Improving the Robustness of Model Compression by On-Manifold Adversarial Training
Despite the advance in deep learning technology, assuring the robustness of deep neural networks (DNNs) is challenging and necessary in safety-critical environments, including automobiles, IoT devices in smart factories, and medical devices, to name a few. Furthermore, recent developments allow us t...
Ausführliche Beschreibung
Autor*in: |
Junhyung Kwon [verfasserIn] Sangkyun Lee [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Future Internet - MDPI AG, 2010, 13(2021), 12, p 300 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:12, p 300 |
Links: |
---|
DOI / URN: |
10.3390/fi13120300 |
---|
Katalog-ID: |
DOAJ018814255 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ018814255 | ||
003 | DE-627 | ||
005 | 20240414225247.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/fi13120300 |2 doi | |
035 | |a (DE-627)DOAJ018814255 | ||
035 | |a (DE-599)DOAJeefa9c16defa469bb5e7866b8829d3b6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a T58.5-58.64 | |
100 | 0 | |a Junhyung Kwon |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improving the Robustness of Model Compression by On-Manifold Adversarial Training |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Despite the advance in deep learning technology, assuring the robustness of deep neural networks (DNNs) is challenging and necessary in safety-critical environments, including automobiles, IoT devices in smart factories, and medical devices, to name a few. Furthermore, recent developments allow us to compress DNNs to reduce the size and computational requirements of DNNs to fit them into small embedded devices. However, how robust a compressed DNN can be has not been well studied in addressing its relationship to other critical factors, such as prediction performance and model sizes. In particular, existing studies on robust model compression have been focused on the robustness against off-manifold adversarial perturbation, which does not explain how a DNN will behave against perturbations that follow the same probability distribution as the training data. This aspect is relevant for on-device AI models, which are more likely to experience perturbations due to noise from the regular data observation environment compared with off-manifold perturbations provided by an external attacker. Therefore, this paper investigates the robustness of compressed deep neural networks, focusing on the relationship between the model sizes and the prediction performance on noisy perturbations. Our experiment shows that on-manifold adversarial training can be effective in building robust classifiers, especially when the model compression rate is high. | ||
650 | 4 | |a model compression | |
650 | 4 | |a adversarial robustness | |
650 | 4 | |a robust compression | |
650 | 4 | |a on-manifold perturbation | |
653 | 0 | |a Information technology | |
700 | 0 | |a Sangkyun Lee |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Future Internet |d MDPI AG, 2010 |g 13(2021), 12, p 300 |w (DE-627)610604147 |w (DE-600)2518385-0 |x 19995903 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:12, p 300 |
856 | 4 | 0 | |u https://doi.org/10.3390/fi13120300 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/eefa9c16defa469bb5e7866b8829d3b6 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1999-5903/13/12/300 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1999-5903 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 12, p 300 |
author_variant |
j k jk s l sl |
---|---|
matchkey_str |
article:19995903:2021----::mrvnteoutesfoecmrsinynaio |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
T |
publishDate |
2021 |
allfields |
10.3390/fi13120300 doi (DE-627)DOAJ018814255 (DE-599)DOAJeefa9c16defa469bb5e7866b8829d3b6 DE-627 ger DE-627 rakwb eng T58.5-58.64 Junhyung Kwon verfasserin aut Improving the Robustness of Model Compression by On-Manifold Adversarial Training 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the advance in deep learning technology, assuring the robustness of deep neural networks (DNNs) is challenging and necessary in safety-critical environments, including automobiles, IoT devices in smart factories, and medical devices, to name a few. Furthermore, recent developments allow us to compress DNNs to reduce the size and computational requirements of DNNs to fit them into small embedded devices. However, how robust a compressed DNN can be has not been well studied in addressing its relationship to other critical factors, such as prediction performance and model sizes. In particular, existing studies on robust model compression have been focused on the robustness against off-manifold adversarial perturbation, which does not explain how a DNN will behave against perturbations that follow the same probability distribution as the training data. This aspect is relevant for on-device AI models, which are more likely to experience perturbations due to noise from the regular data observation environment compared with off-manifold perturbations provided by an external attacker. Therefore, this paper investigates the robustness of compressed deep neural networks, focusing on the relationship between the model sizes and the prediction performance on noisy perturbations. Our experiment shows that on-manifold adversarial training can be effective in building robust classifiers, especially when the model compression rate is high. model compression adversarial robustness robust compression on-manifold perturbation Information technology Sangkyun Lee verfasserin aut In Future Internet MDPI AG, 2010 13(2021), 12, p 300 (DE-627)610604147 (DE-600)2518385-0 19995903 nnns volume:13 year:2021 number:12, p 300 https://doi.org/10.3390/fi13120300 kostenfrei https://doaj.org/article/eefa9c16defa469bb5e7866b8829d3b6 kostenfrei https://www.mdpi.com/1999-5903/13/12/300 kostenfrei https://doaj.org/toc/1999-5903 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 12, p 300 |
spelling |
10.3390/fi13120300 doi (DE-627)DOAJ018814255 (DE-599)DOAJeefa9c16defa469bb5e7866b8829d3b6 DE-627 ger DE-627 rakwb eng T58.5-58.64 Junhyung Kwon verfasserin aut Improving the Robustness of Model Compression by On-Manifold Adversarial Training 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the advance in deep learning technology, assuring the robustness of deep neural networks (DNNs) is challenging and necessary in safety-critical environments, including automobiles, IoT devices in smart factories, and medical devices, to name a few. Furthermore, recent developments allow us to compress DNNs to reduce the size and computational requirements of DNNs to fit them into small embedded devices. However, how robust a compressed DNN can be has not been well studied in addressing its relationship to other critical factors, such as prediction performance and model sizes. In particular, existing studies on robust model compression have been focused on the robustness against off-manifold adversarial perturbation, which does not explain how a DNN will behave against perturbations that follow the same probability distribution as the training data. This aspect is relevant for on-device AI models, which are more likely to experience perturbations due to noise from the regular data observation environment compared with off-manifold perturbations provided by an external attacker. Therefore, this paper investigates the robustness of compressed deep neural networks, focusing on the relationship between the model sizes and the prediction performance on noisy perturbations. Our experiment shows that on-manifold adversarial training can be effective in building robust classifiers, especially when the model compression rate is high. model compression adversarial robustness robust compression on-manifold perturbation Information technology Sangkyun Lee verfasserin aut In Future Internet MDPI AG, 2010 13(2021), 12, p 300 (DE-627)610604147 (DE-600)2518385-0 19995903 nnns volume:13 year:2021 number:12, p 300 https://doi.org/10.3390/fi13120300 kostenfrei https://doaj.org/article/eefa9c16defa469bb5e7866b8829d3b6 kostenfrei https://www.mdpi.com/1999-5903/13/12/300 kostenfrei https://doaj.org/toc/1999-5903 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 12, p 300 |
allfields_unstemmed |
10.3390/fi13120300 doi (DE-627)DOAJ018814255 (DE-599)DOAJeefa9c16defa469bb5e7866b8829d3b6 DE-627 ger DE-627 rakwb eng T58.5-58.64 Junhyung Kwon verfasserin aut Improving the Robustness of Model Compression by On-Manifold Adversarial Training 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the advance in deep learning technology, assuring the robustness of deep neural networks (DNNs) is challenging and necessary in safety-critical environments, including automobiles, IoT devices in smart factories, and medical devices, to name a few. Furthermore, recent developments allow us to compress DNNs to reduce the size and computational requirements of DNNs to fit them into small embedded devices. However, how robust a compressed DNN can be has not been well studied in addressing its relationship to other critical factors, such as prediction performance and model sizes. In particular, existing studies on robust model compression have been focused on the robustness against off-manifold adversarial perturbation, which does not explain how a DNN will behave against perturbations that follow the same probability distribution as the training data. This aspect is relevant for on-device AI models, which are more likely to experience perturbations due to noise from the regular data observation environment compared with off-manifold perturbations provided by an external attacker. Therefore, this paper investigates the robustness of compressed deep neural networks, focusing on the relationship between the model sizes and the prediction performance on noisy perturbations. Our experiment shows that on-manifold adversarial training can be effective in building robust classifiers, especially when the model compression rate is high. model compression adversarial robustness robust compression on-manifold perturbation Information technology Sangkyun Lee verfasserin aut In Future Internet MDPI AG, 2010 13(2021), 12, p 300 (DE-627)610604147 (DE-600)2518385-0 19995903 nnns volume:13 year:2021 number:12, p 300 https://doi.org/10.3390/fi13120300 kostenfrei https://doaj.org/article/eefa9c16defa469bb5e7866b8829d3b6 kostenfrei https://www.mdpi.com/1999-5903/13/12/300 kostenfrei https://doaj.org/toc/1999-5903 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 12, p 300 |
allfieldsGer |
10.3390/fi13120300 doi (DE-627)DOAJ018814255 (DE-599)DOAJeefa9c16defa469bb5e7866b8829d3b6 DE-627 ger DE-627 rakwb eng T58.5-58.64 Junhyung Kwon verfasserin aut Improving the Robustness of Model Compression by On-Manifold Adversarial Training 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the advance in deep learning technology, assuring the robustness of deep neural networks (DNNs) is challenging and necessary in safety-critical environments, including automobiles, IoT devices in smart factories, and medical devices, to name a few. Furthermore, recent developments allow us to compress DNNs to reduce the size and computational requirements of DNNs to fit them into small embedded devices. However, how robust a compressed DNN can be has not been well studied in addressing its relationship to other critical factors, such as prediction performance and model sizes. In particular, existing studies on robust model compression have been focused on the robustness against off-manifold adversarial perturbation, which does not explain how a DNN will behave against perturbations that follow the same probability distribution as the training data. This aspect is relevant for on-device AI models, which are more likely to experience perturbations due to noise from the regular data observation environment compared with off-manifold perturbations provided by an external attacker. Therefore, this paper investigates the robustness of compressed deep neural networks, focusing on the relationship between the model sizes and the prediction performance on noisy perturbations. Our experiment shows that on-manifold adversarial training can be effective in building robust classifiers, especially when the model compression rate is high. model compression adversarial robustness robust compression on-manifold perturbation Information technology Sangkyun Lee verfasserin aut In Future Internet MDPI AG, 2010 13(2021), 12, p 300 (DE-627)610604147 (DE-600)2518385-0 19995903 nnns volume:13 year:2021 number:12, p 300 https://doi.org/10.3390/fi13120300 kostenfrei https://doaj.org/article/eefa9c16defa469bb5e7866b8829d3b6 kostenfrei https://www.mdpi.com/1999-5903/13/12/300 kostenfrei https://doaj.org/toc/1999-5903 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 12, p 300 |
allfieldsSound |
10.3390/fi13120300 doi (DE-627)DOAJ018814255 (DE-599)DOAJeefa9c16defa469bb5e7866b8829d3b6 DE-627 ger DE-627 rakwb eng T58.5-58.64 Junhyung Kwon verfasserin aut Improving the Robustness of Model Compression by On-Manifold Adversarial Training 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the advance in deep learning technology, assuring the robustness of deep neural networks (DNNs) is challenging and necessary in safety-critical environments, including automobiles, IoT devices in smart factories, and medical devices, to name a few. Furthermore, recent developments allow us to compress DNNs to reduce the size and computational requirements of DNNs to fit them into small embedded devices. However, how robust a compressed DNN can be has not been well studied in addressing its relationship to other critical factors, such as prediction performance and model sizes. In particular, existing studies on robust model compression have been focused on the robustness against off-manifold adversarial perturbation, which does not explain how a DNN will behave against perturbations that follow the same probability distribution as the training data. This aspect is relevant for on-device AI models, which are more likely to experience perturbations due to noise from the regular data observation environment compared with off-manifold perturbations provided by an external attacker. Therefore, this paper investigates the robustness of compressed deep neural networks, focusing on the relationship between the model sizes and the prediction performance on noisy perturbations. Our experiment shows that on-manifold adversarial training can be effective in building robust classifiers, especially when the model compression rate is high. model compression adversarial robustness robust compression on-manifold perturbation Information technology Sangkyun Lee verfasserin aut In Future Internet MDPI AG, 2010 13(2021), 12, p 300 (DE-627)610604147 (DE-600)2518385-0 19995903 nnns volume:13 year:2021 number:12, p 300 https://doi.org/10.3390/fi13120300 kostenfrei https://doaj.org/article/eefa9c16defa469bb5e7866b8829d3b6 kostenfrei https://www.mdpi.com/1999-5903/13/12/300 kostenfrei https://doaj.org/toc/1999-5903 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 12, p 300 |
language |
English |
source |
In Future Internet 13(2021), 12, p 300 volume:13 year:2021 number:12, p 300 |
sourceStr |
In Future Internet 13(2021), 12, p 300 volume:13 year:2021 number:12, p 300 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
model compression adversarial robustness robust compression on-manifold perturbation Information technology |
isfreeaccess_bool |
true |
container_title |
Future Internet |
authorswithroles_txt_mv |
Junhyung Kwon @@aut@@ Sangkyun Lee @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
610604147 |
id |
DOAJ018814255 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018814255</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414225247.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/fi13120300</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018814255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJeefa9c16defa469bb5e7866b8829d3b6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T58.5-58.64</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Junhyung Kwon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving the Robustness of Model Compression by On-Manifold Adversarial Training</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Despite the advance in deep learning technology, assuring the robustness of deep neural networks (DNNs) is challenging and necessary in safety-critical environments, including automobiles, IoT devices in smart factories, and medical devices, to name a few. Furthermore, recent developments allow us to compress DNNs to reduce the size and computational requirements of DNNs to fit them into small embedded devices. However, how robust a compressed DNN can be has not been well studied in addressing its relationship to other critical factors, such as prediction performance and model sizes. In particular, existing studies on robust model compression have been focused on the robustness against off-manifold adversarial perturbation, which does not explain how a DNN will behave against perturbations that follow the same probability distribution as the training data. This aspect is relevant for on-device AI models, which are more likely to experience perturbations due to noise from the regular data observation environment compared with off-manifold perturbations provided by an external attacker. Therefore, this paper investigates the robustness of compressed deep neural networks, focusing on the relationship between the model sizes and the prediction performance on noisy perturbations. Our experiment shows that on-manifold adversarial training can be effective in building robust classifiers, especially when the model compression rate is high.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model compression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adversarial robustness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robust compression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">on-manifold perturbation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Information technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sangkyun Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Future Internet</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">13(2021), 12, p 300</subfield><subfield code="w">(DE-627)610604147</subfield><subfield code="w">(DE-600)2518385-0</subfield><subfield code="x">19995903</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12, p 300</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/fi13120300</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/eefa9c16defa469bb5e7866b8829d3b6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1999-5903/13/12/300</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1999-5903</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">12, p 300</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Junhyung Kwon |
spellingShingle |
Junhyung Kwon misc T58.5-58.64 misc model compression misc adversarial robustness misc robust compression misc on-manifold perturbation misc Information technology Improving the Robustness of Model Compression by On-Manifold Adversarial Training |
authorStr |
Junhyung Kwon |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604147 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
T58 |
illustrated |
Not Illustrated |
issn |
19995903 |
topic_title |
T58.5-58.64 Improving the Robustness of Model Compression by On-Manifold Adversarial Training model compression adversarial robustness robust compression on-manifold perturbation |
topic |
misc T58.5-58.64 misc model compression misc adversarial robustness misc robust compression misc on-manifold perturbation misc Information technology |
topic_unstemmed |
misc T58.5-58.64 misc model compression misc adversarial robustness misc robust compression misc on-manifold perturbation misc Information technology |
topic_browse |
misc T58.5-58.64 misc model compression misc adversarial robustness misc robust compression misc on-manifold perturbation misc Information technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Future Internet |
hierarchy_parent_id |
610604147 |
hierarchy_top_title |
Future Internet |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604147 (DE-600)2518385-0 |
title |
Improving the Robustness of Model Compression by On-Manifold Adversarial Training |
ctrlnum |
(DE-627)DOAJ018814255 (DE-599)DOAJeefa9c16defa469bb5e7866b8829d3b6 |
title_full |
Improving the Robustness of Model Compression by On-Manifold Adversarial Training |
author_sort |
Junhyung Kwon |
journal |
Future Internet |
journalStr |
Future Internet |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Junhyung Kwon Sangkyun Lee |
container_volume |
13 |
class |
T58.5-58.64 |
format_se |
Elektronische Aufsätze |
author-letter |
Junhyung Kwon |
doi_str_mv |
10.3390/fi13120300 |
author2-role |
verfasserin |
title_sort |
improving the robustness of model compression by on-manifold adversarial training |
callnumber |
T58.5-58.64 |
title_auth |
Improving the Robustness of Model Compression by On-Manifold Adversarial Training |
abstract |
Despite the advance in deep learning technology, assuring the robustness of deep neural networks (DNNs) is challenging and necessary in safety-critical environments, including automobiles, IoT devices in smart factories, and medical devices, to name a few. Furthermore, recent developments allow us to compress DNNs to reduce the size and computational requirements of DNNs to fit them into small embedded devices. However, how robust a compressed DNN can be has not been well studied in addressing its relationship to other critical factors, such as prediction performance and model sizes. In particular, existing studies on robust model compression have been focused on the robustness against off-manifold adversarial perturbation, which does not explain how a DNN will behave against perturbations that follow the same probability distribution as the training data. This aspect is relevant for on-device AI models, which are more likely to experience perturbations due to noise from the regular data observation environment compared with off-manifold perturbations provided by an external attacker. Therefore, this paper investigates the robustness of compressed deep neural networks, focusing on the relationship between the model sizes and the prediction performance on noisy perturbations. Our experiment shows that on-manifold adversarial training can be effective in building robust classifiers, especially when the model compression rate is high. |
abstractGer |
Despite the advance in deep learning technology, assuring the robustness of deep neural networks (DNNs) is challenging and necessary in safety-critical environments, including automobiles, IoT devices in smart factories, and medical devices, to name a few. Furthermore, recent developments allow us to compress DNNs to reduce the size and computational requirements of DNNs to fit them into small embedded devices. However, how robust a compressed DNN can be has not been well studied in addressing its relationship to other critical factors, such as prediction performance and model sizes. In particular, existing studies on robust model compression have been focused on the robustness against off-manifold adversarial perturbation, which does not explain how a DNN will behave against perturbations that follow the same probability distribution as the training data. This aspect is relevant for on-device AI models, which are more likely to experience perturbations due to noise from the regular data observation environment compared with off-manifold perturbations provided by an external attacker. Therefore, this paper investigates the robustness of compressed deep neural networks, focusing on the relationship between the model sizes and the prediction performance on noisy perturbations. Our experiment shows that on-manifold adversarial training can be effective in building robust classifiers, especially when the model compression rate is high. |
abstract_unstemmed |
Despite the advance in deep learning technology, assuring the robustness of deep neural networks (DNNs) is challenging and necessary in safety-critical environments, including automobiles, IoT devices in smart factories, and medical devices, to name a few. Furthermore, recent developments allow us to compress DNNs to reduce the size and computational requirements of DNNs to fit them into small embedded devices. However, how robust a compressed DNN can be has not been well studied in addressing its relationship to other critical factors, such as prediction performance and model sizes. In particular, existing studies on robust model compression have been focused on the robustness against off-manifold adversarial perturbation, which does not explain how a DNN will behave against perturbations that follow the same probability distribution as the training data. This aspect is relevant for on-device AI models, which are more likely to experience perturbations due to noise from the regular data observation environment compared with off-manifold perturbations provided by an external attacker. Therefore, this paper investigates the robustness of compressed deep neural networks, focusing on the relationship between the model sizes and the prediction performance on noisy perturbations. Our experiment shows that on-manifold adversarial training can be effective in building robust classifiers, especially when the model compression rate is high. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 300 |
title_short |
Improving the Robustness of Model Compression by On-Manifold Adversarial Training |
url |
https://doi.org/10.3390/fi13120300 https://doaj.org/article/eefa9c16defa469bb5e7866b8829d3b6 https://www.mdpi.com/1999-5903/13/12/300 https://doaj.org/toc/1999-5903 |
remote_bool |
true |
author2 |
Sangkyun Lee |
author2Str |
Sangkyun Lee |
ppnlink |
610604147 |
callnumber-subject |
T - General Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/fi13120300 |
callnumber-a |
T58.5-58.64 |
up_date |
2024-07-03T20:08:56.327Z |
_version_ |
1803589869982711808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018814255</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414225247.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/fi13120300</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018814255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJeefa9c16defa469bb5e7866b8829d3b6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T58.5-58.64</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Junhyung Kwon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving the Robustness of Model Compression by On-Manifold Adversarial Training</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Despite the advance in deep learning technology, assuring the robustness of deep neural networks (DNNs) is challenging and necessary in safety-critical environments, including automobiles, IoT devices in smart factories, and medical devices, to name a few. Furthermore, recent developments allow us to compress DNNs to reduce the size and computational requirements of DNNs to fit them into small embedded devices. However, how robust a compressed DNN can be has not been well studied in addressing its relationship to other critical factors, such as prediction performance and model sizes. In particular, existing studies on robust model compression have been focused on the robustness against off-manifold adversarial perturbation, which does not explain how a DNN will behave against perturbations that follow the same probability distribution as the training data. This aspect is relevant for on-device AI models, which are more likely to experience perturbations due to noise from the regular data observation environment compared with off-manifold perturbations provided by an external attacker. Therefore, this paper investigates the robustness of compressed deep neural networks, focusing on the relationship between the model sizes and the prediction performance on noisy perturbations. Our experiment shows that on-manifold adversarial training can be effective in building robust classifiers, especially when the model compression rate is high.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model compression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adversarial robustness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robust compression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">on-manifold perturbation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Information technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sangkyun Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Future Internet</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">13(2021), 12, p 300</subfield><subfield code="w">(DE-627)610604147</subfield><subfield code="w">(DE-600)2518385-0</subfield><subfield code="x">19995903</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12, p 300</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/fi13120300</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/eefa9c16defa469bb5e7866b8829d3b6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1999-5903/13/12/300</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1999-5903</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">12, p 300</subfield></datafield></record></collection>
|
score |
7.399809 |