Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells
Abstract Background Tunneling nanotubes (TNTs) are special membrane structures for intercellular communications. Vital cargoes (such as mitochondria) could be delivered from healthy cells to rescue damaged ones through TNTs. The TNTs could be utilized for the purpose of systematic delivery of therap...
Ausführliche Beschreibung
Autor*in: |
Chia-Wei Lee [verfasserIn] Chia-Chen Kuo [verfasserIn] Chi-Jung Liang [verfasserIn] Huei-Jyuan Pan [verfasserIn] Chia-Ning Shen [verfasserIn] Chau-Hwang Lee [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: BMC Molecular and Cell Biology - BMC, 2019, 23(2022), 1, Seite 10 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2022 ; number:1 ; pages:10 |
Links: |
---|
DOI / URN: |
10.1186/s12860-022-00428-3 |
---|
Katalog-ID: |
DOAJ018861679 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ018861679 | ||
003 | DE-627 | ||
005 | 20230501203831.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12860-022-00428-3 |2 doi | |
035 | |a (DE-627)DOAJ018861679 | ||
035 | |a (DE-599)DOAJb404fb84985b4cf8a5f7ccabde556805 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH573-671 | |
100 | 0 | |a Chia-Wei Lee |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background Tunneling nanotubes (TNTs) are special membrane structures for intercellular communications. Vital cargoes (such as mitochondria) could be delivered from healthy cells to rescue damaged ones through TNTs. The TNTs could be utilized for the purpose of systematic delivery of therapeutic agents between cells. However, there are insufficient studies on the controlled enhancement of TNT formations. The purpose of this study is to understand how macrophages influence the TNT formation in cancer cells. Results Here we compared the capabilities of inducing TNTs in human pancreatic cancer cells (PANC-1) of the media conditioned by M0, M1 and M2 macrophages derived from THP-1 cells. The M0 and M1 macrophage conditioned media promoted TNT formation. Using a focused ion beam to cut through a TNT, we observed tunnel-like structures inside dense cytoskeletons with scanning electron microscopy. The TNT formation correlated with raised motility, invasion, and epithelial–mesenchymal transition in the PANC-1 cells. Mitochondria and lysosomes were also found to be transported in the TNTs. Conclusions These results suggest that TNT formation could be one of the responses to the immune stress in pancreatic cancer cells caused by M0 and M1 macrophages. This finding is valuable for the development of macrophage-targeting cancer therapy. | ||
650 | 4 | |a Tunneling nanotube (TNT) | |
650 | 4 | |a Pancreatic cancer cell | |
650 | 4 | |a Macrophage conditioned medium | |
650 | 4 | |a Epithelial–mesenchymal transition | |
650 | 4 | |a Mitochondrion transportation | |
653 | 0 | |a Cytology | |
700 | 0 | |a Chia-Chen Kuo |e verfasserin |4 aut | |
700 | 0 | |a Chi-Jung Liang |e verfasserin |4 aut | |
700 | 0 | |a Huei-Jyuan Pan |e verfasserin |4 aut | |
700 | 0 | |a Chia-Ning Shen |e verfasserin |4 aut | |
700 | 0 | |a Chau-Hwang Lee |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BMC Molecular and Cell Biology |d BMC, 2019 |g 23(2022), 1, Seite 10 |w (DE-627)1067439218 |x 26618850 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2022 |g number:1 |g pages:10 |
856 | 4 | 0 | |u https://doi.org/10.1186/s12860-022-00428-3 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b404fb84985b4cf8a5f7ccabde556805 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s12860-022-00428-3 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2661-8850 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2022 |e 1 |h 10 |
author_variant |
c w l cwl c c k cck c j l cjl h j p hjp c n s cns c h l chl |
---|---|
matchkey_str |
article:26618850:2022----::fetoteeicniindyaiumcohgsbyedrvdrmh1elotneigaou |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QH |
publishDate |
2022 |
allfields |
10.1186/s12860-022-00428-3 doi (DE-627)DOAJ018861679 (DE-599)DOAJb404fb84985b4cf8a5f7ccabde556805 DE-627 ger DE-627 rakwb eng QH573-671 Chia-Wei Lee verfasserin aut Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Tunneling nanotubes (TNTs) are special membrane structures for intercellular communications. Vital cargoes (such as mitochondria) could be delivered from healthy cells to rescue damaged ones through TNTs. The TNTs could be utilized for the purpose of systematic delivery of therapeutic agents between cells. However, there are insufficient studies on the controlled enhancement of TNT formations. The purpose of this study is to understand how macrophages influence the TNT formation in cancer cells. Results Here we compared the capabilities of inducing TNTs in human pancreatic cancer cells (PANC-1) of the media conditioned by M0, M1 and M2 macrophages derived from THP-1 cells. The M0 and M1 macrophage conditioned media promoted TNT formation. Using a focused ion beam to cut through a TNT, we observed tunnel-like structures inside dense cytoskeletons with scanning electron microscopy. The TNT formation correlated with raised motility, invasion, and epithelial–mesenchymal transition in the PANC-1 cells. Mitochondria and lysosomes were also found to be transported in the TNTs. Conclusions These results suggest that TNT formation could be one of the responses to the immune stress in pancreatic cancer cells caused by M0 and M1 macrophages. This finding is valuable for the development of macrophage-targeting cancer therapy. Tunneling nanotube (TNT) Pancreatic cancer cell Macrophage conditioned medium Epithelial–mesenchymal transition Mitochondrion transportation Cytology Chia-Chen Kuo verfasserin aut Chi-Jung Liang verfasserin aut Huei-Jyuan Pan verfasserin aut Chia-Ning Shen verfasserin aut Chau-Hwang Lee verfasserin aut In BMC Molecular and Cell Biology BMC, 2019 23(2022), 1, Seite 10 (DE-627)1067439218 26618850 nnns volume:23 year:2022 number:1 pages:10 https://doi.org/10.1186/s12860-022-00428-3 kostenfrei https://doaj.org/article/b404fb84985b4cf8a5f7ccabde556805 kostenfrei https://doi.org/10.1186/s12860-022-00428-3 kostenfrei https://doaj.org/toc/2661-8850 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 1 10 |
spelling |
10.1186/s12860-022-00428-3 doi (DE-627)DOAJ018861679 (DE-599)DOAJb404fb84985b4cf8a5f7ccabde556805 DE-627 ger DE-627 rakwb eng QH573-671 Chia-Wei Lee verfasserin aut Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Tunneling nanotubes (TNTs) are special membrane structures for intercellular communications. Vital cargoes (such as mitochondria) could be delivered from healthy cells to rescue damaged ones through TNTs. The TNTs could be utilized for the purpose of systematic delivery of therapeutic agents between cells. However, there are insufficient studies on the controlled enhancement of TNT formations. The purpose of this study is to understand how macrophages influence the TNT formation in cancer cells. Results Here we compared the capabilities of inducing TNTs in human pancreatic cancer cells (PANC-1) of the media conditioned by M0, M1 and M2 macrophages derived from THP-1 cells. The M0 and M1 macrophage conditioned media promoted TNT formation. Using a focused ion beam to cut through a TNT, we observed tunnel-like structures inside dense cytoskeletons with scanning electron microscopy. The TNT formation correlated with raised motility, invasion, and epithelial–mesenchymal transition in the PANC-1 cells. Mitochondria and lysosomes were also found to be transported in the TNTs. Conclusions These results suggest that TNT formation could be one of the responses to the immune stress in pancreatic cancer cells caused by M0 and M1 macrophages. This finding is valuable for the development of macrophage-targeting cancer therapy. Tunneling nanotube (TNT) Pancreatic cancer cell Macrophage conditioned medium Epithelial–mesenchymal transition Mitochondrion transportation Cytology Chia-Chen Kuo verfasserin aut Chi-Jung Liang verfasserin aut Huei-Jyuan Pan verfasserin aut Chia-Ning Shen verfasserin aut Chau-Hwang Lee verfasserin aut In BMC Molecular and Cell Biology BMC, 2019 23(2022), 1, Seite 10 (DE-627)1067439218 26618850 nnns volume:23 year:2022 number:1 pages:10 https://doi.org/10.1186/s12860-022-00428-3 kostenfrei https://doaj.org/article/b404fb84985b4cf8a5f7ccabde556805 kostenfrei https://doi.org/10.1186/s12860-022-00428-3 kostenfrei https://doaj.org/toc/2661-8850 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 1 10 |
allfields_unstemmed |
10.1186/s12860-022-00428-3 doi (DE-627)DOAJ018861679 (DE-599)DOAJb404fb84985b4cf8a5f7ccabde556805 DE-627 ger DE-627 rakwb eng QH573-671 Chia-Wei Lee verfasserin aut Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Tunneling nanotubes (TNTs) are special membrane structures for intercellular communications. Vital cargoes (such as mitochondria) could be delivered from healthy cells to rescue damaged ones through TNTs. The TNTs could be utilized for the purpose of systematic delivery of therapeutic agents between cells. However, there are insufficient studies on the controlled enhancement of TNT formations. The purpose of this study is to understand how macrophages influence the TNT formation in cancer cells. Results Here we compared the capabilities of inducing TNTs in human pancreatic cancer cells (PANC-1) of the media conditioned by M0, M1 and M2 macrophages derived from THP-1 cells. The M0 and M1 macrophage conditioned media promoted TNT formation. Using a focused ion beam to cut through a TNT, we observed tunnel-like structures inside dense cytoskeletons with scanning electron microscopy. The TNT formation correlated with raised motility, invasion, and epithelial–mesenchymal transition in the PANC-1 cells. Mitochondria and lysosomes were also found to be transported in the TNTs. Conclusions These results suggest that TNT formation could be one of the responses to the immune stress in pancreatic cancer cells caused by M0 and M1 macrophages. This finding is valuable for the development of macrophage-targeting cancer therapy. Tunneling nanotube (TNT) Pancreatic cancer cell Macrophage conditioned medium Epithelial–mesenchymal transition Mitochondrion transportation Cytology Chia-Chen Kuo verfasserin aut Chi-Jung Liang verfasserin aut Huei-Jyuan Pan verfasserin aut Chia-Ning Shen verfasserin aut Chau-Hwang Lee verfasserin aut In BMC Molecular and Cell Biology BMC, 2019 23(2022), 1, Seite 10 (DE-627)1067439218 26618850 nnns volume:23 year:2022 number:1 pages:10 https://doi.org/10.1186/s12860-022-00428-3 kostenfrei https://doaj.org/article/b404fb84985b4cf8a5f7ccabde556805 kostenfrei https://doi.org/10.1186/s12860-022-00428-3 kostenfrei https://doaj.org/toc/2661-8850 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 1 10 |
allfieldsGer |
10.1186/s12860-022-00428-3 doi (DE-627)DOAJ018861679 (DE-599)DOAJb404fb84985b4cf8a5f7ccabde556805 DE-627 ger DE-627 rakwb eng QH573-671 Chia-Wei Lee verfasserin aut Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Tunneling nanotubes (TNTs) are special membrane structures for intercellular communications. Vital cargoes (such as mitochondria) could be delivered from healthy cells to rescue damaged ones through TNTs. The TNTs could be utilized for the purpose of systematic delivery of therapeutic agents between cells. However, there are insufficient studies on the controlled enhancement of TNT formations. The purpose of this study is to understand how macrophages influence the TNT formation in cancer cells. Results Here we compared the capabilities of inducing TNTs in human pancreatic cancer cells (PANC-1) of the media conditioned by M0, M1 and M2 macrophages derived from THP-1 cells. The M0 and M1 macrophage conditioned media promoted TNT formation. Using a focused ion beam to cut through a TNT, we observed tunnel-like structures inside dense cytoskeletons with scanning electron microscopy. The TNT formation correlated with raised motility, invasion, and epithelial–mesenchymal transition in the PANC-1 cells. Mitochondria and lysosomes were also found to be transported in the TNTs. Conclusions These results suggest that TNT formation could be one of the responses to the immune stress in pancreatic cancer cells caused by M0 and M1 macrophages. This finding is valuable for the development of macrophage-targeting cancer therapy. Tunneling nanotube (TNT) Pancreatic cancer cell Macrophage conditioned medium Epithelial–mesenchymal transition Mitochondrion transportation Cytology Chia-Chen Kuo verfasserin aut Chi-Jung Liang verfasserin aut Huei-Jyuan Pan verfasserin aut Chia-Ning Shen verfasserin aut Chau-Hwang Lee verfasserin aut In BMC Molecular and Cell Biology BMC, 2019 23(2022), 1, Seite 10 (DE-627)1067439218 26618850 nnns volume:23 year:2022 number:1 pages:10 https://doi.org/10.1186/s12860-022-00428-3 kostenfrei https://doaj.org/article/b404fb84985b4cf8a5f7ccabde556805 kostenfrei https://doi.org/10.1186/s12860-022-00428-3 kostenfrei https://doaj.org/toc/2661-8850 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 1 10 |
allfieldsSound |
10.1186/s12860-022-00428-3 doi (DE-627)DOAJ018861679 (DE-599)DOAJb404fb84985b4cf8a5f7ccabde556805 DE-627 ger DE-627 rakwb eng QH573-671 Chia-Wei Lee verfasserin aut Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Tunneling nanotubes (TNTs) are special membrane structures for intercellular communications. Vital cargoes (such as mitochondria) could be delivered from healthy cells to rescue damaged ones through TNTs. The TNTs could be utilized for the purpose of systematic delivery of therapeutic agents between cells. However, there are insufficient studies on the controlled enhancement of TNT formations. The purpose of this study is to understand how macrophages influence the TNT formation in cancer cells. Results Here we compared the capabilities of inducing TNTs in human pancreatic cancer cells (PANC-1) of the media conditioned by M0, M1 and M2 macrophages derived from THP-1 cells. The M0 and M1 macrophage conditioned media promoted TNT formation. Using a focused ion beam to cut through a TNT, we observed tunnel-like structures inside dense cytoskeletons with scanning electron microscopy. The TNT formation correlated with raised motility, invasion, and epithelial–mesenchymal transition in the PANC-1 cells. Mitochondria and lysosomes were also found to be transported in the TNTs. Conclusions These results suggest that TNT formation could be one of the responses to the immune stress in pancreatic cancer cells caused by M0 and M1 macrophages. This finding is valuable for the development of macrophage-targeting cancer therapy. Tunneling nanotube (TNT) Pancreatic cancer cell Macrophage conditioned medium Epithelial–mesenchymal transition Mitochondrion transportation Cytology Chia-Chen Kuo verfasserin aut Chi-Jung Liang verfasserin aut Huei-Jyuan Pan verfasserin aut Chia-Ning Shen verfasserin aut Chau-Hwang Lee verfasserin aut In BMC Molecular and Cell Biology BMC, 2019 23(2022), 1, Seite 10 (DE-627)1067439218 26618850 nnns volume:23 year:2022 number:1 pages:10 https://doi.org/10.1186/s12860-022-00428-3 kostenfrei https://doaj.org/article/b404fb84985b4cf8a5f7ccabde556805 kostenfrei https://doi.org/10.1186/s12860-022-00428-3 kostenfrei https://doaj.org/toc/2661-8850 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 1 10 |
language |
English |
source |
In BMC Molecular and Cell Biology 23(2022), 1, Seite 10 volume:23 year:2022 number:1 pages:10 |
sourceStr |
In BMC Molecular and Cell Biology 23(2022), 1, Seite 10 volume:23 year:2022 number:1 pages:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Tunneling nanotube (TNT) Pancreatic cancer cell Macrophage conditioned medium Epithelial–mesenchymal transition Mitochondrion transportation Cytology |
isfreeaccess_bool |
true |
container_title |
BMC Molecular and Cell Biology |
authorswithroles_txt_mv |
Chia-Wei Lee @@aut@@ Chia-Chen Kuo @@aut@@ Chi-Jung Liang @@aut@@ Huei-Jyuan Pan @@aut@@ Chia-Ning Shen @@aut@@ Chau-Hwang Lee @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1067439218 |
id |
DOAJ018861679 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018861679</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501203831.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12860-022-00428-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018861679</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb404fb84985b4cf8a5f7ccabde556805</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH573-671</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chia-Wei Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Tunneling nanotubes (TNTs) are special membrane structures for intercellular communications. Vital cargoes (such as mitochondria) could be delivered from healthy cells to rescue damaged ones through TNTs. The TNTs could be utilized for the purpose of systematic delivery of therapeutic agents between cells. However, there are insufficient studies on the controlled enhancement of TNT formations. The purpose of this study is to understand how macrophages influence the TNT formation in cancer cells. Results Here we compared the capabilities of inducing TNTs in human pancreatic cancer cells (PANC-1) of the media conditioned by M0, M1 and M2 macrophages derived from THP-1 cells. The M0 and M1 macrophage conditioned media promoted TNT formation. Using a focused ion beam to cut through a TNT, we observed tunnel-like structures inside dense cytoskeletons with scanning electron microscopy. The TNT formation correlated with raised motility, invasion, and epithelial–mesenchymal transition in the PANC-1 cells. Mitochondria and lysosomes were also found to be transported in the TNTs. Conclusions These results suggest that TNT formation could be one of the responses to the immune stress in pancreatic cancer cells caused by M0 and M1 macrophages. This finding is valuable for the development of macrophage-targeting cancer therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tunneling nanotube (TNT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pancreatic cancer cell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Macrophage conditioned medium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epithelial–mesenchymal transition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mitochondrion transportation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Cytology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chia-Chen Kuo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chi-Jung Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huei-Jyuan Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chia-Ning Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chau-Hwang Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Molecular and Cell Biology</subfield><subfield code="d">BMC, 2019</subfield><subfield code="g">23(2022), 1, Seite 10</subfield><subfield code="w">(DE-627)1067439218</subfield><subfield code="x">26618850</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12860-022-00428-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b404fb84985b4cf8a5f7ccabde556805</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12860-022-00428-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2661-8850</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">10</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Chia-Wei Lee |
spellingShingle |
Chia-Wei Lee misc QH573-671 misc Tunneling nanotube (TNT) misc Pancreatic cancer cell misc Macrophage conditioned medium misc Epithelial–mesenchymal transition misc Mitochondrion transportation misc Cytology Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells |
authorStr |
Chia-Wei Lee |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1067439218 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH573-671 |
illustrated |
Not Illustrated |
issn |
26618850 |
topic_title |
QH573-671 Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells Tunneling nanotube (TNT) Pancreatic cancer cell Macrophage conditioned medium Epithelial–mesenchymal transition Mitochondrion transportation |
topic |
misc QH573-671 misc Tunneling nanotube (TNT) misc Pancreatic cancer cell misc Macrophage conditioned medium misc Epithelial–mesenchymal transition misc Mitochondrion transportation misc Cytology |
topic_unstemmed |
misc QH573-671 misc Tunneling nanotube (TNT) misc Pancreatic cancer cell misc Macrophage conditioned medium misc Epithelial–mesenchymal transition misc Mitochondrion transportation misc Cytology |
topic_browse |
misc QH573-671 misc Tunneling nanotube (TNT) misc Pancreatic cancer cell misc Macrophage conditioned medium misc Epithelial–mesenchymal transition misc Mitochondrion transportation misc Cytology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Molecular and Cell Biology |
hierarchy_parent_id |
1067439218 |
hierarchy_top_title |
BMC Molecular and Cell Biology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1067439218 |
title |
Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells |
ctrlnum |
(DE-627)DOAJ018861679 (DE-599)DOAJb404fb84985b4cf8a5f7ccabde556805 |
title_full |
Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells |
author_sort |
Chia-Wei Lee |
journal |
BMC Molecular and Cell Biology |
journalStr |
BMC Molecular and Cell Biology |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
10 |
author_browse |
Chia-Wei Lee Chia-Chen Kuo Chi-Jung Liang Huei-Jyuan Pan Chia-Ning Shen Chau-Hwang Lee |
container_volume |
23 |
class |
QH573-671 |
format_se |
Elektronische Aufsätze |
author-letter |
Chia-Wei Lee |
doi_str_mv |
10.1186/s12860-022-00428-3 |
author2-role |
verfasserin |
title_sort |
effects of the media conditioned by various macrophage subtypes derived from thp-1 cells on tunneling nanotube formation in pancreatic cancer cells |
callnumber |
QH573-671 |
title_auth |
Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells |
abstract |
Abstract Background Tunneling nanotubes (TNTs) are special membrane structures for intercellular communications. Vital cargoes (such as mitochondria) could be delivered from healthy cells to rescue damaged ones through TNTs. The TNTs could be utilized for the purpose of systematic delivery of therapeutic agents between cells. However, there are insufficient studies on the controlled enhancement of TNT formations. The purpose of this study is to understand how macrophages influence the TNT formation in cancer cells. Results Here we compared the capabilities of inducing TNTs in human pancreatic cancer cells (PANC-1) of the media conditioned by M0, M1 and M2 macrophages derived from THP-1 cells. The M0 and M1 macrophage conditioned media promoted TNT formation. Using a focused ion beam to cut through a TNT, we observed tunnel-like structures inside dense cytoskeletons with scanning electron microscopy. The TNT formation correlated with raised motility, invasion, and epithelial–mesenchymal transition in the PANC-1 cells. Mitochondria and lysosomes were also found to be transported in the TNTs. Conclusions These results suggest that TNT formation could be one of the responses to the immune stress in pancreatic cancer cells caused by M0 and M1 macrophages. This finding is valuable for the development of macrophage-targeting cancer therapy. |
abstractGer |
Abstract Background Tunneling nanotubes (TNTs) are special membrane structures for intercellular communications. Vital cargoes (such as mitochondria) could be delivered from healthy cells to rescue damaged ones through TNTs. The TNTs could be utilized for the purpose of systematic delivery of therapeutic agents between cells. However, there are insufficient studies on the controlled enhancement of TNT formations. The purpose of this study is to understand how macrophages influence the TNT formation in cancer cells. Results Here we compared the capabilities of inducing TNTs in human pancreatic cancer cells (PANC-1) of the media conditioned by M0, M1 and M2 macrophages derived from THP-1 cells. The M0 and M1 macrophage conditioned media promoted TNT formation. Using a focused ion beam to cut through a TNT, we observed tunnel-like structures inside dense cytoskeletons with scanning electron microscopy. The TNT formation correlated with raised motility, invasion, and epithelial–mesenchymal transition in the PANC-1 cells. Mitochondria and lysosomes were also found to be transported in the TNTs. Conclusions These results suggest that TNT formation could be one of the responses to the immune stress in pancreatic cancer cells caused by M0 and M1 macrophages. This finding is valuable for the development of macrophage-targeting cancer therapy. |
abstract_unstemmed |
Abstract Background Tunneling nanotubes (TNTs) are special membrane structures for intercellular communications. Vital cargoes (such as mitochondria) could be delivered from healthy cells to rescue damaged ones through TNTs. The TNTs could be utilized for the purpose of systematic delivery of therapeutic agents between cells. However, there are insufficient studies on the controlled enhancement of TNT formations. The purpose of this study is to understand how macrophages influence the TNT formation in cancer cells. Results Here we compared the capabilities of inducing TNTs in human pancreatic cancer cells (PANC-1) of the media conditioned by M0, M1 and M2 macrophages derived from THP-1 cells. The M0 and M1 macrophage conditioned media promoted TNT formation. Using a focused ion beam to cut through a TNT, we observed tunnel-like structures inside dense cytoskeletons with scanning electron microscopy. The TNT formation correlated with raised motility, invasion, and epithelial–mesenchymal transition in the PANC-1 cells. Mitochondria and lysosomes were also found to be transported in the TNTs. Conclusions These results suggest that TNT formation could be one of the responses to the immune stress in pancreatic cancer cells caused by M0 and M1 macrophages. This finding is valuable for the development of macrophage-targeting cancer therapy. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells |
url |
https://doi.org/10.1186/s12860-022-00428-3 https://doaj.org/article/b404fb84985b4cf8a5f7ccabde556805 https://doaj.org/toc/2661-8850 |
remote_bool |
true |
author2 |
Chia-Chen Kuo Chi-Jung Liang Huei-Jyuan Pan Chia-Ning Shen Chau-Hwang Lee |
author2Str |
Chia-Chen Kuo Chi-Jung Liang Huei-Jyuan Pan Chia-Ning Shen Chau-Hwang Lee |
ppnlink |
1067439218 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12860-022-00428-3 |
callnumber-a |
QH573-671 |
up_date |
2024-07-03T20:27:02.805Z |
_version_ |
1803591009234321408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018861679</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501203831.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12860-022-00428-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018861679</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb404fb84985b4cf8a5f7ccabde556805</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH573-671</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chia-Wei Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Tunneling nanotubes (TNTs) are special membrane structures for intercellular communications. Vital cargoes (such as mitochondria) could be delivered from healthy cells to rescue damaged ones through TNTs. The TNTs could be utilized for the purpose of systematic delivery of therapeutic agents between cells. However, there are insufficient studies on the controlled enhancement of TNT formations. The purpose of this study is to understand how macrophages influence the TNT formation in cancer cells. Results Here we compared the capabilities of inducing TNTs in human pancreatic cancer cells (PANC-1) of the media conditioned by M0, M1 and M2 macrophages derived from THP-1 cells. The M0 and M1 macrophage conditioned media promoted TNT formation. Using a focused ion beam to cut through a TNT, we observed tunnel-like structures inside dense cytoskeletons with scanning electron microscopy. The TNT formation correlated with raised motility, invasion, and epithelial–mesenchymal transition in the PANC-1 cells. Mitochondria and lysosomes were also found to be transported in the TNTs. Conclusions These results suggest that TNT formation could be one of the responses to the immune stress in pancreatic cancer cells caused by M0 and M1 macrophages. This finding is valuable for the development of macrophage-targeting cancer therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tunneling nanotube (TNT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pancreatic cancer cell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Macrophage conditioned medium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epithelial–mesenchymal transition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mitochondrion transportation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Cytology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chia-Chen Kuo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chi-Jung Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huei-Jyuan Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chia-Ning Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chau-Hwang Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Molecular and Cell Biology</subfield><subfield code="d">BMC, 2019</subfield><subfield code="g">23(2022), 1, Seite 10</subfield><subfield code="w">(DE-627)1067439218</subfield><subfield code="x">26618850</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12860-022-00428-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b404fb84985b4cf8a5f7ccabde556805</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12860-022-00428-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2661-8850</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">10</subfield></datafield></record></collection>
|
score |
7.401101 |