A Wearable Solar Energy Harvesting Based Jacket With Maximum Power Point Tracking for Vital Health Monitoring Systems
Wearable sensors and electronic devices have gained a lot of attention during the last few years. The advances in low power wearable gadgets have the research venue in the field of energy harvesting to exclude or supplement the battery’s power. Solar energy harvesting is a suitable source to power w...
Ausführliche Beschreibung
Autor*in: |
Atif Sardar Khan [verfasserIn] Farid Ullah Khan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 10(2022), Seite 119475-119495 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; pages:119475-119495 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2022.3220900 |
---|
Katalog-ID: |
DOAJ018897207 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ018897207 | ||
003 | DE-627 | ||
005 | 20230307033606.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2022.3220900 |2 doi | |
035 | |a (DE-627)DOAJ018897207 | ||
035 | |a (DE-599)DOAJcc100dfa8d9946bc88d3ed6e47576c46 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Atif Sardar Khan |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Wearable Solar Energy Harvesting Based Jacket With Maximum Power Point Tracking for Vital Health Monitoring Systems |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Wearable sensors and electronic devices have gained a lot of attention during the last few years. The advances in low power wearable gadgets have the research venue in the field of energy harvesting to exclude or supplement the battery’s power. Solar energy harvesting is a suitable source to power wearable gadgets. This work presents a wearable solar energy harvesting based jacket that can power the in-situ vital health monitoring system (VHMS). The developed VHMS comprised of sensors to measure several data and transferred through various Modules every 3 min with an emergency alert option. To integrate the Solar Energy harvester (SEH) and VHMS, a novel maximum power point tracking is designed, fabricated and tested to compensate the battery during diffused light as power is recorded to be as low as <inline-formula< <tex-math notation="LaTeX"<$7.95\times10$ </tex-math<</inline-formula<−5 mW at an optimal load of 10 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<. Ten flexible solar cells (each 146 mm <inline-formula< <tex-math notation="LaTeX"<$\times167.5$ </tex-math<</inline-formula< mm in size) placed each inside a transparent pouch stitched to a jacket. An individual and series configuration of all solar cells is tested in-lab and outside in real environment under different illuminance and irradiance. At an optimal load resistance of 1.5 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<, the developed self-powered, smart jacket is capable to generate a voltage of 45 V and power of 1282.57 mW, under lights’ illuminance of 41000 lux and irradiance of 780 W/m2. The proposed SEH has been validated through a prototype system. Its performance compares favorably against various solar energy harvester for wearable sensors based on size, power, modes to communicate and sensors. | ||
650 | 4 | |a Arduino based | |
650 | 4 | |a biomedical gadgets | |
650 | 4 | |a Bluetooth module | |
650 | 4 | |a GSM module | |
650 | 4 | |a self-powered | |
650 | 4 | |a solar energy harvester | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Farid Ullah Khan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 10(2022), Seite 119475-119495 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g pages:119475-119495 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2022.3220900 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cc100dfa8d9946bc88d3ed6e47576c46 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9943539/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |h 119475-119495 |
author_variant |
a s k ask f u k fuk |
---|---|
matchkey_str |
article:21693536:2022----::waalslrnryavsigaejcewtmxmmoepitrcigov |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.1109/ACCESS.2022.3220900 doi (DE-627)DOAJ018897207 (DE-599)DOAJcc100dfa8d9946bc88d3ed6e47576c46 DE-627 ger DE-627 rakwb eng TK1-9971 Atif Sardar Khan verfasserin aut A Wearable Solar Energy Harvesting Based Jacket With Maximum Power Point Tracking for Vital Health Monitoring Systems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wearable sensors and electronic devices have gained a lot of attention during the last few years. The advances in low power wearable gadgets have the research venue in the field of energy harvesting to exclude or supplement the battery’s power. Solar energy harvesting is a suitable source to power wearable gadgets. This work presents a wearable solar energy harvesting based jacket that can power the in-situ vital health monitoring system (VHMS). The developed VHMS comprised of sensors to measure several data and transferred through various Modules every 3 min with an emergency alert option. To integrate the Solar Energy harvester (SEH) and VHMS, a novel maximum power point tracking is designed, fabricated and tested to compensate the battery during diffused light as power is recorded to be as low as <inline-formula< <tex-math notation="LaTeX"<$7.95\times10$ </tex-math<</inline-formula<−5 mW at an optimal load of 10 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<. Ten flexible solar cells (each 146 mm <inline-formula< <tex-math notation="LaTeX"<$\times167.5$ </tex-math<</inline-formula< mm in size) placed each inside a transparent pouch stitched to a jacket. An individual and series configuration of all solar cells is tested in-lab and outside in real environment under different illuminance and irradiance. At an optimal load resistance of 1.5 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<, the developed self-powered, smart jacket is capable to generate a voltage of 45 V and power of 1282.57 mW, under lights’ illuminance of 41000 lux and irradiance of 780 W/m2. The proposed SEH has been validated through a prototype system. Its performance compares favorably against various solar energy harvester for wearable sensors based on size, power, modes to communicate and sensors. Arduino based biomedical gadgets Bluetooth module GSM module self-powered solar energy harvester Electrical engineering. Electronics. Nuclear engineering Farid Ullah Khan verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 119475-119495 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:119475-119495 https://doi.org/10.1109/ACCESS.2022.3220900 kostenfrei https://doaj.org/article/cc100dfa8d9946bc88d3ed6e47576c46 kostenfrei https://ieeexplore.ieee.org/document/9943539/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 119475-119495 |
spelling |
10.1109/ACCESS.2022.3220900 doi (DE-627)DOAJ018897207 (DE-599)DOAJcc100dfa8d9946bc88d3ed6e47576c46 DE-627 ger DE-627 rakwb eng TK1-9971 Atif Sardar Khan verfasserin aut A Wearable Solar Energy Harvesting Based Jacket With Maximum Power Point Tracking for Vital Health Monitoring Systems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wearable sensors and electronic devices have gained a lot of attention during the last few years. The advances in low power wearable gadgets have the research venue in the field of energy harvesting to exclude or supplement the battery’s power. Solar energy harvesting is a suitable source to power wearable gadgets. This work presents a wearable solar energy harvesting based jacket that can power the in-situ vital health monitoring system (VHMS). The developed VHMS comprised of sensors to measure several data and transferred through various Modules every 3 min with an emergency alert option. To integrate the Solar Energy harvester (SEH) and VHMS, a novel maximum power point tracking is designed, fabricated and tested to compensate the battery during diffused light as power is recorded to be as low as <inline-formula< <tex-math notation="LaTeX"<$7.95\times10$ </tex-math<</inline-formula<−5 mW at an optimal load of 10 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<. Ten flexible solar cells (each 146 mm <inline-formula< <tex-math notation="LaTeX"<$\times167.5$ </tex-math<</inline-formula< mm in size) placed each inside a transparent pouch stitched to a jacket. An individual and series configuration of all solar cells is tested in-lab and outside in real environment under different illuminance and irradiance. At an optimal load resistance of 1.5 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<, the developed self-powered, smart jacket is capable to generate a voltage of 45 V and power of 1282.57 mW, under lights’ illuminance of 41000 lux and irradiance of 780 W/m2. The proposed SEH has been validated through a prototype system. Its performance compares favorably against various solar energy harvester for wearable sensors based on size, power, modes to communicate and sensors. Arduino based biomedical gadgets Bluetooth module GSM module self-powered solar energy harvester Electrical engineering. Electronics. Nuclear engineering Farid Ullah Khan verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 119475-119495 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:119475-119495 https://doi.org/10.1109/ACCESS.2022.3220900 kostenfrei https://doaj.org/article/cc100dfa8d9946bc88d3ed6e47576c46 kostenfrei https://ieeexplore.ieee.org/document/9943539/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 119475-119495 |
allfields_unstemmed |
10.1109/ACCESS.2022.3220900 doi (DE-627)DOAJ018897207 (DE-599)DOAJcc100dfa8d9946bc88d3ed6e47576c46 DE-627 ger DE-627 rakwb eng TK1-9971 Atif Sardar Khan verfasserin aut A Wearable Solar Energy Harvesting Based Jacket With Maximum Power Point Tracking for Vital Health Monitoring Systems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wearable sensors and electronic devices have gained a lot of attention during the last few years. The advances in low power wearable gadgets have the research venue in the field of energy harvesting to exclude or supplement the battery’s power. Solar energy harvesting is a suitable source to power wearable gadgets. This work presents a wearable solar energy harvesting based jacket that can power the in-situ vital health monitoring system (VHMS). The developed VHMS comprised of sensors to measure several data and transferred through various Modules every 3 min with an emergency alert option. To integrate the Solar Energy harvester (SEH) and VHMS, a novel maximum power point tracking is designed, fabricated and tested to compensate the battery during diffused light as power is recorded to be as low as <inline-formula< <tex-math notation="LaTeX"<$7.95\times10$ </tex-math<</inline-formula<−5 mW at an optimal load of 10 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<. Ten flexible solar cells (each 146 mm <inline-formula< <tex-math notation="LaTeX"<$\times167.5$ </tex-math<</inline-formula< mm in size) placed each inside a transparent pouch stitched to a jacket. An individual and series configuration of all solar cells is tested in-lab and outside in real environment under different illuminance and irradiance. At an optimal load resistance of 1.5 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<, the developed self-powered, smart jacket is capable to generate a voltage of 45 V and power of 1282.57 mW, under lights’ illuminance of 41000 lux and irradiance of 780 W/m2. The proposed SEH has been validated through a prototype system. Its performance compares favorably against various solar energy harvester for wearable sensors based on size, power, modes to communicate and sensors. Arduino based biomedical gadgets Bluetooth module GSM module self-powered solar energy harvester Electrical engineering. Electronics. Nuclear engineering Farid Ullah Khan verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 119475-119495 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:119475-119495 https://doi.org/10.1109/ACCESS.2022.3220900 kostenfrei https://doaj.org/article/cc100dfa8d9946bc88d3ed6e47576c46 kostenfrei https://ieeexplore.ieee.org/document/9943539/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 119475-119495 |
allfieldsGer |
10.1109/ACCESS.2022.3220900 doi (DE-627)DOAJ018897207 (DE-599)DOAJcc100dfa8d9946bc88d3ed6e47576c46 DE-627 ger DE-627 rakwb eng TK1-9971 Atif Sardar Khan verfasserin aut A Wearable Solar Energy Harvesting Based Jacket With Maximum Power Point Tracking for Vital Health Monitoring Systems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wearable sensors and electronic devices have gained a lot of attention during the last few years. The advances in low power wearable gadgets have the research venue in the field of energy harvesting to exclude or supplement the battery’s power. Solar energy harvesting is a suitable source to power wearable gadgets. This work presents a wearable solar energy harvesting based jacket that can power the in-situ vital health monitoring system (VHMS). The developed VHMS comprised of sensors to measure several data and transferred through various Modules every 3 min with an emergency alert option. To integrate the Solar Energy harvester (SEH) and VHMS, a novel maximum power point tracking is designed, fabricated and tested to compensate the battery during diffused light as power is recorded to be as low as <inline-formula< <tex-math notation="LaTeX"<$7.95\times10$ </tex-math<</inline-formula<−5 mW at an optimal load of 10 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<. Ten flexible solar cells (each 146 mm <inline-formula< <tex-math notation="LaTeX"<$\times167.5$ </tex-math<</inline-formula< mm in size) placed each inside a transparent pouch stitched to a jacket. An individual and series configuration of all solar cells is tested in-lab and outside in real environment under different illuminance and irradiance. At an optimal load resistance of 1.5 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<, the developed self-powered, smart jacket is capable to generate a voltage of 45 V and power of 1282.57 mW, under lights’ illuminance of 41000 lux and irradiance of 780 W/m2. The proposed SEH has been validated through a prototype system. Its performance compares favorably against various solar energy harvester for wearable sensors based on size, power, modes to communicate and sensors. Arduino based biomedical gadgets Bluetooth module GSM module self-powered solar energy harvester Electrical engineering. Electronics. Nuclear engineering Farid Ullah Khan verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 119475-119495 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:119475-119495 https://doi.org/10.1109/ACCESS.2022.3220900 kostenfrei https://doaj.org/article/cc100dfa8d9946bc88d3ed6e47576c46 kostenfrei https://ieeexplore.ieee.org/document/9943539/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 119475-119495 |
allfieldsSound |
10.1109/ACCESS.2022.3220900 doi (DE-627)DOAJ018897207 (DE-599)DOAJcc100dfa8d9946bc88d3ed6e47576c46 DE-627 ger DE-627 rakwb eng TK1-9971 Atif Sardar Khan verfasserin aut A Wearable Solar Energy Harvesting Based Jacket With Maximum Power Point Tracking for Vital Health Monitoring Systems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wearable sensors and electronic devices have gained a lot of attention during the last few years. The advances in low power wearable gadgets have the research venue in the field of energy harvesting to exclude or supplement the battery’s power. Solar energy harvesting is a suitable source to power wearable gadgets. This work presents a wearable solar energy harvesting based jacket that can power the in-situ vital health monitoring system (VHMS). The developed VHMS comprised of sensors to measure several data and transferred through various Modules every 3 min with an emergency alert option. To integrate the Solar Energy harvester (SEH) and VHMS, a novel maximum power point tracking is designed, fabricated and tested to compensate the battery during diffused light as power is recorded to be as low as <inline-formula< <tex-math notation="LaTeX"<$7.95\times10$ </tex-math<</inline-formula<−5 mW at an optimal load of 10 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<. Ten flexible solar cells (each 146 mm <inline-formula< <tex-math notation="LaTeX"<$\times167.5$ </tex-math<</inline-formula< mm in size) placed each inside a transparent pouch stitched to a jacket. An individual and series configuration of all solar cells is tested in-lab and outside in real environment under different illuminance and irradiance. At an optimal load resistance of 1.5 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<, the developed self-powered, smart jacket is capable to generate a voltage of 45 V and power of 1282.57 mW, under lights’ illuminance of 41000 lux and irradiance of 780 W/m2. The proposed SEH has been validated through a prototype system. Its performance compares favorably against various solar energy harvester for wearable sensors based on size, power, modes to communicate and sensors. Arduino based biomedical gadgets Bluetooth module GSM module self-powered solar energy harvester Electrical engineering. Electronics. Nuclear engineering Farid Ullah Khan verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 119475-119495 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:119475-119495 https://doi.org/10.1109/ACCESS.2022.3220900 kostenfrei https://doaj.org/article/cc100dfa8d9946bc88d3ed6e47576c46 kostenfrei https://ieeexplore.ieee.org/document/9943539/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 119475-119495 |
language |
English |
source |
In IEEE Access 10(2022), Seite 119475-119495 volume:10 year:2022 pages:119475-119495 |
sourceStr |
In IEEE Access 10(2022), Seite 119475-119495 volume:10 year:2022 pages:119475-119495 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Arduino based biomedical gadgets Bluetooth module GSM module self-powered solar energy harvester Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Atif Sardar Khan @@aut@@ Farid Ullah Khan @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ018897207 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018897207</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307033606.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3220900</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018897207</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcc100dfa8d9946bc88d3ed6e47576c46</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Atif Sardar Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Wearable Solar Energy Harvesting Based Jacket With Maximum Power Point Tracking for Vital Health Monitoring Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wearable sensors and electronic devices have gained a lot of attention during the last few years. The advances in low power wearable gadgets have the research venue in the field of energy harvesting to exclude or supplement the battery’s power. Solar energy harvesting is a suitable source to power wearable gadgets. This work presents a wearable solar energy harvesting based jacket that can power the in-situ vital health monitoring system (VHMS). The developed VHMS comprised of sensors to measure several data and transferred through various Modules every 3 min with an emergency alert option. To integrate the Solar Energy harvester (SEH) and VHMS, a novel maximum power point tracking is designed, fabricated and tested to compensate the battery during diffused light as power is recorded to be as low as <inline-formula< <tex-math notation="LaTeX"<$7.95\times10$ </tex-math<</inline-formula<−5 mW at an optimal load of 10 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<. Ten flexible solar cells (each 146 mm <inline-formula< <tex-math notation="LaTeX"<$\times167.5$ </tex-math<</inline-formula< mm in size) placed each inside a transparent pouch stitched to a jacket. An individual and series configuration of all solar cells is tested in-lab and outside in real environment under different illuminance and irradiance. At an optimal load resistance of 1.5 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<, the developed self-powered, smart jacket is capable to generate a voltage of 45 V and power of 1282.57 mW, under lights’ illuminance of 41000 lux and irradiance of 780 W/m2. The proposed SEH has been validated through a prototype system. Its performance compares favorably against various solar energy harvester for wearable sensors based on size, power, modes to communicate and sensors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arduino based</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomedical gadgets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bluetooth module</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GSM module</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">self-powered</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solar energy harvester</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Farid Ullah Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 119475-119495</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:119475-119495</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3220900</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cc100dfa8d9946bc88d3ed6e47576c46</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9943539/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">119475-119495</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Atif Sardar Khan |
spellingShingle |
Atif Sardar Khan misc TK1-9971 misc Arduino based misc biomedical gadgets misc Bluetooth module misc GSM module misc self-powered misc solar energy harvester misc Electrical engineering. Electronics. Nuclear engineering A Wearable Solar Energy Harvesting Based Jacket With Maximum Power Point Tracking for Vital Health Monitoring Systems |
authorStr |
Atif Sardar Khan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 A Wearable Solar Energy Harvesting Based Jacket With Maximum Power Point Tracking for Vital Health Monitoring Systems Arduino based biomedical gadgets Bluetooth module GSM module self-powered solar energy harvester |
topic |
misc TK1-9971 misc Arduino based misc biomedical gadgets misc Bluetooth module misc GSM module misc self-powered misc solar energy harvester misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Arduino based misc biomedical gadgets misc Bluetooth module misc GSM module misc self-powered misc solar energy harvester misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Arduino based misc biomedical gadgets misc Bluetooth module misc GSM module misc self-powered misc solar energy harvester misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
A Wearable Solar Energy Harvesting Based Jacket With Maximum Power Point Tracking for Vital Health Monitoring Systems |
ctrlnum |
(DE-627)DOAJ018897207 (DE-599)DOAJcc100dfa8d9946bc88d3ed6e47576c46 |
title_full |
A Wearable Solar Energy Harvesting Based Jacket With Maximum Power Point Tracking for Vital Health Monitoring Systems |
author_sort |
Atif Sardar Khan |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
119475 |
author_browse |
Atif Sardar Khan Farid Ullah Khan |
container_volume |
10 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Atif Sardar Khan |
doi_str_mv |
10.1109/ACCESS.2022.3220900 |
author2-role |
verfasserin |
title_sort |
wearable solar energy harvesting based jacket with maximum power point tracking for vital health monitoring systems |
callnumber |
TK1-9971 |
title_auth |
A Wearable Solar Energy Harvesting Based Jacket With Maximum Power Point Tracking for Vital Health Monitoring Systems |
abstract |
Wearable sensors and electronic devices have gained a lot of attention during the last few years. The advances in low power wearable gadgets have the research venue in the field of energy harvesting to exclude or supplement the battery’s power. Solar energy harvesting is a suitable source to power wearable gadgets. This work presents a wearable solar energy harvesting based jacket that can power the in-situ vital health monitoring system (VHMS). The developed VHMS comprised of sensors to measure several data and transferred through various Modules every 3 min with an emergency alert option. To integrate the Solar Energy harvester (SEH) and VHMS, a novel maximum power point tracking is designed, fabricated and tested to compensate the battery during diffused light as power is recorded to be as low as <inline-formula< <tex-math notation="LaTeX"<$7.95\times10$ </tex-math<</inline-formula<−5 mW at an optimal load of 10 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<. Ten flexible solar cells (each 146 mm <inline-formula< <tex-math notation="LaTeX"<$\times167.5$ </tex-math<</inline-formula< mm in size) placed each inside a transparent pouch stitched to a jacket. An individual and series configuration of all solar cells is tested in-lab and outside in real environment under different illuminance and irradiance. At an optimal load resistance of 1.5 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<, the developed self-powered, smart jacket is capable to generate a voltage of 45 V and power of 1282.57 mW, under lights’ illuminance of 41000 lux and irradiance of 780 W/m2. The proposed SEH has been validated through a prototype system. Its performance compares favorably against various solar energy harvester for wearable sensors based on size, power, modes to communicate and sensors. |
abstractGer |
Wearable sensors and electronic devices have gained a lot of attention during the last few years. The advances in low power wearable gadgets have the research venue in the field of energy harvesting to exclude or supplement the battery’s power. Solar energy harvesting is a suitable source to power wearable gadgets. This work presents a wearable solar energy harvesting based jacket that can power the in-situ vital health monitoring system (VHMS). The developed VHMS comprised of sensors to measure several data and transferred through various Modules every 3 min with an emergency alert option. To integrate the Solar Energy harvester (SEH) and VHMS, a novel maximum power point tracking is designed, fabricated and tested to compensate the battery during diffused light as power is recorded to be as low as <inline-formula< <tex-math notation="LaTeX"<$7.95\times10$ </tex-math<</inline-formula<−5 mW at an optimal load of 10 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<. Ten flexible solar cells (each 146 mm <inline-formula< <tex-math notation="LaTeX"<$\times167.5$ </tex-math<</inline-formula< mm in size) placed each inside a transparent pouch stitched to a jacket. An individual and series configuration of all solar cells is tested in-lab and outside in real environment under different illuminance and irradiance. At an optimal load resistance of 1.5 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<, the developed self-powered, smart jacket is capable to generate a voltage of 45 V and power of 1282.57 mW, under lights’ illuminance of 41000 lux and irradiance of 780 W/m2. The proposed SEH has been validated through a prototype system. Its performance compares favorably against various solar energy harvester for wearable sensors based on size, power, modes to communicate and sensors. |
abstract_unstemmed |
Wearable sensors and electronic devices have gained a lot of attention during the last few years. The advances in low power wearable gadgets have the research venue in the field of energy harvesting to exclude or supplement the battery’s power. Solar energy harvesting is a suitable source to power wearable gadgets. This work presents a wearable solar energy harvesting based jacket that can power the in-situ vital health monitoring system (VHMS). The developed VHMS comprised of sensors to measure several data and transferred through various Modules every 3 min with an emergency alert option. To integrate the Solar Energy harvester (SEH) and VHMS, a novel maximum power point tracking is designed, fabricated and tested to compensate the battery during diffused light as power is recorded to be as low as <inline-formula< <tex-math notation="LaTeX"<$7.95\times10$ </tex-math<</inline-formula<−5 mW at an optimal load of 10 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<. Ten flexible solar cells (each 146 mm <inline-formula< <tex-math notation="LaTeX"<$\times167.5$ </tex-math<</inline-formula< mm in size) placed each inside a transparent pouch stitched to a jacket. An individual and series configuration of all solar cells is tested in-lab and outside in real environment under different illuminance and irradiance. At an optimal load resistance of 1.5 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<, the developed self-powered, smart jacket is capable to generate a voltage of 45 V and power of 1282.57 mW, under lights’ illuminance of 41000 lux and irradiance of 780 W/m2. The proposed SEH has been validated through a prototype system. Its performance compares favorably against various solar energy harvester for wearable sensors based on size, power, modes to communicate and sensors. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A Wearable Solar Energy Harvesting Based Jacket With Maximum Power Point Tracking for Vital Health Monitoring Systems |
url |
https://doi.org/10.1109/ACCESS.2022.3220900 https://doaj.org/article/cc100dfa8d9946bc88d3ed6e47576c46 https://ieeexplore.ieee.org/document/9943539/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Farid Ullah Khan |
author2Str |
Farid Ullah Khan |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2022.3220900 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T20:38:43.726Z |
_version_ |
1803591744206405632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ018897207</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307033606.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3220900</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ018897207</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcc100dfa8d9946bc88d3ed6e47576c46</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Atif Sardar Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Wearable Solar Energy Harvesting Based Jacket With Maximum Power Point Tracking for Vital Health Monitoring Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wearable sensors and electronic devices have gained a lot of attention during the last few years. The advances in low power wearable gadgets have the research venue in the field of energy harvesting to exclude or supplement the battery’s power. Solar energy harvesting is a suitable source to power wearable gadgets. This work presents a wearable solar energy harvesting based jacket that can power the in-situ vital health monitoring system (VHMS). The developed VHMS comprised of sensors to measure several data and transferred through various Modules every 3 min with an emergency alert option. To integrate the Solar Energy harvester (SEH) and VHMS, a novel maximum power point tracking is designed, fabricated and tested to compensate the battery during diffused light as power is recorded to be as low as <inline-formula< <tex-math notation="LaTeX"<$7.95\times10$ </tex-math<</inline-formula<−5 mW at an optimal load of 10 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<. Ten flexible solar cells (each 146 mm <inline-formula< <tex-math notation="LaTeX"<$\times167.5$ </tex-math<</inline-formula< mm in size) placed each inside a transparent pouch stitched to a jacket. An individual and series configuration of all solar cells is tested in-lab and outside in real environment under different illuminance and irradiance. At an optimal load resistance of 1.5 <inline-formula< <tex-math notation="LaTeX"<$\text{k}\Omega $ </tex-math<</inline-formula<, the developed self-powered, smart jacket is capable to generate a voltage of 45 V and power of 1282.57 mW, under lights’ illuminance of 41000 lux and irradiance of 780 W/m2. The proposed SEH has been validated through a prototype system. Its performance compares favorably against various solar energy harvester for wearable sensors based on size, power, modes to communicate and sensors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arduino based</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomedical gadgets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bluetooth module</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GSM module</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">self-powered</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solar energy harvester</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Farid Ullah Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 119475-119495</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:119475-119495</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3220900</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cc100dfa8d9946bc88d3ed6e47576c46</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9943539/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">119475-119495</subfield></datafield></record></collection>
|
score |
7.400939 |