Nonlinear Model Predictive Control applied to Transient Operation of a Gas Turbine
This work aims to investigate the application of a comprehensive nonlinear model-based predictive control strategy as a means to avoid unsafe or inappropriate operation of a gas turbine. Herein, the nonlinear model-based predictive control is employed to control compressor speed by varying the fuel...
Ausführliche Beschreibung
Autor*in: |
Thiago S. Pires [verfasserIn] Manuel E. Cruz [verfasserIn] Marcelo J. Colaco [verfasserIn] Marco A. C. Alves [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Sustainable Development of Energy, Water and Environment Systems - SDEWES Centre, 2013, 6(2018), 4, Seite 770-783 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2018 ; number:4 ; pages:770-783 |
Links: |
---|
DOI / URN: |
10.13044/j.sdewes.d6.0220 |
---|
Katalog-ID: |
DOAJ018822967 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ018822967 | ||
003 | DE-627 | ||
005 | 20230310103112.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.13044/j.sdewes.d6.0220 |2 doi | |
035 | |a (DE-627)DOAJ018822967 | ||
035 | |a (DE-599)DOAJ376056b12e394a09b163557beb0e3d57 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a HD72-88 | |
100 | 0 | |a Thiago S. Pires |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nonlinear Model Predictive Control applied to Transient Operation of a Gas Turbine |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This work aims to investigate the application of a comprehensive nonlinear model-based predictive control strategy as a means to avoid unsafe or inappropriate operation of a gas turbine. Herein, the nonlinear model-based predictive control is employed to control compressor speed by varying the fuel flow in the combustion chamber. The methodology complies with the gas turbine constraints explicitly in the optimization procedure and, therefore, the nonlinear model-based predictive control algorithm ensures that process constraints are not violated. The nonlinear dynamic behaviour of the gas turbine is modelled with the aid of a first principle process simulator, which solves the equations of state and the conservation equations of mass, energy and momentum. The optimization procedure is achieved through the implementation of an evolutionary algorithm. Three scenarios are simulated: fuel consumption optimization, load removal/addition and load rejection. The proposed control strategy is successfully applied to both transient and steady-state operational modes of the gas turbine. | ||
650 | 4 | |a Nonlinear model-based predictive control | |
650 | 4 | |a Gas turbine | |
650 | 4 | |a Process simulator | |
650 | 4 | |a Optimization | |
650 | 4 | |a Fuel consumption | |
650 | 4 | |a Load rejection | |
650 | 4 | |a Transient operation. | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Economic growth, development, planning | |
700 | 0 | |a Manuel E. Cruz |e verfasserin |4 aut | |
700 | 0 | |a Marcelo J. Colaco |e verfasserin |4 aut | |
700 | 0 | |a Marco A. C. Alves |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Sustainable Development of Energy, Water and Environment Systems |d SDEWES Centre, 2013 |g 6(2018), 4, Seite 770-783 |w (DE-627)766477541 |w (DE-600)2730778-5 |x 18489257 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2018 |g number:4 |g pages:770-783 |
856 | 4 | 0 | |u https://doi.org/10.13044/j.sdewes.d6.0220 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/376056b12e394a09b163557beb0e3d57 |z kostenfrei |
856 | 4 | 0 | |u http://www.sdewes.org/jsdewes/pid6.0220 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1848-9257 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2018 |e 4 |h 770-783 |
author_variant |
t s p tsp m e c mec m j c mjc m a c a maca |
---|---|
matchkey_str |
article:18489257:2018----::olnamdlrdcieotoapidornino |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
HD |
publishDate |
2018 |
allfields |
10.13044/j.sdewes.d6.0220 doi (DE-627)DOAJ018822967 (DE-599)DOAJ376056b12e394a09b163557beb0e3d57 DE-627 ger DE-627 rakwb eng HD72-88 Thiago S. Pires verfasserin aut Nonlinear Model Predictive Control applied to Transient Operation of a Gas Turbine 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work aims to investigate the application of a comprehensive nonlinear model-based predictive control strategy as a means to avoid unsafe or inappropriate operation of a gas turbine. Herein, the nonlinear model-based predictive control is employed to control compressor speed by varying the fuel flow in the combustion chamber. The methodology complies with the gas turbine constraints explicitly in the optimization procedure and, therefore, the nonlinear model-based predictive control algorithm ensures that process constraints are not violated. The nonlinear dynamic behaviour of the gas turbine is modelled with the aid of a first principle process simulator, which solves the equations of state and the conservation equations of mass, energy and momentum. The optimization procedure is achieved through the implementation of an evolutionary algorithm. Three scenarios are simulated: fuel consumption optimization, load removal/addition and load rejection. The proposed control strategy is successfully applied to both transient and steady-state operational modes of the gas turbine. Nonlinear model-based predictive control Gas turbine Process simulator Optimization Fuel consumption Load rejection Transient operation. Technology T Economic growth, development, planning Manuel E. Cruz verfasserin aut Marcelo J. Colaco verfasserin aut Marco A. C. Alves verfasserin aut In Journal of Sustainable Development of Energy, Water and Environment Systems SDEWES Centre, 2013 6(2018), 4, Seite 770-783 (DE-627)766477541 (DE-600)2730778-5 18489257 nnns volume:6 year:2018 number:4 pages:770-783 https://doi.org/10.13044/j.sdewes.d6.0220 kostenfrei https://doaj.org/article/376056b12e394a09b163557beb0e3d57 kostenfrei http://www.sdewes.org/jsdewes/pid6.0220 kostenfrei https://doaj.org/toc/1848-9257 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 4 770-783 |
spelling |
10.13044/j.sdewes.d6.0220 doi (DE-627)DOAJ018822967 (DE-599)DOAJ376056b12e394a09b163557beb0e3d57 DE-627 ger DE-627 rakwb eng HD72-88 Thiago S. Pires verfasserin aut Nonlinear Model Predictive Control applied to Transient Operation of a Gas Turbine 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work aims to investigate the application of a comprehensive nonlinear model-based predictive control strategy as a means to avoid unsafe or inappropriate operation of a gas turbine. Herein, the nonlinear model-based predictive control is employed to control compressor speed by varying the fuel flow in the combustion chamber. The methodology complies with the gas turbine constraints explicitly in the optimization procedure and, therefore, the nonlinear model-based predictive control algorithm ensures that process constraints are not violated. The nonlinear dynamic behaviour of the gas turbine is modelled with the aid of a first principle process simulator, which solves the equations of state and the conservation equations of mass, energy and momentum. The optimization procedure is achieved through the implementation of an evolutionary algorithm. Three scenarios are simulated: fuel consumption optimization, load removal/addition and load rejection. The proposed control strategy is successfully applied to both transient and steady-state operational modes of the gas turbine. Nonlinear model-based predictive control Gas turbine Process simulator Optimization Fuel consumption Load rejection Transient operation. Technology T Economic growth, development, planning Manuel E. Cruz verfasserin aut Marcelo J. Colaco verfasserin aut Marco A. C. Alves verfasserin aut In Journal of Sustainable Development of Energy, Water and Environment Systems SDEWES Centre, 2013 6(2018), 4, Seite 770-783 (DE-627)766477541 (DE-600)2730778-5 18489257 nnns volume:6 year:2018 number:4 pages:770-783 https://doi.org/10.13044/j.sdewes.d6.0220 kostenfrei https://doaj.org/article/376056b12e394a09b163557beb0e3d57 kostenfrei http://www.sdewes.org/jsdewes/pid6.0220 kostenfrei https://doaj.org/toc/1848-9257 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 4 770-783 |
allfields_unstemmed |
10.13044/j.sdewes.d6.0220 doi (DE-627)DOAJ018822967 (DE-599)DOAJ376056b12e394a09b163557beb0e3d57 DE-627 ger DE-627 rakwb eng HD72-88 Thiago S. Pires verfasserin aut Nonlinear Model Predictive Control applied to Transient Operation of a Gas Turbine 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work aims to investigate the application of a comprehensive nonlinear model-based predictive control strategy as a means to avoid unsafe or inappropriate operation of a gas turbine. Herein, the nonlinear model-based predictive control is employed to control compressor speed by varying the fuel flow in the combustion chamber. The methodology complies with the gas turbine constraints explicitly in the optimization procedure and, therefore, the nonlinear model-based predictive control algorithm ensures that process constraints are not violated. The nonlinear dynamic behaviour of the gas turbine is modelled with the aid of a first principle process simulator, which solves the equations of state and the conservation equations of mass, energy and momentum. The optimization procedure is achieved through the implementation of an evolutionary algorithm. Three scenarios are simulated: fuel consumption optimization, load removal/addition and load rejection. The proposed control strategy is successfully applied to both transient and steady-state operational modes of the gas turbine. Nonlinear model-based predictive control Gas turbine Process simulator Optimization Fuel consumption Load rejection Transient operation. Technology T Economic growth, development, planning Manuel E. Cruz verfasserin aut Marcelo J. Colaco verfasserin aut Marco A. C. Alves verfasserin aut In Journal of Sustainable Development of Energy, Water and Environment Systems SDEWES Centre, 2013 6(2018), 4, Seite 770-783 (DE-627)766477541 (DE-600)2730778-5 18489257 nnns volume:6 year:2018 number:4 pages:770-783 https://doi.org/10.13044/j.sdewes.d6.0220 kostenfrei https://doaj.org/article/376056b12e394a09b163557beb0e3d57 kostenfrei http://www.sdewes.org/jsdewes/pid6.0220 kostenfrei https://doaj.org/toc/1848-9257 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 4 770-783 |
allfieldsGer |
10.13044/j.sdewes.d6.0220 doi (DE-627)DOAJ018822967 (DE-599)DOAJ376056b12e394a09b163557beb0e3d57 DE-627 ger DE-627 rakwb eng HD72-88 Thiago S. Pires verfasserin aut Nonlinear Model Predictive Control applied to Transient Operation of a Gas Turbine 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work aims to investigate the application of a comprehensive nonlinear model-based predictive control strategy as a means to avoid unsafe or inappropriate operation of a gas turbine. Herein, the nonlinear model-based predictive control is employed to control compressor speed by varying the fuel flow in the combustion chamber. The methodology complies with the gas turbine constraints explicitly in the optimization procedure and, therefore, the nonlinear model-based predictive control algorithm ensures that process constraints are not violated. The nonlinear dynamic behaviour of the gas turbine is modelled with the aid of a first principle process simulator, which solves the equations of state and the conservation equations of mass, energy and momentum. The optimization procedure is achieved through the implementation of an evolutionary algorithm. Three scenarios are simulated: fuel consumption optimization, load removal/addition and load rejection. The proposed control strategy is successfully applied to both transient and steady-state operational modes of the gas turbine. Nonlinear model-based predictive control Gas turbine Process simulator Optimization Fuel consumption Load rejection Transient operation. Technology T Economic growth, development, planning Manuel E. Cruz verfasserin aut Marcelo J. Colaco verfasserin aut Marco A. C. Alves verfasserin aut In Journal of Sustainable Development of Energy, Water and Environment Systems SDEWES Centre, 2013 6(2018), 4, Seite 770-783 (DE-627)766477541 (DE-600)2730778-5 18489257 nnns volume:6 year:2018 number:4 pages:770-783 https://doi.org/10.13044/j.sdewes.d6.0220 kostenfrei https://doaj.org/article/376056b12e394a09b163557beb0e3d57 kostenfrei http://www.sdewes.org/jsdewes/pid6.0220 kostenfrei https://doaj.org/toc/1848-9257 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 4 770-783 |
allfieldsSound |
10.13044/j.sdewes.d6.0220 doi (DE-627)DOAJ018822967 (DE-599)DOAJ376056b12e394a09b163557beb0e3d57 DE-627 ger DE-627 rakwb eng HD72-88 Thiago S. Pires verfasserin aut Nonlinear Model Predictive Control applied to Transient Operation of a Gas Turbine 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work aims to investigate the application of a comprehensive nonlinear model-based predictive control strategy as a means to avoid unsafe or inappropriate operation of a gas turbine. Herein, the nonlinear model-based predictive control is employed to control compressor speed by varying the fuel flow in the combustion chamber. The methodology complies with the gas turbine constraints explicitly in the optimization procedure and, therefore, the nonlinear model-based predictive control algorithm ensures that process constraints are not violated. The nonlinear dynamic behaviour of the gas turbine is modelled with the aid of a first principle process simulator, which solves the equations of state and the conservation equations of mass, energy and momentum. The optimization procedure is achieved through the implementation of an evolutionary algorithm. Three scenarios are simulated: fuel consumption optimization, load removal/addition and load rejection. The proposed control strategy is successfully applied to both transient and steady-state operational modes of the gas turbine. Nonlinear model-based predictive control Gas turbine Process simulator Optimization Fuel consumption Load rejection Transient operation. Technology T Economic growth, development, planning Manuel E. Cruz verfasserin aut Marcelo J. Colaco verfasserin aut Marco A. C. Alves verfasserin aut In Journal of Sustainable Development of Energy, Water and Environment Systems SDEWES Centre, 2013 6(2018), 4, Seite 770-783 (DE-627)766477541 (DE-600)2730778-5 18489257 nnns volume:6 year:2018 number:4 pages:770-783 https://doi.org/10.13044/j.sdewes.d6.0220 kostenfrei https://doaj.org/article/376056b12e394a09b163557beb0e3d57 kostenfrei http://www.sdewes.org/jsdewes/pid6.0220 kostenfrei https://doaj.org/toc/1848-9257 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 4 770-783 |
language |
English |
source |
In Journal of Sustainable Development of Energy, Water and Environment Systems 6(2018), 4, Seite 770-783 volume:6 year:2018 number:4 pages:770-783 |
sourceStr |
In Journal of Sustainable Development of Energy, Water and Environment Systems 6(2018), 4, Seite 770-783 volume:6 year:2018 number:4 pages:770-783 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Nonlinear model-based predictive control Gas turbine Process simulator Optimization Fuel consumption Load rejection Transient operation. Technology T Economic growth, development, planning |
isfreeaccess_bool |
true |
container_title |
Journal of Sustainable Development of Energy, Water and Environment Systems |
authorswithroles_txt_mv |
Thiago S. Pires @@aut@@ Manuel E. Cruz @@aut@@ Marcelo J. Colaco @@aut@@ Marco A. C. Alves @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
766477541 |
id |
DOAJ018822967 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018822967</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310103112.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.13044/j.sdewes.d6.0220</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018822967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ376056b12e394a09b163557beb0e3d57</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HD72-88</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Thiago S. Pires</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Model Predictive Control applied to Transient Operation of a Gas Turbine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work aims to investigate the application of a comprehensive nonlinear model-based predictive control strategy as a means to avoid unsafe or inappropriate operation of a gas turbine. Herein, the nonlinear model-based predictive control is employed to control compressor speed by varying the fuel flow in the combustion chamber. The methodology complies with the gas turbine constraints explicitly in the optimization procedure and, therefore, the nonlinear model-based predictive control algorithm ensures that process constraints are not violated. The nonlinear dynamic behaviour of the gas turbine is modelled with the aid of a first principle process simulator, which solves the equations of state and the conservation equations of mass, energy and momentum. The optimization procedure is achieved through the implementation of an evolutionary algorithm. Three scenarios are simulated: fuel consumption optimization, load removal/addition and load rejection. The proposed control strategy is successfully applied to both transient and steady-state operational modes of the gas turbine.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear model-based predictive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas turbine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Process simulator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuel consumption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load rejection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transient operation.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Economic growth, development, planning</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Manuel E. Cruz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcelo J. Colaco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco A. C. Alves</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Sustainable Development of Energy, Water and Environment Systems</subfield><subfield code="d">SDEWES Centre, 2013</subfield><subfield code="g">6(2018), 4, Seite 770-783</subfield><subfield code="w">(DE-627)766477541</subfield><subfield code="w">(DE-600)2730778-5</subfield><subfield code="x">18489257</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:770-783</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.13044/j.sdewes.d6.0220</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/376056b12e394a09b163557beb0e3d57</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sdewes.org/jsdewes/pid6.0220</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1848-9257</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="e">4</subfield><subfield code="h">770-783</subfield></datafield></record></collection>
|
callnumber-first |
H - Social Science |
author |
Thiago S. Pires |
spellingShingle |
Thiago S. Pires misc HD72-88 misc Nonlinear model-based predictive control misc Gas turbine misc Process simulator misc Optimization misc Fuel consumption misc Load rejection misc Transient operation. misc Technology misc T misc Economic growth, development, planning Nonlinear Model Predictive Control applied to Transient Operation of a Gas Turbine |
authorStr |
Thiago S. Pires |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)766477541 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
HD72-88 |
illustrated |
Not Illustrated |
issn |
18489257 |
topic_title |
HD72-88 Nonlinear Model Predictive Control applied to Transient Operation of a Gas Turbine Nonlinear model-based predictive control Gas turbine Process simulator Optimization Fuel consumption Load rejection Transient operation |
topic |
misc HD72-88 misc Nonlinear model-based predictive control misc Gas turbine misc Process simulator misc Optimization misc Fuel consumption misc Load rejection misc Transient operation. misc Technology misc T misc Economic growth, development, planning |
topic_unstemmed |
misc HD72-88 misc Nonlinear model-based predictive control misc Gas turbine misc Process simulator misc Optimization misc Fuel consumption misc Load rejection misc Transient operation. misc Technology misc T misc Economic growth, development, planning |
topic_browse |
misc HD72-88 misc Nonlinear model-based predictive control misc Gas turbine misc Process simulator misc Optimization misc Fuel consumption misc Load rejection misc Transient operation. misc Technology misc T misc Economic growth, development, planning |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Sustainable Development of Energy, Water and Environment Systems |
hierarchy_parent_id |
766477541 |
hierarchy_top_title |
Journal of Sustainable Development of Energy, Water and Environment Systems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)766477541 (DE-600)2730778-5 |
title |
Nonlinear Model Predictive Control applied to Transient Operation of a Gas Turbine |
ctrlnum |
(DE-627)DOAJ018822967 (DE-599)DOAJ376056b12e394a09b163557beb0e3d57 |
title_full |
Nonlinear Model Predictive Control applied to Transient Operation of a Gas Turbine |
author_sort |
Thiago S. Pires |
journal |
Journal of Sustainable Development of Energy, Water and Environment Systems |
journalStr |
Journal of Sustainable Development of Energy, Water and Environment Systems |
callnumber-first-code |
H |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
770 |
author_browse |
Thiago S. Pires Manuel E. Cruz Marcelo J. Colaco Marco A. C. Alves |
container_volume |
6 |
class |
HD72-88 |
format_se |
Elektronische Aufsätze |
author-letter |
Thiago S. Pires |
doi_str_mv |
10.13044/j.sdewes.d6.0220 |
author2-role |
verfasserin |
title_sort |
nonlinear model predictive control applied to transient operation of a gas turbine |
callnumber |
HD72-88 |
title_auth |
Nonlinear Model Predictive Control applied to Transient Operation of a Gas Turbine |
abstract |
This work aims to investigate the application of a comprehensive nonlinear model-based predictive control strategy as a means to avoid unsafe or inappropriate operation of a gas turbine. Herein, the nonlinear model-based predictive control is employed to control compressor speed by varying the fuel flow in the combustion chamber. The methodology complies with the gas turbine constraints explicitly in the optimization procedure and, therefore, the nonlinear model-based predictive control algorithm ensures that process constraints are not violated. The nonlinear dynamic behaviour of the gas turbine is modelled with the aid of a first principle process simulator, which solves the equations of state and the conservation equations of mass, energy and momentum. The optimization procedure is achieved through the implementation of an evolutionary algorithm. Three scenarios are simulated: fuel consumption optimization, load removal/addition and load rejection. The proposed control strategy is successfully applied to both transient and steady-state operational modes of the gas turbine. |
abstractGer |
This work aims to investigate the application of a comprehensive nonlinear model-based predictive control strategy as a means to avoid unsafe or inappropriate operation of a gas turbine. Herein, the nonlinear model-based predictive control is employed to control compressor speed by varying the fuel flow in the combustion chamber. The methodology complies with the gas turbine constraints explicitly in the optimization procedure and, therefore, the nonlinear model-based predictive control algorithm ensures that process constraints are not violated. The nonlinear dynamic behaviour of the gas turbine is modelled with the aid of a first principle process simulator, which solves the equations of state and the conservation equations of mass, energy and momentum. The optimization procedure is achieved through the implementation of an evolutionary algorithm. Three scenarios are simulated: fuel consumption optimization, load removal/addition and load rejection. The proposed control strategy is successfully applied to both transient and steady-state operational modes of the gas turbine. |
abstract_unstemmed |
This work aims to investigate the application of a comprehensive nonlinear model-based predictive control strategy as a means to avoid unsafe or inappropriate operation of a gas turbine. Herein, the nonlinear model-based predictive control is employed to control compressor speed by varying the fuel flow in the combustion chamber. The methodology complies with the gas turbine constraints explicitly in the optimization procedure and, therefore, the nonlinear model-based predictive control algorithm ensures that process constraints are not violated. The nonlinear dynamic behaviour of the gas turbine is modelled with the aid of a first principle process simulator, which solves the equations of state and the conservation equations of mass, energy and momentum. The optimization procedure is achieved through the implementation of an evolutionary algorithm. Three scenarios are simulated: fuel consumption optimization, load removal/addition and load rejection. The proposed control strategy is successfully applied to both transient and steady-state operational modes of the gas turbine. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Nonlinear Model Predictive Control applied to Transient Operation of a Gas Turbine |
url |
https://doi.org/10.13044/j.sdewes.d6.0220 https://doaj.org/article/376056b12e394a09b163557beb0e3d57 http://www.sdewes.org/jsdewes/pid6.0220 https://doaj.org/toc/1848-9257 |
remote_bool |
true |
author2 |
Manuel E. Cruz Marcelo J. Colaco Marco A. C. Alves |
author2Str |
Manuel E. Cruz Marcelo J. Colaco Marco A. C. Alves |
ppnlink |
766477541 |
callnumber-subject |
HD - Industries, Land Use, Labor |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.13044/j.sdewes.d6.0220 |
callnumber-a |
HD72-88 |
up_date |
2024-07-03T20:12:10.925Z |
_version_ |
1803590074057621504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018822967</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310103112.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.13044/j.sdewes.d6.0220</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018822967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ376056b12e394a09b163557beb0e3d57</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HD72-88</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Thiago S. Pires</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Model Predictive Control applied to Transient Operation of a Gas Turbine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work aims to investigate the application of a comprehensive nonlinear model-based predictive control strategy as a means to avoid unsafe or inappropriate operation of a gas turbine. Herein, the nonlinear model-based predictive control is employed to control compressor speed by varying the fuel flow in the combustion chamber. The methodology complies with the gas turbine constraints explicitly in the optimization procedure and, therefore, the nonlinear model-based predictive control algorithm ensures that process constraints are not violated. The nonlinear dynamic behaviour of the gas turbine is modelled with the aid of a first principle process simulator, which solves the equations of state and the conservation equations of mass, energy and momentum. The optimization procedure is achieved through the implementation of an evolutionary algorithm. Three scenarios are simulated: fuel consumption optimization, load removal/addition and load rejection. The proposed control strategy is successfully applied to both transient and steady-state operational modes of the gas turbine.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear model-based predictive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas turbine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Process simulator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuel consumption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load rejection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transient operation.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Economic growth, development, planning</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Manuel E. Cruz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcelo J. Colaco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco A. C. Alves</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Sustainable Development of Energy, Water and Environment Systems</subfield><subfield code="d">SDEWES Centre, 2013</subfield><subfield code="g">6(2018), 4, Seite 770-783</subfield><subfield code="w">(DE-627)766477541</subfield><subfield code="w">(DE-600)2730778-5</subfield><subfield code="x">18489257</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:770-783</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.13044/j.sdewes.d6.0220</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/376056b12e394a09b163557beb0e3d57</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sdewes.org/jsdewes/pid6.0220</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1848-9257</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="e">4</subfield><subfield code="h">770-783</subfield></datafield></record></collection>
|
score |
7.4022093 |