siRNAsuperparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans
Bis(2-ethylhexyl)ortho-phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride materials. Considering its widespread application, it has become a major environmental pollutant and can cause endocrine, reproductive system, and gastrointestinal disorders. Herein we aimed to elucidate the m...
Ausführliche Beschreibung
Autor*in: |
Yongyi Huang [verfasserIn] Xiling Du [verfasserIn] Te Liu [verfasserIn] Qiang Liu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ecotoxicology and Environmental Safety - Elsevier, 2021, 229(2022), Seite 113083- |
---|---|
Übergeordnetes Werk: |
volume:229 ; year:2022 ; pages:113083- |
Links: |
---|
DOI / URN: |
10.1016/j.ecoenv.2021.113083 |
---|
Katalog-ID: |
DOAJ018856411 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ018856411 | ||
003 | DE-627 | ||
005 | 20230502095018.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ecoenv.2021.113083 |2 doi | |
035 | |a (DE-627)DOAJ018856411 | ||
035 | |a (DE-599)DOAJdb8b9974790242649eb30bed9e1fbf06 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD172-193.5 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Yongyi Huang |e verfasserin |4 aut | |
245 | 1 | 5 | |a siRNAsuperparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Bis(2-ethylhexyl)ortho-phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride materials. Considering its widespread application, it has become a major environmental pollutant and can cause endocrine, reproductive system, and gastrointestinal disorders. Herein we aimed to elucidate the mechanisms via which DEHP causes cytotoxicity in Caenorhabditis elegans and assess whether siRNAsuperparamagnetic iron oxide nanoparticles (SPIONs) can attenuate this effect. On exposing C. elegans to 10 μM DEHP, its physiological functions and gene expression levels were markedly affected. RNA-seq and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that DEHP exposure significantly activated the autophagy-animal signal transduction pathway in the somatic cells of C. elegans. Subsequently, the surface of SPIONs was loaded with siRNAs and transfected into C. elegans. Transmission electron microscopy showed that SPIONs could smoothly enter the somatic cells of C. elegans. Further, qPCR showed that the expression levels of autophagy pathway-related genes, namely Atg-2, Epg-9, Atg-18, Bec-1, and Atg-16.2, in the siRNA@SPION intervention group were significantly lower than those in the control group. Biochemical and physiological test results suggested that siRNA@SPION complexes attenuated DEHP-induced physiological toxicity and oxidative stress damage in C. elegans. Collectively, our findings indicated that DEHP markedly affects the physiological activity of C. elegans, induces changes in gene expression levels, and activates the autophagy signal transduction pathway and that siRNA@SPION complexes suppress such toxic effects by silencing the expression of genes involved in the autophagy signal transduction pathway. | ||
650 | 4 | |a Autophagy | |
650 | 4 | |a Environmental pollution | |
650 | 4 | |a Oxidative stress damage | |
650 | 4 | |a SiRNA | |
650 | 4 | |a Signal transduction | |
650 | 4 | |a Nanoparticles | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Xiling Du |e verfasserin |4 aut | |
700 | 0 | |a Te Liu |e verfasserin |4 aut | |
700 | 0 | |a Qiang Liu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ecotoxicology and Environmental Safety |d Elsevier, 2021 |g 229(2022), Seite 113083- |w (DE-627)266018467 |w (DE-600)1466969-9 |x 10902414 |7 nnns |
773 | 1 | 8 | |g volume:229 |g year:2022 |g pages:113083- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ecoenv.2021.113083 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/db8b9974790242649eb30bed9e1fbf06 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0147651321011957 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0147-6513 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 229 |j 2022 |h 113083- |
author_variant |
y h yh x d xd t l tl q l ql |
---|---|
matchkey_str |
article:10902414:2022----::inspraaantcrnxdnnprilsteutpyilgcloiiyfepyupesnatpaya |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TD |
publishDate |
2022 |
allfields |
10.1016/j.ecoenv.2021.113083 doi (DE-627)DOAJ018856411 (DE-599)DOAJdb8b9974790242649eb30bed9e1fbf06 DE-627 ger DE-627 rakwb eng TD172-193.5 GE1-350 Yongyi Huang verfasserin aut siRNAsuperparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Bis(2-ethylhexyl)ortho-phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride materials. Considering its widespread application, it has become a major environmental pollutant and can cause endocrine, reproductive system, and gastrointestinal disorders. Herein we aimed to elucidate the mechanisms via which DEHP causes cytotoxicity in Caenorhabditis elegans and assess whether siRNAsuperparamagnetic iron oxide nanoparticles (SPIONs) can attenuate this effect. On exposing C. elegans to 10 μM DEHP, its physiological functions and gene expression levels were markedly affected. RNA-seq and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that DEHP exposure significantly activated the autophagy-animal signal transduction pathway in the somatic cells of C. elegans. Subsequently, the surface of SPIONs was loaded with siRNAs and transfected into C. elegans. Transmission electron microscopy showed that SPIONs could smoothly enter the somatic cells of C. elegans. Further, qPCR showed that the expression levels of autophagy pathway-related genes, namely Atg-2, Epg-9, Atg-18, Bec-1, and Atg-16.2, in the siRNA@SPION intervention group were significantly lower than those in the control group. Biochemical and physiological test results suggested that siRNA@SPION complexes attenuated DEHP-induced physiological toxicity and oxidative stress damage in C. elegans. Collectively, our findings indicated that DEHP markedly affects the physiological activity of C. elegans, induces changes in gene expression levels, and activates the autophagy signal transduction pathway and that siRNA@SPION complexes suppress such toxic effects by silencing the expression of genes involved in the autophagy signal transduction pathway. Autophagy Environmental pollution Oxidative stress damage SiRNA Signal transduction Nanoparticles Environmental sciences Xiling Du verfasserin aut Te Liu verfasserin aut Qiang Liu verfasserin aut In Ecotoxicology and Environmental Safety Elsevier, 2021 229(2022), Seite 113083- (DE-627)266018467 (DE-600)1466969-9 10902414 nnns volume:229 year:2022 pages:113083- https://doi.org/10.1016/j.ecoenv.2021.113083 kostenfrei https://doaj.org/article/db8b9974790242649eb30bed9e1fbf06 kostenfrei http://www.sciencedirect.com/science/article/pii/S0147651321011957 kostenfrei https://doaj.org/toc/0147-6513 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 229 2022 113083- |
spelling |
10.1016/j.ecoenv.2021.113083 doi (DE-627)DOAJ018856411 (DE-599)DOAJdb8b9974790242649eb30bed9e1fbf06 DE-627 ger DE-627 rakwb eng TD172-193.5 GE1-350 Yongyi Huang verfasserin aut siRNAsuperparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Bis(2-ethylhexyl)ortho-phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride materials. Considering its widespread application, it has become a major environmental pollutant and can cause endocrine, reproductive system, and gastrointestinal disorders. Herein we aimed to elucidate the mechanisms via which DEHP causes cytotoxicity in Caenorhabditis elegans and assess whether siRNAsuperparamagnetic iron oxide nanoparticles (SPIONs) can attenuate this effect. On exposing C. elegans to 10 μM DEHP, its physiological functions and gene expression levels were markedly affected. RNA-seq and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that DEHP exposure significantly activated the autophagy-animal signal transduction pathway in the somatic cells of C. elegans. Subsequently, the surface of SPIONs was loaded with siRNAs and transfected into C. elegans. Transmission electron microscopy showed that SPIONs could smoothly enter the somatic cells of C. elegans. Further, qPCR showed that the expression levels of autophagy pathway-related genes, namely Atg-2, Epg-9, Atg-18, Bec-1, and Atg-16.2, in the siRNA@SPION intervention group were significantly lower than those in the control group. Biochemical and physiological test results suggested that siRNA@SPION complexes attenuated DEHP-induced physiological toxicity and oxidative stress damage in C. elegans. Collectively, our findings indicated that DEHP markedly affects the physiological activity of C. elegans, induces changes in gene expression levels, and activates the autophagy signal transduction pathway and that siRNA@SPION complexes suppress such toxic effects by silencing the expression of genes involved in the autophagy signal transduction pathway. Autophagy Environmental pollution Oxidative stress damage SiRNA Signal transduction Nanoparticles Environmental sciences Xiling Du verfasserin aut Te Liu verfasserin aut Qiang Liu verfasserin aut In Ecotoxicology and Environmental Safety Elsevier, 2021 229(2022), Seite 113083- (DE-627)266018467 (DE-600)1466969-9 10902414 nnns volume:229 year:2022 pages:113083- https://doi.org/10.1016/j.ecoenv.2021.113083 kostenfrei https://doaj.org/article/db8b9974790242649eb30bed9e1fbf06 kostenfrei http://www.sciencedirect.com/science/article/pii/S0147651321011957 kostenfrei https://doaj.org/toc/0147-6513 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 229 2022 113083- |
allfields_unstemmed |
10.1016/j.ecoenv.2021.113083 doi (DE-627)DOAJ018856411 (DE-599)DOAJdb8b9974790242649eb30bed9e1fbf06 DE-627 ger DE-627 rakwb eng TD172-193.5 GE1-350 Yongyi Huang verfasserin aut siRNAsuperparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Bis(2-ethylhexyl)ortho-phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride materials. Considering its widespread application, it has become a major environmental pollutant and can cause endocrine, reproductive system, and gastrointestinal disorders. Herein we aimed to elucidate the mechanisms via which DEHP causes cytotoxicity in Caenorhabditis elegans and assess whether siRNAsuperparamagnetic iron oxide nanoparticles (SPIONs) can attenuate this effect. On exposing C. elegans to 10 μM DEHP, its physiological functions and gene expression levels were markedly affected. RNA-seq and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that DEHP exposure significantly activated the autophagy-animal signal transduction pathway in the somatic cells of C. elegans. Subsequently, the surface of SPIONs was loaded with siRNAs and transfected into C. elegans. Transmission electron microscopy showed that SPIONs could smoothly enter the somatic cells of C. elegans. Further, qPCR showed that the expression levels of autophagy pathway-related genes, namely Atg-2, Epg-9, Atg-18, Bec-1, and Atg-16.2, in the siRNA@SPION intervention group were significantly lower than those in the control group. Biochemical and physiological test results suggested that siRNA@SPION complexes attenuated DEHP-induced physiological toxicity and oxidative stress damage in C. elegans. Collectively, our findings indicated that DEHP markedly affects the physiological activity of C. elegans, induces changes in gene expression levels, and activates the autophagy signal transduction pathway and that siRNA@SPION complexes suppress such toxic effects by silencing the expression of genes involved in the autophagy signal transduction pathway. Autophagy Environmental pollution Oxidative stress damage SiRNA Signal transduction Nanoparticles Environmental sciences Xiling Du verfasserin aut Te Liu verfasserin aut Qiang Liu verfasserin aut In Ecotoxicology and Environmental Safety Elsevier, 2021 229(2022), Seite 113083- (DE-627)266018467 (DE-600)1466969-9 10902414 nnns volume:229 year:2022 pages:113083- https://doi.org/10.1016/j.ecoenv.2021.113083 kostenfrei https://doaj.org/article/db8b9974790242649eb30bed9e1fbf06 kostenfrei http://www.sciencedirect.com/science/article/pii/S0147651321011957 kostenfrei https://doaj.org/toc/0147-6513 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 229 2022 113083- |
allfieldsGer |
10.1016/j.ecoenv.2021.113083 doi (DE-627)DOAJ018856411 (DE-599)DOAJdb8b9974790242649eb30bed9e1fbf06 DE-627 ger DE-627 rakwb eng TD172-193.5 GE1-350 Yongyi Huang verfasserin aut siRNAsuperparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Bis(2-ethylhexyl)ortho-phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride materials. Considering its widespread application, it has become a major environmental pollutant and can cause endocrine, reproductive system, and gastrointestinal disorders. Herein we aimed to elucidate the mechanisms via which DEHP causes cytotoxicity in Caenorhabditis elegans and assess whether siRNAsuperparamagnetic iron oxide nanoparticles (SPIONs) can attenuate this effect. On exposing C. elegans to 10 μM DEHP, its physiological functions and gene expression levels were markedly affected. RNA-seq and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that DEHP exposure significantly activated the autophagy-animal signal transduction pathway in the somatic cells of C. elegans. Subsequently, the surface of SPIONs was loaded with siRNAs and transfected into C. elegans. Transmission electron microscopy showed that SPIONs could smoothly enter the somatic cells of C. elegans. Further, qPCR showed that the expression levels of autophagy pathway-related genes, namely Atg-2, Epg-9, Atg-18, Bec-1, and Atg-16.2, in the siRNA@SPION intervention group were significantly lower than those in the control group. Biochemical and physiological test results suggested that siRNA@SPION complexes attenuated DEHP-induced physiological toxicity and oxidative stress damage in C. elegans. Collectively, our findings indicated that DEHP markedly affects the physiological activity of C. elegans, induces changes in gene expression levels, and activates the autophagy signal transduction pathway and that siRNA@SPION complexes suppress such toxic effects by silencing the expression of genes involved in the autophagy signal transduction pathway. Autophagy Environmental pollution Oxidative stress damage SiRNA Signal transduction Nanoparticles Environmental sciences Xiling Du verfasserin aut Te Liu verfasserin aut Qiang Liu verfasserin aut In Ecotoxicology and Environmental Safety Elsevier, 2021 229(2022), Seite 113083- (DE-627)266018467 (DE-600)1466969-9 10902414 nnns volume:229 year:2022 pages:113083- https://doi.org/10.1016/j.ecoenv.2021.113083 kostenfrei https://doaj.org/article/db8b9974790242649eb30bed9e1fbf06 kostenfrei http://www.sciencedirect.com/science/article/pii/S0147651321011957 kostenfrei https://doaj.org/toc/0147-6513 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 229 2022 113083- |
allfieldsSound |
10.1016/j.ecoenv.2021.113083 doi (DE-627)DOAJ018856411 (DE-599)DOAJdb8b9974790242649eb30bed9e1fbf06 DE-627 ger DE-627 rakwb eng TD172-193.5 GE1-350 Yongyi Huang verfasserin aut siRNAsuperparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Bis(2-ethylhexyl)ortho-phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride materials. Considering its widespread application, it has become a major environmental pollutant and can cause endocrine, reproductive system, and gastrointestinal disorders. Herein we aimed to elucidate the mechanisms via which DEHP causes cytotoxicity in Caenorhabditis elegans and assess whether siRNAsuperparamagnetic iron oxide nanoparticles (SPIONs) can attenuate this effect. On exposing C. elegans to 10 μM DEHP, its physiological functions and gene expression levels were markedly affected. RNA-seq and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that DEHP exposure significantly activated the autophagy-animal signal transduction pathway in the somatic cells of C. elegans. Subsequently, the surface of SPIONs was loaded with siRNAs and transfected into C. elegans. Transmission electron microscopy showed that SPIONs could smoothly enter the somatic cells of C. elegans. Further, qPCR showed that the expression levels of autophagy pathway-related genes, namely Atg-2, Epg-9, Atg-18, Bec-1, and Atg-16.2, in the siRNA@SPION intervention group were significantly lower than those in the control group. Biochemical and physiological test results suggested that siRNA@SPION complexes attenuated DEHP-induced physiological toxicity and oxidative stress damage in C. elegans. Collectively, our findings indicated that DEHP markedly affects the physiological activity of C. elegans, induces changes in gene expression levels, and activates the autophagy signal transduction pathway and that siRNA@SPION complexes suppress such toxic effects by silencing the expression of genes involved in the autophagy signal transduction pathway. Autophagy Environmental pollution Oxidative stress damage SiRNA Signal transduction Nanoparticles Environmental sciences Xiling Du verfasserin aut Te Liu verfasserin aut Qiang Liu verfasserin aut In Ecotoxicology and Environmental Safety Elsevier, 2021 229(2022), Seite 113083- (DE-627)266018467 (DE-600)1466969-9 10902414 nnns volume:229 year:2022 pages:113083- https://doi.org/10.1016/j.ecoenv.2021.113083 kostenfrei https://doaj.org/article/db8b9974790242649eb30bed9e1fbf06 kostenfrei http://www.sciencedirect.com/science/article/pii/S0147651321011957 kostenfrei https://doaj.org/toc/0147-6513 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 229 2022 113083- |
language |
English |
source |
In Ecotoxicology and Environmental Safety 229(2022), Seite 113083- volume:229 year:2022 pages:113083- |
sourceStr |
In Ecotoxicology and Environmental Safety 229(2022), Seite 113083- volume:229 year:2022 pages:113083- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Autophagy Environmental pollution Oxidative stress damage SiRNA Signal transduction Nanoparticles Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Ecotoxicology and Environmental Safety |
authorswithroles_txt_mv |
Yongyi Huang @@aut@@ Xiling Du @@aut@@ Te Liu @@aut@@ Qiang Liu @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
266018467 |
id |
DOAJ018856411 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018856411</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502095018.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecoenv.2021.113083</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018856411</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdb8b9974790242649eb30bed9e1fbf06</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD172-193.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yongyi Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="5"><subfield code="a">siRNAsuperparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bis(2-ethylhexyl)ortho-phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride materials. Considering its widespread application, it has become a major environmental pollutant and can cause endocrine, reproductive system, and gastrointestinal disorders. Herein we aimed to elucidate the mechanisms via which DEHP causes cytotoxicity in Caenorhabditis elegans and assess whether siRNAsuperparamagnetic iron oxide nanoparticles (SPIONs) can attenuate this effect. On exposing C. elegans to 10 μM DEHP, its physiological functions and gene expression levels were markedly affected. RNA-seq and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that DEHP exposure significantly activated the autophagy-animal signal transduction pathway in the somatic cells of C. elegans. Subsequently, the surface of SPIONs was loaded with siRNAs and transfected into C. elegans. Transmission electron microscopy showed that SPIONs could smoothly enter the somatic cells of C. elegans. Further, qPCR showed that the expression levels of autophagy pathway-related genes, namely Atg-2, Epg-9, Atg-18, Bec-1, and Atg-16.2, in the siRNA@SPION intervention group were significantly lower than those in the control group. Biochemical and physiological test results suggested that siRNA@SPION complexes attenuated DEHP-induced physiological toxicity and oxidative stress damage in C. elegans. Collectively, our findings indicated that DEHP markedly affects the physiological activity of C. elegans, induces changes in gene expression levels, and activates the autophagy signal transduction pathway and that siRNA@SPION complexes suppress such toxic effects by silencing the expression of genes involved in the autophagy signal transduction pathway.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Autophagy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental pollution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidative stress damage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SiRNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal transduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticles</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiling Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Te Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecotoxicology and Environmental Safety</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">229(2022), Seite 113083-</subfield><subfield code="w">(DE-627)266018467</subfield><subfield code="w">(DE-600)1466969-9</subfield><subfield code="x">10902414</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:229</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:113083-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecoenv.2021.113083</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/db8b9974790242649eb30bed9e1fbf06</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0147651321011957</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0147-6513</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">229</subfield><subfield code="j">2022</subfield><subfield code="h">113083-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yongyi Huang |
spellingShingle |
Yongyi Huang misc TD172-193.5 misc GE1-350 misc Autophagy misc Environmental pollution misc Oxidative stress damage misc SiRNA misc Signal transduction misc Nanoparticles misc Environmental sciences siRNAsuperparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans |
authorStr |
Yongyi Huang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266018467 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD172-193 |
illustrated |
Not Illustrated |
issn |
10902414 |
topic_title |
TD172-193.5 GE1-350 siRNAsuperparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans Autophagy Environmental pollution Oxidative stress damage SiRNA Signal transduction Nanoparticles |
topic |
misc TD172-193.5 misc GE1-350 misc Autophagy misc Environmental pollution misc Oxidative stress damage misc SiRNA misc Signal transduction misc Nanoparticles misc Environmental sciences |
topic_unstemmed |
misc TD172-193.5 misc GE1-350 misc Autophagy misc Environmental pollution misc Oxidative stress damage misc SiRNA misc Signal transduction misc Nanoparticles misc Environmental sciences |
topic_browse |
misc TD172-193.5 misc GE1-350 misc Autophagy misc Environmental pollution misc Oxidative stress damage misc SiRNA misc Signal transduction misc Nanoparticles misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecotoxicology and Environmental Safety |
hierarchy_parent_id |
266018467 |
hierarchy_top_title |
Ecotoxicology and Environmental Safety |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)266018467 (DE-600)1466969-9 |
title |
siRNAsuperparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans |
ctrlnum |
(DE-627)DOAJ018856411 (DE-599)DOAJdb8b9974790242649eb30bed9e1fbf06 |
title_full |
siRNAsuperparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans |
author_sort |
Yongyi Huang |
journal |
Ecotoxicology and Environmental Safety |
journalStr |
Ecotoxicology and Environmental Safety |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
113083 |
author_browse |
Yongyi Huang Xiling Du Te Liu Qiang Liu |
container_volume |
229 |
class |
TD172-193.5 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Yongyi Huang |
doi_str_mv |
10.1016/j.ecoenv.2021.113083 |
author2-role |
verfasserin |
title_sort |
superparamagnetic iron oxide nanoparticles attenuate physiological toxicity of dehp by suppressing autophagy pathway activities in caenorhabditis elegans |
callnumber |
TD172-193.5 |
title_auth |
siRNAsuperparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans |
abstract |
Bis(2-ethylhexyl)ortho-phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride materials. Considering its widespread application, it has become a major environmental pollutant and can cause endocrine, reproductive system, and gastrointestinal disorders. Herein we aimed to elucidate the mechanisms via which DEHP causes cytotoxicity in Caenorhabditis elegans and assess whether siRNAsuperparamagnetic iron oxide nanoparticles (SPIONs) can attenuate this effect. On exposing C. elegans to 10 μM DEHP, its physiological functions and gene expression levels were markedly affected. RNA-seq and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that DEHP exposure significantly activated the autophagy-animal signal transduction pathway in the somatic cells of C. elegans. Subsequently, the surface of SPIONs was loaded with siRNAs and transfected into C. elegans. Transmission electron microscopy showed that SPIONs could smoothly enter the somatic cells of C. elegans. Further, qPCR showed that the expression levels of autophagy pathway-related genes, namely Atg-2, Epg-9, Atg-18, Bec-1, and Atg-16.2, in the siRNA@SPION intervention group were significantly lower than those in the control group. Biochemical and physiological test results suggested that siRNA@SPION complexes attenuated DEHP-induced physiological toxicity and oxidative stress damage in C. elegans. Collectively, our findings indicated that DEHP markedly affects the physiological activity of C. elegans, induces changes in gene expression levels, and activates the autophagy signal transduction pathway and that siRNA@SPION complexes suppress such toxic effects by silencing the expression of genes involved in the autophagy signal transduction pathway. |
abstractGer |
Bis(2-ethylhexyl)ortho-phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride materials. Considering its widespread application, it has become a major environmental pollutant and can cause endocrine, reproductive system, and gastrointestinal disorders. Herein we aimed to elucidate the mechanisms via which DEHP causes cytotoxicity in Caenorhabditis elegans and assess whether siRNAsuperparamagnetic iron oxide nanoparticles (SPIONs) can attenuate this effect. On exposing C. elegans to 10 μM DEHP, its physiological functions and gene expression levels were markedly affected. RNA-seq and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that DEHP exposure significantly activated the autophagy-animal signal transduction pathway in the somatic cells of C. elegans. Subsequently, the surface of SPIONs was loaded with siRNAs and transfected into C. elegans. Transmission electron microscopy showed that SPIONs could smoothly enter the somatic cells of C. elegans. Further, qPCR showed that the expression levels of autophagy pathway-related genes, namely Atg-2, Epg-9, Atg-18, Bec-1, and Atg-16.2, in the siRNA@SPION intervention group were significantly lower than those in the control group. Biochemical and physiological test results suggested that siRNA@SPION complexes attenuated DEHP-induced physiological toxicity and oxidative stress damage in C. elegans. Collectively, our findings indicated that DEHP markedly affects the physiological activity of C. elegans, induces changes in gene expression levels, and activates the autophagy signal transduction pathway and that siRNA@SPION complexes suppress such toxic effects by silencing the expression of genes involved in the autophagy signal transduction pathway. |
abstract_unstemmed |
Bis(2-ethylhexyl)ortho-phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride materials. Considering its widespread application, it has become a major environmental pollutant and can cause endocrine, reproductive system, and gastrointestinal disorders. Herein we aimed to elucidate the mechanisms via which DEHP causes cytotoxicity in Caenorhabditis elegans and assess whether siRNAsuperparamagnetic iron oxide nanoparticles (SPIONs) can attenuate this effect. On exposing C. elegans to 10 μM DEHP, its physiological functions and gene expression levels were markedly affected. RNA-seq and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that DEHP exposure significantly activated the autophagy-animal signal transduction pathway in the somatic cells of C. elegans. Subsequently, the surface of SPIONs was loaded with siRNAs and transfected into C. elegans. Transmission electron microscopy showed that SPIONs could smoothly enter the somatic cells of C. elegans. Further, qPCR showed that the expression levels of autophagy pathway-related genes, namely Atg-2, Epg-9, Atg-18, Bec-1, and Atg-16.2, in the siRNA@SPION intervention group were significantly lower than those in the control group. Biochemical and physiological test results suggested that siRNA@SPION complexes attenuated DEHP-induced physiological toxicity and oxidative stress damage in C. elegans. Collectively, our findings indicated that DEHP markedly affects the physiological activity of C. elegans, induces changes in gene expression levels, and activates the autophagy signal transduction pathway and that siRNA@SPION complexes suppress such toxic effects by silencing the expression of genes involved in the autophagy signal transduction pathway. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
siRNAsuperparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans |
url |
https://doi.org/10.1016/j.ecoenv.2021.113083 https://doaj.org/article/db8b9974790242649eb30bed9e1fbf06 http://www.sciencedirect.com/science/article/pii/S0147651321011957 https://doaj.org/toc/0147-6513 |
remote_bool |
true |
author2 |
Xiling Du Te Liu Qiang Liu |
author2Str |
Xiling Du Te Liu Qiang Liu |
ppnlink |
266018467 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ecoenv.2021.113083 |
callnumber-a |
TD172-193.5 |
up_date |
2024-07-03T20:25:12.611Z |
_version_ |
1803590893700120577 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018856411</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502095018.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecoenv.2021.113083</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018856411</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdb8b9974790242649eb30bed9e1fbf06</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD172-193.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yongyi Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="5"><subfield code="a">siRNAsuperparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bis(2-ethylhexyl)ortho-phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride materials. Considering its widespread application, it has become a major environmental pollutant and can cause endocrine, reproductive system, and gastrointestinal disorders. Herein we aimed to elucidate the mechanisms via which DEHP causes cytotoxicity in Caenorhabditis elegans and assess whether siRNAsuperparamagnetic iron oxide nanoparticles (SPIONs) can attenuate this effect. On exposing C. elegans to 10 μM DEHP, its physiological functions and gene expression levels were markedly affected. RNA-seq and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that DEHP exposure significantly activated the autophagy-animal signal transduction pathway in the somatic cells of C. elegans. Subsequently, the surface of SPIONs was loaded with siRNAs and transfected into C. elegans. Transmission electron microscopy showed that SPIONs could smoothly enter the somatic cells of C. elegans. Further, qPCR showed that the expression levels of autophagy pathway-related genes, namely Atg-2, Epg-9, Atg-18, Bec-1, and Atg-16.2, in the siRNA@SPION intervention group were significantly lower than those in the control group. Biochemical and physiological test results suggested that siRNA@SPION complexes attenuated DEHP-induced physiological toxicity and oxidative stress damage in C. elegans. Collectively, our findings indicated that DEHP markedly affects the physiological activity of C. elegans, induces changes in gene expression levels, and activates the autophagy signal transduction pathway and that siRNA@SPION complexes suppress such toxic effects by silencing the expression of genes involved in the autophagy signal transduction pathway.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Autophagy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental pollution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidative stress damage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SiRNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal transduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticles</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiling Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Te Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecotoxicology and Environmental Safety</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">229(2022), Seite 113083-</subfield><subfield code="w">(DE-627)266018467</subfield><subfield code="w">(DE-600)1466969-9</subfield><subfield code="x">10902414</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:229</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:113083-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecoenv.2021.113083</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/db8b9974790242649eb30bed9e1fbf06</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0147651321011957</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0147-6513</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">229</subfield><subfield code="j">2022</subfield><subfield code="h">113083-</subfield></datafield></record></collection>
|
score |
7.40038 |