Scheduling of Construction Projects under Resource-Constrained Conditions with a Specifically Developed Software using Genetic Algorithms
The purpose of this study is to develop a genetic algorithm (GA) based software that can perform resource allocation close to optimum and that can determine the critical path by minimizing the project duration according to the resource profile for a present work schedule and resource pool using a pr...
Ausführliche Beschreibung
Autor*in: |
Mursel Erdal* [verfasserIn] Recep Kanit [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Tehnički Vjesnik - Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek, 2017, 28(2021), 4, Seite 1362-1370 |
---|---|
Übergeordnetes Werk: |
volume:28 ; year:2021 ; number:4 ; pages:1362-1370 |
Links: |
---|
Katalog-ID: |
DOAJ019308205 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ019308205 | ||
003 | DE-627 | ||
005 | 20230310105849.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ019308205 | ||
035 | |a (DE-599)DOAJadc6c1bafa2147deac68b91fb4bcd2d8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Mursel Erdal* |e verfasserin |4 aut | |
245 | 1 | 0 | |a Scheduling of Construction Projects under Resource-Constrained Conditions with a Specifically Developed Software using Genetic Algorithms |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The purpose of this study is to develop a genetic algorithm (GA) based software that can perform resource allocation close to optimum and that can determine the critical path by minimizing the project duration according to the resource profile for a present work schedule and resource pool using a programmable objective function. In this context, the methodology of GAs was presented, the software was developed and the performance of this software was tested with a sample project. With the developed software, by minimizing the activity durations in both constrained and unconstrained resource conditions, projects can be scheduled, total duration and the critical path of the projects can be determined. With this software, any construction company will be able to determine how much time would be required to complete a project at the bidding stage by considering its resources and constraints and can take the required precautions. The main difference of this present study is that the developed code performs minimization of schedule duration integrated with resource allocation and levelling. It also determines the critical path of the final solutions. Both renewable and non-renewable resources are included in the code which is not often considered in the literature. By minimizing project duration and optimizing resource allocation, construction projects can become more sustainable, and the environmental impact of the construction process could be minimized. | ||
650 | 4 | |a genetic algorithms | |
650 | 4 | |a optimization | |
650 | 4 | |a renewable resource | |
650 | 4 | |a scheduling | |
650 | 4 | |a sustainability | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Recep Kanit |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Tehnički Vjesnik |d Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek, 2017 |g 28(2021), 4, Seite 1362-1370 |w (DE-627)603490964 |w (DE-600)2502144-8 |x 18486339 |7 nnns |
773 | 1 | 8 | |g volume:28 |g year:2021 |g number:4 |g pages:1362-1370 |
856 | 4 | 0 | |u https://doaj.org/article/adc6c1bafa2147deac68b91fb4bcd2d8 |z kostenfrei |
856 | 4 | 0 | |u https://hrcak.srce.hr/file/379506 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1330-3651 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1848-6339 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 28 |j 2021 |e 4 |h 1362-1370 |
author_variant |
m e me r k rk |
---|---|
matchkey_str |
article:18486339:2021----::ceuigfosrcinrjcsnersuccntandodtosihseiialdvlp |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
(DE-627)DOAJ019308205 (DE-599)DOAJadc6c1bafa2147deac68b91fb4bcd2d8 DE-627 ger DE-627 rakwb eng TA1-2040 Mursel Erdal* verfasserin aut Scheduling of Construction Projects under Resource-Constrained Conditions with a Specifically Developed Software using Genetic Algorithms 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The purpose of this study is to develop a genetic algorithm (GA) based software that can perform resource allocation close to optimum and that can determine the critical path by minimizing the project duration according to the resource profile for a present work schedule and resource pool using a programmable objective function. In this context, the methodology of GAs was presented, the software was developed and the performance of this software was tested with a sample project. With the developed software, by minimizing the activity durations in both constrained and unconstrained resource conditions, projects can be scheduled, total duration and the critical path of the projects can be determined. With this software, any construction company will be able to determine how much time would be required to complete a project at the bidding stage by considering its resources and constraints and can take the required precautions. The main difference of this present study is that the developed code performs minimization of schedule duration integrated with resource allocation and levelling. It also determines the critical path of the final solutions. Both renewable and non-renewable resources are included in the code which is not often considered in the literature. By minimizing project duration and optimizing resource allocation, construction projects can become more sustainable, and the environmental impact of the construction process could be minimized. genetic algorithms optimization renewable resource scheduling sustainability Engineering (General). Civil engineering (General) Recep Kanit verfasserin aut In Tehnički Vjesnik Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek, 2017 28(2021), 4, Seite 1362-1370 (DE-627)603490964 (DE-600)2502144-8 18486339 nnns volume:28 year:2021 number:4 pages:1362-1370 https://doaj.org/article/adc6c1bafa2147deac68b91fb4bcd2d8 kostenfrei https://hrcak.srce.hr/file/379506 kostenfrei https://doaj.org/toc/1330-3651 Journal toc kostenfrei https://doaj.org/toc/1848-6339 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2021 4 1362-1370 |
spelling |
(DE-627)DOAJ019308205 (DE-599)DOAJadc6c1bafa2147deac68b91fb4bcd2d8 DE-627 ger DE-627 rakwb eng TA1-2040 Mursel Erdal* verfasserin aut Scheduling of Construction Projects under Resource-Constrained Conditions with a Specifically Developed Software using Genetic Algorithms 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The purpose of this study is to develop a genetic algorithm (GA) based software that can perform resource allocation close to optimum and that can determine the critical path by minimizing the project duration according to the resource profile for a present work schedule and resource pool using a programmable objective function. In this context, the methodology of GAs was presented, the software was developed and the performance of this software was tested with a sample project. With the developed software, by minimizing the activity durations in both constrained and unconstrained resource conditions, projects can be scheduled, total duration and the critical path of the projects can be determined. With this software, any construction company will be able to determine how much time would be required to complete a project at the bidding stage by considering its resources and constraints and can take the required precautions. The main difference of this present study is that the developed code performs minimization of schedule duration integrated with resource allocation and levelling. It also determines the critical path of the final solutions. Both renewable and non-renewable resources are included in the code which is not often considered in the literature. By minimizing project duration and optimizing resource allocation, construction projects can become more sustainable, and the environmental impact of the construction process could be minimized. genetic algorithms optimization renewable resource scheduling sustainability Engineering (General). Civil engineering (General) Recep Kanit verfasserin aut In Tehnički Vjesnik Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek, 2017 28(2021), 4, Seite 1362-1370 (DE-627)603490964 (DE-600)2502144-8 18486339 nnns volume:28 year:2021 number:4 pages:1362-1370 https://doaj.org/article/adc6c1bafa2147deac68b91fb4bcd2d8 kostenfrei https://hrcak.srce.hr/file/379506 kostenfrei https://doaj.org/toc/1330-3651 Journal toc kostenfrei https://doaj.org/toc/1848-6339 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2021 4 1362-1370 |
allfields_unstemmed |
(DE-627)DOAJ019308205 (DE-599)DOAJadc6c1bafa2147deac68b91fb4bcd2d8 DE-627 ger DE-627 rakwb eng TA1-2040 Mursel Erdal* verfasserin aut Scheduling of Construction Projects under Resource-Constrained Conditions with a Specifically Developed Software using Genetic Algorithms 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The purpose of this study is to develop a genetic algorithm (GA) based software that can perform resource allocation close to optimum and that can determine the critical path by minimizing the project duration according to the resource profile for a present work schedule and resource pool using a programmable objective function. In this context, the methodology of GAs was presented, the software was developed and the performance of this software was tested with a sample project. With the developed software, by minimizing the activity durations in both constrained and unconstrained resource conditions, projects can be scheduled, total duration and the critical path of the projects can be determined. With this software, any construction company will be able to determine how much time would be required to complete a project at the bidding stage by considering its resources and constraints and can take the required precautions. The main difference of this present study is that the developed code performs minimization of schedule duration integrated with resource allocation and levelling. It also determines the critical path of the final solutions. Both renewable and non-renewable resources are included in the code which is not often considered in the literature. By minimizing project duration and optimizing resource allocation, construction projects can become more sustainable, and the environmental impact of the construction process could be minimized. genetic algorithms optimization renewable resource scheduling sustainability Engineering (General). Civil engineering (General) Recep Kanit verfasserin aut In Tehnički Vjesnik Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek, 2017 28(2021), 4, Seite 1362-1370 (DE-627)603490964 (DE-600)2502144-8 18486339 nnns volume:28 year:2021 number:4 pages:1362-1370 https://doaj.org/article/adc6c1bafa2147deac68b91fb4bcd2d8 kostenfrei https://hrcak.srce.hr/file/379506 kostenfrei https://doaj.org/toc/1330-3651 Journal toc kostenfrei https://doaj.org/toc/1848-6339 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2021 4 1362-1370 |
allfieldsGer |
(DE-627)DOAJ019308205 (DE-599)DOAJadc6c1bafa2147deac68b91fb4bcd2d8 DE-627 ger DE-627 rakwb eng TA1-2040 Mursel Erdal* verfasserin aut Scheduling of Construction Projects under Resource-Constrained Conditions with a Specifically Developed Software using Genetic Algorithms 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The purpose of this study is to develop a genetic algorithm (GA) based software that can perform resource allocation close to optimum and that can determine the critical path by minimizing the project duration according to the resource profile for a present work schedule and resource pool using a programmable objective function. In this context, the methodology of GAs was presented, the software was developed and the performance of this software was tested with a sample project. With the developed software, by minimizing the activity durations in both constrained and unconstrained resource conditions, projects can be scheduled, total duration and the critical path of the projects can be determined. With this software, any construction company will be able to determine how much time would be required to complete a project at the bidding stage by considering its resources and constraints and can take the required precautions. The main difference of this present study is that the developed code performs minimization of schedule duration integrated with resource allocation and levelling. It also determines the critical path of the final solutions. Both renewable and non-renewable resources are included in the code which is not often considered in the literature. By minimizing project duration and optimizing resource allocation, construction projects can become more sustainable, and the environmental impact of the construction process could be minimized. genetic algorithms optimization renewable resource scheduling sustainability Engineering (General). Civil engineering (General) Recep Kanit verfasserin aut In Tehnički Vjesnik Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek, 2017 28(2021), 4, Seite 1362-1370 (DE-627)603490964 (DE-600)2502144-8 18486339 nnns volume:28 year:2021 number:4 pages:1362-1370 https://doaj.org/article/adc6c1bafa2147deac68b91fb4bcd2d8 kostenfrei https://hrcak.srce.hr/file/379506 kostenfrei https://doaj.org/toc/1330-3651 Journal toc kostenfrei https://doaj.org/toc/1848-6339 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2021 4 1362-1370 |
allfieldsSound |
(DE-627)DOAJ019308205 (DE-599)DOAJadc6c1bafa2147deac68b91fb4bcd2d8 DE-627 ger DE-627 rakwb eng TA1-2040 Mursel Erdal* verfasserin aut Scheduling of Construction Projects under Resource-Constrained Conditions with a Specifically Developed Software using Genetic Algorithms 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The purpose of this study is to develop a genetic algorithm (GA) based software that can perform resource allocation close to optimum and that can determine the critical path by minimizing the project duration according to the resource profile for a present work schedule and resource pool using a programmable objective function. In this context, the methodology of GAs was presented, the software was developed and the performance of this software was tested with a sample project. With the developed software, by minimizing the activity durations in both constrained and unconstrained resource conditions, projects can be scheduled, total duration and the critical path of the projects can be determined. With this software, any construction company will be able to determine how much time would be required to complete a project at the bidding stage by considering its resources and constraints and can take the required precautions. The main difference of this present study is that the developed code performs minimization of schedule duration integrated with resource allocation and levelling. It also determines the critical path of the final solutions. Both renewable and non-renewable resources are included in the code which is not often considered in the literature. By minimizing project duration and optimizing resource allocation, construction projects can become more sustainable, and the environmental impact of the construction process could be minimized. genetic algorithms optimization renewable resource scheduling sustainability Engineering (General). Civil engineering (General) Recep Kanit verfasserin aut In Tehnički Vjesnik Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek, 2017 28(2021), 4, Seite 1362-1370 (DE-627)603490964 (DE-600)2502144-8 18486339 nnns volume:28 year:2021 number:4 pages:1362-1370 https://doaj.org/article/adc6c1bafa2147deac68b91fb4bcd2d8 kostenfrei https://hrcak.srce.hr/file/379506 kostenfrei https://doaj.org/toc/1330-3651 Journal toc kostenfrei https://doaj.org/toc/1848-6339 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2021 4 1362-1370 |
language |
English |
source |
In Tehnički Vjesnik 28(2021), 4, Seite 1362-1370 volume:28 year:2021 number:4 pages:1362-1370 |
sourceStr |
In Tehnički Vjesnik 28(2021), 4, Seite 1362-1370 volume:28 year:2021 number:4 pages:1362-1370 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
genetic algorithms optimization renewable resource scheduling sustainability Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
Tehnički Vjesnik |
authorswithroles_txt_mv |
Mursel Erdal* @@aut@@ Recep Kanit @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
603490964 |
id |
DOAJ019308205 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ019308205</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310105849.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ019308205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJadc6c1bafa2147deac68b91fb4bcd2d8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mursel Erdal*</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scheduling of Construction Projects under Resource-Constrained Conditions with a Specifically Developed Software using Genetic Algorithms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The purpose of this study is to develop a genetic algorithm (GA) based software that can perform resource allocation close to optimum and that can determine the critical path by minimizing the project duration according to the resource profile for a present work schedule and resource pool using a programmable objective function. In this context, the methodology of GAs was presented, the software was developed and the performance of this software was tested with a sample project. With the developed software, by minimizing the activity durations in both constrained and unconstrained resource conditions, projects can be scheduled, total duration and the critical path of the projects can be determined. With this software, any construction company will be able to determine how much time would be required to complete a project at the bidding stage by considering its resources and constraints and can take the required precautions. The main difference of this present study is that the developed code performs minimization of schedule duration integrated with resource allocation and levelling. It also determines the critical path of the final solutions. Both renewable and non-renewable resources are included in the code which is not often considered in the literature. By minimizing project duration and optimizing resource allocation, construction projects can become more sustainable, and the environmental impact of the construction process could be minimized.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">renewable resource</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sustainability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Recep Kanit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Tehnički Vjesnik</subfield><subfield code="d">Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek, 2017</subfield><subfield code="g">28(2021), 4, Seite 1362-1370</subfield><subfield code="w">(DE-627)603490964</subfield><subfield code="w">(DE-600)2502144-8</subfield><subfield code="x">18486339</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:1362-1370</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/adc6c1bafa2147deac68b91fb4bcd2d8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://hrcak.srce.hr/file/379506</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1330-3651</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1848-6339</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="h">1362-1370</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Mursel Erdal* |
spellingShingle |
Mursel Erdal* misc TA1-2040 misc genetic algorithms misc optimization misc renewable resource misc scheduling misc sustainability misc Engineering (General). Civil engineering (General) Scheduling of Construction Projects under Resource-Constrained Conditions with a Specifically Developed Software using Genetic Algorithms |
authorStr |
Mursel Erdal* |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)603490964 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
18486339 |
topic_title |
TA1-2040 Scheduling of Construction Projects under Resource-Constrained Conditions with a Specifically Developed Software using Genetic Algorithms genetic algorithms optimization renewable resource scheduling sustainability |
topic |
misc TA1-2040 misc genetic algorithms misc optimization misc renewable resource misc scheduling misc sustainability misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc genetic algorithms misc optimization misc renewable resource misc scheduling misc sustainability misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc genetic algorithms misc optimization misc renewable resource misc scheduling misc sustainability misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Tehnički Vjesnik |
hierarchy_parent_id |
603490964 |
hierarchy_top_title |
Tehnički Vjesnik |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)603490964 (DE-600)2502144-8 |
title |
Scheduling of Construction Projects under Resource-Constrained Conditions with a Specifically Developed Software using Genetic Algorithms |
ctrlnum |
(DE-627)DOAJ019308205 (DE-599)DOAJadc6c1bafa2147deac68b91fb4bcd2d8 |
title_full |
Scheduling of Construction Projects under Resource-Constrained Conditions with a Specifically Developed Software using Genetic Algorithms |
author_sort |
Mursel Erdal* |
journal |
Tehnički Vjesnik |
journalStr |
Tehnički Vjesnik |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1362 |
author_browse |
Mursel Erdal* Recep Kanit |
container_volume |
28 |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Mursel Erdal* |
author2-role |
verfasserin |
title_sort |
scheduling of construction projects under resource-constrained conditions with a specifically developed software using genetic algorithms |
callnumber |
TA1-2040 |
title_auth |
Scheduling of Construction Projects under Resource-Constrained Conditions with a Specifically Developed Software using Genetic Algorithms |
abstract |
The purpose of this study is to develop a genetic algorithm (GA) based software that can perform resource allocation close to optimum and that can determine the critical path by minimizing the project duration according to the resource profile for a present work schedule and resource pool using a programmable objective function. In this context, the methodology of GAs was presented, the software was developed and the performance of this software was tested with a sample project. With the developed software, by minimizing the activity durations in both constrained and unconstrained resource conditions, projects can be scheduled, total duration and the critical path of the projects can be determined. With this software, any construction company will be able to determine how much time would be required to complete a project at the bidding stage by considering its resources and constraints and can take the required precautions. The main difference of this present study is that the developed code performs minimization of schedule duration integrated with resource allocation and levelling. It also determines the critical path of the final solutions. Both renewable and non-renewable resources are included in the code which is not often considered in the literature. By minimizing project duration and optimizing resource allocation, construction projects can become more sustainable, and the environmental impact of the construction process could be minimized. |
abstractGer |
The purpose of this study is to develop a genetic algorithm (GA) based software that can perform resource allocation close to optimum and that can determine the critical path by minimizing the project duration according to the resource profile for a present work schedule and resource pool using a programmable objective function. In this context, the methodology of GAs was presented, the software was developed and the performance of this software was tested with a sample project. With the developed software, by minimizing the activity durations in both constrained and unconstrained resource conditions, projects can be scheduled, total duration and the critical path of the projects can be determined. With this software, any construction company will be able to determine how much time would be required to complete a project at the bidding stage by considering its resources and constraints and can take the required precautions. The main difference of this present study is that the developed code performs minimization of schedule duration integrated with resource allocation and levelling. It also determines the critical path of the final solutions. Both renewable and non-renewable resources are included in the code which is not often considered in the literature. By minimizing project duration and optimizing resource allocation, construction projects can become more sustainable, and the environmental impact of the construction process could be minimized. |
abstract_unstemmed |
The purpose of this study is to develop a genetic algorithm (GA) based software that can perform resource allocation close to optimum and that can determine the critical path by minimizing the project duration according to the resource profile for a present work schedule and resource pool using a programmable objective function. In this context, the methodology of GAs was presented, the software was developed and the performance of this software was tested with a sample project. With the developed software, by minimizing the activity durations in both constrained and unconstrained resource conditions, projects can be scheduled, total duration and the critical path of the projects can be determined. With this software, any construction company will be able to determine how much time would be required to complete a project at the bidding stage by considering its resources and constraints and can take the required precautions. The main difference of this present study is that the developed code performs minimization of schedule duration integrated with resource allocation and levelling. It also determines the critical path of the final solutions. Both renewable and non-renewable resources are included in the code which is not often considered in the literature. By minimizing project duration and optimizing resource allocation, construction projects can become more sustainable, and the environmental impact of the construction process could be minimized. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Scheduling of Construction Projects under Resource-Constrained Conditions with a Specifically Developed Software using Genetic Algorithms |
url |
https://doaj.org/article/adc6c1bafa2147deac68b91fb4bcd2d8 https://hrcak.srce.hr/file/379506 https://doaj.org/toc/1330-3651 https://doaj.org/toc/1848-6339 |
remote_bool |
true |
author2 |
Recep Kanit |
author2Str |
Recep Kanit |
ppnlink |
603490964 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T22:54:18.182Z |
_version_ |
1803600273796497409 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ019308205</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310105849.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ019308205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJadc6c1bafa2147deac68b91fb4bcd2d8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mursel Erdal*</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scheduling of Construction Projects under Resource-Constrained Conditions with a Specifically Developed Software using Genetic Algorithms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The purpose of this study is to develop a genetic algorithm (GA) based software that can perform resource allocation close to optimum and that can determine the critical path by minimizing the project duration according to the resource profile for a present work schedule and resource pool using a programmable objective function. In this context, the methodology of GAs was presented, the software was developed and the performance of this software was tested with a sample project. With the developed software, by minimizing the activity durations in both constrained and unconstrained resource conditions, projects can be scheduled, total duration and the critical path of the projects can be determined. With this software, any construction company will be able to determine how much time would be required to complete a project at the bidding stage by considering its resources and constraints and can take the required precautions. The main difference of this present study is that the developed code performs minimization of schedule duration integrated with resource allocation and levelling. It also determines the critical path of the final solutions. Both renewable and non-renewable resources are included in the code which is not often considered in the literature. By minimizing project duration and optimizing resource allocation, construction projects can become more sustainable, and the environmental impact of the construction process could be minimized.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">renewable resource</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sustainability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Recep Kanit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Tehnički Vjesnik</subfield><subfield code="d">Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek, 2017</subfield><subfield code="g">28(2021), 4, Seite 1362-1370</subfield><subfield code="w">(DE-627)603490964</subfield><subfield code="w">(DE-600)2502144-8</subfield><subfield code="x">18486339</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:1362-1370</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/adc6c1bafa2147deac68b91fb4bcd2d8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://hrcak.srce.hr/file/379506</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1330-3651</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1848-6339</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="h">1362-1370</subfield></datafield></record></collection>
|
score |
7.401058 |