rules learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Explainable artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammed Moujabbir</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammed Ramdani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific African</subfield><subfield code="d">Elsevier, 2018</subfield><subfield code="g">14(2021), Seite e01019-</subfield><subfield code="w">(DE-627)1047200163</subfield><subfield code="x">24682276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:e01019-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.sciaf.2021.e01019</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a912020d484d423da65a7d69a0920d3a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2468227621003203</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2468-2276</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2021</subfield><subfield code="h">e01019-</subfield></datafield></record></collection>
|
score |
7.401787 |