Genetic and Molecular Characterization of a Self-Compatible <i<Brassica rapa</i< Line Possessing a New Class II <i<S</i< Haplotype
Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The <i<Brassica</i< species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and...
Ausführliche Beschreibung
Autor*in: |
Bing Li [verfasserIn] Xueli Zhang [verfasserIn] Zhiquan Liu [verfasserIn] Lulin Wang [verfasserIn] Liping Song [verfasserIn] Xiaomei Liang [verfasserIn] Shengwei Dou [verfasserIn] Jinxing Tu [verfasserIn] Jinxiong Shen [verfasserIn] Bin Yi [verfasserIn] Jing Wen [verfasserIn] Tingdong Fu [verfasserIn] Cheng Dai [verfasserIn] Changbin Gao [verfasserIn] Aihua Wang [verfasserIn] Chaozhi Ma [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Plants - MDPI AG, 2013, 10(2021), 12, p 2815 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2021 ; number:12, p 2815 |
Links: |
---|
DOI / URN: |
10.3390/plants10122815 |
---|
Katalog-ID: |
DOAJ019373112 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ019373112 | ||
003 | DE-627 | ||
005 | 20240414222753.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/plants10122815 |2 doi | |
035 | |a (DE-627)DOAJ019373112 | ||
035 | |a (DE-599)DOAJ18d09f05c15d465d90e8bf3ac114d421 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QK1-989 | |
100 | 0 | |a Bing Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Genetic and Molecular Characterization of a Self-Compatible <i<Brassica rapa</i< Line Possessing a New Class II <i<S</i< Haplotype |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The <i<Brassica</i< species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and SRK. However, the mysterious molecular mechanism of SI remains largely unknown. Here, a new class II <i<S</i< haplotype, named <i<BrS-325</i<, was identified in a pak choi line ‘325’, which was responsible for the completely self-compatible phenotype. To obtain the entire <i<S</i< locus sequences, a complete pak choi genome was gained through Nanopore sequencing and de novo assembly, which provided a good reference genome for breeding and molecular research in <i<B. rapa</i<. <i<S</i< locus comparative analysis showed that the closest relatives to <i<BrS-325</i< was <i<BrS-60</i<, and high sequence polymorphism existed in the <i<S</i< locus. Meanwhile, two duplicated <i<SRKs</i< (<i<BrSRK-325a</i< and <i<BrSRK-325b</i<) were distributed in the <i<Br</i<<i<S-325</i< locus with opposite transcription directions. <i<BrSRK-325b</i< and <i<BrSCR-325</i< were expressed normally at the transcriptional level. The multiple sequence alignment of SCRs and SRKs in class II <i<S</i< haplotypes showed that a number of amino acid variations were present in the contact regions (CR II and CR III) of BrSCR-325 and the hypervariable regions (HV I and HV II) of BrSRK-325s, which may influence the binding and interaction between the ligand and the receptor. Thus, these results suggested that amino acid variations in contact sites may lead to the SI destruction of a new class II <i<S</i< haplotype <i<BrS-325</i< in <i<B. rapa</i<. The complete SC phenotype of ‘325’ showed the potential for practical breeding application value in <i<B. rapa</i<. | ||
650 | 4 | |a <i<Brassica rapa</i< | |
650 | 4 | |a self-incompatibility/self-compatibility | |
650 | 4 | |a <i<S</i< haplotype | |
650 | 4 | |a <i<S</i< locus receptor kinase (SRK) | |
650 | 4 | |a <i<S</i< locus cysteine-rich protein (SCR) | |
650 | 4 | |a amino acid variations | |
653 | 0 | |a Botany | |
700 | 0 | |a Xueli Zhang |e verfasserin |4 aut | |
700 | 0 | |a Zhiquan Liu |e verfasserin |4 aut | |
700 | 0 | |a Lulin Wang |e verfasserin |4 aut | |
700 | 0 | |a Liping Song |e verfasserin |4 aut | |
700 | 0 | |a Xiaomei Liang |e verfasserin |4 aut | |
700 | 0 | |a Shengwei Dou |e verfasserin |4 aut | |
700 | 0 | |a Jinxing Tu |e verfasserin |4 aut | |
700 | 0 | |a Jinxiong Shen |e verfasserin |4 aut | |
700 | 0 | |a Bin Yi |e verfasserin |4 aut | |
700 | 0 | |a Jing Wen |e verfasserin |4 aut | |
700 | 0 | |a Tingdong Fu |e verfasserin |4 aut | |
700 | 0 | |a Cheng Dai |e verfasserin |4 aut | |
700 | 0 | |a Changbin Gao |e verfasserin |4 aut | |
700 | 0 | |a Aihua Wang |e verfasserin |4 aut | |
700 | 0 | |a Chaozhi Ma |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Plants |d MDPI AG, 2013 |g 10(2021), 12, p 2815 |w (DE-627)737288345 |w (DE-600)2704341-1 |x 22237747 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2021 |g number:12, p 2815 |
856 | 4 | 0 | |u https://doi.org/10.3390/plants10122815 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/18d09f05c15d465d90e8bf3ac114d421 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2223-7747/10/12/2815 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2223-7747 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2021 |e 12, p 2815 |
author_variant |
b l bl x z xz z l zl l w lw l s ls x l xl s d sd j t jt j s js b y by j w jw t f tf c d cd c g cg a w aw c m cm |
---|---|
matchkey_str |
article:22237747:2021----::eeiadoeuacaatrztooaefoptbebascrpiieos |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QK |
publishDate |
2021 |
allfields |
10.3390/plants10122815 doi (DE-627)DOAJ019373112 (DE-599)DOAJ18d09f05c15d465d90e8bf3ac114d421 DE-627 ger DE-627 rakwb eng QK1-989 Bing Li verfasserin aut Genetic and Molecular Characterization of a Self-Compatible <i<Brassica rapa</i< Line Possessing a New Class II <i<S</i< Haplotype 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The <i<Brassica</i< species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and SRK. However, the mysterious molecular mechanism of SI remains largely unknown. Here, a new class II <i<S</i< haplotype, named <i<BrS-325</i<, was identified in a pak choi line ‘325’, which was responsible for the completely self-compatible phenotype. To obtain the entire <i<S</i< locus sequences, a complete pak choi genome was gained through Nanopore sequencing and de novo assembly, which provided a good reference genome for breeding and molecular research in <i<B. rapa</i<. <i<S</i< locus comparative analysis showed that the closest relatives to <i<BrS-325</i< was <i<BrS-60</i<, and high sequence polymorphism existed in the <i<S</i< locus. Meanwhile, two duplicated <i<SRKs</i< (<i<BrSRK-325a</i< and <i<BrSRK-325b</i<) were distributed in the <i<Br</i<<i<S-325</i< locus with opposite transcription directions. <i<BrSRK-325b</i< and <i<BrSCR-325</i< were expressed normally at the transcriptional level. The multiple sequence alignment of SCRs and SRKs in class II <i<S</i< haplotypes showed that a number of amino acid variations were present in the contact regions (CR II and CR III) of BrSCR-325 and the hypervariable regions (HV I and HV II) of BrSRK-325s, which may influence the binding and interaction between the ligand and the receptor. Thus, these results suggested that amino acid variations in contact sites may lead to the SI destruction of a new class II <i<S</i< haplotype <i<BrS-325</i< in <i<B. rapa</i<. The complete SC phenotype of ‘325’ showed the potential for practical breeding application value in <i<B. rapa</i<. <i<Brassica rapa</i< self-incompatibility/self-compatibility <i<S</i< haplotype <i<S</i< locus receptor kinase (SRK) <i<S</i< locus cysteine-rich protein (SCR) amino acid variations Botany Xueli Zhang verfasserin aut Zhiquan Liu verfasserin aut Lulin Wang verfasserin aut Liping Song verfasserin aut Xiaomei Liang verfasserin aut Shengwei Dou verfasserin aut Jinxing Tu verfasserin aut Jinxiong Shen verfasserin aut Bin Yi verfasserin aut Jing Wen verfasserin aut Tingdong Fu verfasserin aut Cheng Dai verfasserin aut Changbin Gao verfasserin aut Aihua Wang verfasserin aut Chaozhi Ma verfasserin aut In Plants MDPI AG, 2013 10(2021), 12, p 2815 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:10 year:2021 number:12, p 2815 https://doi.org/10.3390/plants10122815 kostenfrei https://doaj.org/article/18d09f05c15d465d90e8bf3ac114d421 kostenfrei https://www.mdpi.com/2223-7747/10/12/2815 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 12, p 2815 |
spelling |
10.3390/plants10122815 doi (DE-627)DOAJ019373112 (DE-599)DOAJ18d09f05c15d465d90e8bf3ac114d421 DE-627 ger DE-627 rakwb eng QK1-989 Bing Li verfasserin aut Genetic and Molecular Characterization of a Self-Compatible <i<Brassica rapa</i< Line Possessing a New Class II <i<S</i< Haplotype 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The <i<Brassica</i< species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and SRK. However, the mysterious molecular mechanism of SI remains largely unknown. Here, a new class II <i<S</i< haplotype, named <i<BrS-325</i<, was identified in a pak choi line ‘325’, which was responsible for the completely self-compatible phenotype. To obtain the entire <i<S</i< locus sequences, a complete pak choi genome was gained through Nanopore sequencing and de novo assembly, which provided a good reference genome for breeding and molecular research in <i<B. rapa</i<. <i<S</i< locus comparative analysis showed that the closest relatives to <i<BrS-325</i< was <i<BrS-60</i<, and high sequence polymorphism existed in the <i<S</i< locus. Meanwhile, two duplicated <i<SRKs</i< (<i<BrSRK-325a</i< and <i<BrSRK-325b</i<) were distributed in the <i<Br</i<<i<S-325</i< locus with opposite transcription directions. <i<BrSRK-325b</i< and <i<BrSCR-325</i< were expressed normally at the transcriptional level. The multiple sequence alignment of SCRs and SRKs in class II <i<S</i< haplotypes showed that a number of amino acid variations were present in the contact regions (CR II and CR III) of BrSCR-325 and the hypervariable regions (HV I and HV II) of BrSRK-325s, which may influence the binding and interaction between the ligand and the receptor. Thus, these results suggested that amino acid variations in contact sites may lead to the SI destruction of a new class II <i<S</i< haplotype <i<BrS-325</i< in <i<B. rapa</i<. The complete SC phenotype of ‘325’ showed the potential for practical breeding application value in <i<B. rapa</i<. <i<Brassica rapa</i< self-incompatibility/self-compatibility <i<S</i< haplotype <i<S</i< locus receptor kinase (SRK) <i<S</i< locus cysteine-rich protein (SCR) amino acid variations Botany Xueli Zhang verfasserin aut Zhiquan Liu verfasserin aut Lulin Wang verfasserin aut Liping Song verfasserin aut Xiaomei Liang verfasserin aut Shengwei Dou verfasserin aut Jinxing Tu verfasserin aut Jinxiong Shen verfasserin aut Bin Yi verfasserin aut Jing Wen verfasserin aut Tingdong Fu verfasserin aut Cheng Dai verfasserin aut Changbin Gao verfasserin aut Aihua Wang verfasserin aut Chaozhi Ma verfasserin aut In Plants MDPI AG, 2013 10(2021), 12, p 2815 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:10 year:2021 number:12, p 2815 https://doi.org/10.3390/plants10122815 kostenfrei https://doaj.org/article/18d09f05c15d465d90e8bf3ac114d421 kostenfrei https://www.mdpi.com/2223-7747/10/12/2815 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 12, p 2815 |
allfields_unstemmed |
10.3390/plants10122815 doi (DE-627)DOAJ019373112 (DE-599)DOAJ18d09f05c15d465d90e8bf3ac114d421 DE-627 ger DE-627 rakwb eng QK1-989 Bing Li verfasserin aut Genetic and Molecular Characterization of a Self-Compatible <i<Brassica rapa</i< Line Possessing a New Class II <i<S</i< Haplotype 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The <i<Brassica</i< species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and SRK. However, the mysterious molecular mechanism of SI remains largely unknown. Here, a new class II <i<S</i< haplotype, named <i<BrS-325</i<, was identified in a pak choi line ‘325’, which was responsible for the completely self-compatible phenotype. To obtain the entire <i<S</i< locus sequences, a complete pak choi genome was gained through Nanopore sequencing and de novo assembly, which provided a good reference genome for breeding and molecular research in <i<B. rapa</i<. <i<S</i< locus comparative analysis showed that the closest relatives to <i<BrS-325</i< was <i<BrS-60</i<, and high sequence polymorphism existed in the <i<S</i< locus. Meanwhile, two duplicated <i<SRKs</i< (<i<BrSRK-325a</i< and <i<BrSRK-325b</i<) were distributed in the <i<Br</i<<i<S-325</i< locus with opposite transcription directions. <i<BrSRK-325b</i< and <i<BrSCR-325</i< were expressed normally at the transcriptional level. The multiple sequence alignment of SCRs and SRKs in class II <i<S</i< haplotypes showed that a number of amino acid variations were present in the contact regions (CR II and CR III) of BrSCR-325 and the hypervariable regions (HV I and HV II) of BrSRK-325s, which may influence the binding and interaction between the ligand and the receptor. Thus, these results suggested that amino acid variations in contact sites may lead to the SI destruction of a new class II <i<S</i< haplotype <i<BrS-325</i< in <i<B. rapa</i<. The complete SC phenotype of ‘325’ showed the potential for practical breeding application value in <i<B. rapa</i<. <i<Brassica rapa</i< self-incompatibility/self-compatibility <i<S</i< haplotype <i<S</i< locus receptor kinase (SRK) <i<S</i< locus cysteine-rich protein (SCR) amino acid variations Botany Xueli Zhang verfasserin aut Zhiquan Liu verfasserin aut Lulin Wang verfasserin aut Liping Song verfasserin aut Xiaomei Liang verfasserin aut Shengwei Dou verfasserin aut Jinxing Tu verfasserin aut Jinxiong Shen verfasserin aut Bin Yi verfasserin aut Jing Wen verfasserin aut Tingdong Fu verfasserin aut Cheng Dai verfasserin aut Changbin Gao verfasserin aut Aihua Wang verfasserin aut Chaozhi Ma verfasserin aut In Plants MDPI AG, 2013 10(2021), 12, p 2815 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:10 year:2021 number:12, p 2815 https://doi.org/10.3390/plants10122815 kostenfrei https://doaj.org/article/18d09f05c15d465d90e8bf3ac114d421 kostenfrei https://www.mdpi.com/2223-7747/10/12/2815 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 12, p 2815 |
allfieldsGer |
10.3390/plants10122815 doi (DE-627)DOAJ019373112 (DE-599)DOAJ18d09f05c15d465d90e8bf3ac114d421 DE-627 ger DE-627 rakwb eng QK1-989 Bing Li verfasserin aut Genetic and Molecular Characterization of a Self-Compatible <i<Brassica rapa</i< Line Possessing a New Class II <i<S</i< Haplotype 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The <i<Brassica</i< species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and SRK. However, the mysterious molecular mechanism of SI remains largely unknown. Here, a new class II <i<S</i< haplotype, named <i<BrS-325</i<, was identified in a pak choi line ‘325’, which was responsible for the completely self-compatible phenotype. To obtain the entire <i<S</i< locus sequences, a complete pak choi genome was gained through Nanopore sequencing and de novo assembly, which provided a good reference genome for breeding and molecular research in <i<B. rapa</i<. <i<S</i< locus comparative analysis showed that the closest relatives to <i<BrS-325</i< was <i<BrS-60</i<, and high sequence polymorphism existed in the <i<S</i< locus. Meanwhile, two duplicated <i<SRKs</i< (<i<BrSRK-325a</i< and <i<BrSRK-325b</i<) were distributed in the <i<Br</i<<i<S-325</i< locus with opposite transcription directions. <i<BrSRK-325b</i< and <i<BrSCR-325</i< were expressed normally at the transcriptional level. The multiple sequence alignment of SCRs and SRKs in class II <i<S</i< haplotypes showed that a number of amino acid variations were present in the contact regions (CR II and CR III) of BrSCR-325 and the hypervariable regions (HV I and HV II) of BrSRK-325s, which may influence the binding and interaction between the ligand and the receptor. Thus, these results suggested that amino acid variations in contact sites may lead to the SI destruction of a new class II <i<S</i< haplotype <i<BrS-325</i< in <i<B. rapa</i<. The complete SC phenotype of ‘325’ showed the potential for practical breeding application value in <i<B. rapa</i<. <i<Brassica rapa</i< self-incompatibility/self-compatibility <i<S</i< haplotype <i<S</i< locus receptor kinase (SRK) <i<S</i< locus cysteine-rich protein (SCR) amino acid variations Botany Xueli Zhang verfasserin aut Zhiquan Liu verfasserin aut Lulin Wang verfasserin aut Liping Song verfasserin aut Xiaomei Liang verfasserin aut Shengwei Dou verfasserin aut Jinxing Tu verfasserin aut Jinxiong Shen verfasserin aut Bin Yi verfasserin aut Jing Wen verfasserin aut Tingdong Fu verfasserin aut Cheng Dai verfasserin aut Changbin Gao verfasserin aut Aihua Wang verfasserin aut Chaozhi Ma verfasserin aut In Plants MDPI AG, 2013 10(2021), 12, p 2815 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:10 year:2021 number:12, p 2815 https://doi.org/10.3390/plants10122815 kostenfrei https://doaj.org/article/18d09f05c15d465d90e8bf3ac114d421 kostenfrei https://www.mdpi.com/2223-7747/10/12/2815 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 12, p 2815 |
allfieldsSound |
10.3390/plants10122815 doi (DE-627)DOAJ019373112 (DE-599)DOAJ18d09f05c15d465d90e8bf3ac114d421 DE-627 ger DE-627 rakwb eng QK1-989 Bing Li verfasserin aut Genetic and Molecular Characterization of a Self-Compatible <i<Brassica rapa</i< Line Possessing a New Class II <i<S</i< Haplotype 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The <i<Brassica</i< species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and SRK. However, the mysterious molecular mechanism of SI remains largely unknown. Here, a new class II <i<S</i< haplotype, named <i<BrS-325</i<, was identified in a pak choi line ‘325’, which was responsible for the completely self-compatible phenotype. To obtain the entire <i<S</i< locus sequences, a complete pak choi genome was gained through Nanopore sequencing and de novo assembly, which provided a good reference genome for breeding and molecular research in <i<B. rapa</i<. <i<S</i< locus comparative analysis showed that the closest relatives to <i<BrS-325</i< was <i<BrS-60</i<, and high sequence polymorphism existed in the <i<S</i< locus. Meanwhile, two duplicated <i<SRKs</i< (<i<BrSRK-325a</i< and <i<BrSRK-325b</i<) were distributed in the <i<Br</i<<i<S-325</i< locus with opposite transcription directions. <i<BrSRK-325b</i< and <i<BrSCR-325</i< were expressed normally at the transcriptional level. The multiple sequence alignment of SCRs and SRKs in class II <i<S</i< haplotypes showed that a number of amino acid variations were present in the contact regions (CR II and CR III) of BrSCR-325 and the hypervariable regions (HV I and HV II) of BrSRK-325s, which may influence the binding and interaction between the ligand and the receptor. Thus, these results suggested that amino acid variations in contact sites may lead to the SI destruction of a new class II <i<S</i< haplotype <i<BrS-325</i< in <i<B. rapa</i<. The complete SC phenotype of ‘325’ showed the potential for practical breeding application value in <i<B. rapa</i<. <i<Brassica rapa</i< self-incompatibility/self-compatibility <i<S</i< haplotype <i<S</i< locus receptor kinase (SRK) <i<S</i< locus cysteine-rich protein (SCR) amino acid variations Botany Xueli Zhang verfasserin aut Zhiquan Liu verfasserin aut Lulin Wang verfasserin aut Liping Song verfasserin aut Xiaomei Liang verfasserin aut Shengwei Dou verfasserin aut Jinxing Tu verfasserin aut Jinxiong Shen verfasserin aut Bin Yi verfasserin aut Jing Wen verfasserin aut Tingdong Fu verfasserin aut Cheng Dai verfasserin aut Changbin Gao verfasserin aut Aihua Wang verfasserin aut Chaozhi Ma verfasserin aut In Plants MDPI AG, 2013 10(2021), 12, p 2815 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:10 year:2021 number:12, p 2815 https://doi.org/10.3390/plants10122815 kostenfrei https://doaj.org/article/18d09f05c15d465d90e8bf3ac114d421 kostenfrei https://www.mdpi.com/2223-7747/10/12/2815 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 12, p 2815 |
language |
English |
source |
In Plants 10(2021), 12, p 2815 volume:10 year:2021 number:12, p 2815 |
sourceStr |
In Plants 10(2021), 12, p 2815 volume:10 year:2021 number:12, p 2815 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
<i<Brassica rapa</i< self-incompatibility/self-compatibility <i<S</i< haplotype <i<S</i< locus receptor kinase (SRK) <i<S</i< locus cysteine-rich protein (SCR) amino acid variations Botany |
isfreeaccess_bool |
true |
container_title |
Plants |
authorswithroles_txt_mv |
Bing Li @@aut@@ Xueli Zhang @@aut@@ Zhiquan Liu @@aut@@ Lulin Wang @@aut@@ Liping Song @@aut@@ Xiaomei Liang @@aut@@ Shengwei Dou @@aut@@ Jinxing Tu @@aut@@ Jinxiong Shen @@aut@@ Bin Yi @@aut@@ Jing Wen @@aut@@ Tingdong Fu @@aut@@ Cheng Dai @@aut@@ Changbin Gao @@aut@@ Aihua Wang @@aut@@ Chaozhi Ma @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
737288345 |
id |
DOAJ019373112 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ019373112</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414222753.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants10122815</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ019373112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ18d09f05c15d465d90e8bf3ac114d421</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genetic and Molecular Characterization of a Self-Compatible <i<Brassica rapa</i< Line Possessing a New Class II <i<S</i< Haplotype</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The <i<Brassica</i< species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and SRK. However, the mysterious molecular mechanism of SI remains largely unknown. Here, a new class II <i<S</i< haplotype, named <i<BrS-325</i<, was identified in a pak choi line ‘325’, which was responsible for the completely self-compatible phenotype. To obtain the entire <i<S</i< locus sequences, a complete pak choi genome was gained through Nanopore sequencing and de novo assembly, which provided a good reference genome for breeding and molecular research in <i<B. rapa</i<. <i<S</i< locus comparative analysis showed that the closest relatives to <i<BrS-325</i< was <i<BrS-60</i<, and high sequence polymorphism existed in the <i<S</i< locus. Meanwhile, two duplicated <i<SRKs</i< (<i<BrSRK-325a</i< and <i<BrSRK-325b</i<) were distributed in the <i<Br</i<<i<S-325</i< locus with opposite transcription directions. <i<BrSRK-325b</i< and <i<BrSCR-325</i< were expressed normally at the transcriptional level. The multiple sequence alignment of SCRs and SRKs in class II <i<S</i< haplotypes showed that a number of amino acid variations were present in the contact regions (CR II and CR III) of BrSCR-325 and the hypervariable regions (HV I and HV II) of BrSRK-325s, which may influence the binding and interaction between the ligand and the receptor. Thus, these results suggested that amino acid variations in contact sites may lead to the SI destruction of a new class II <i<S</i< haplotype <i<BrS-325</i< in <i<B. rapa</i<. The complete SC phenotype of ‘325’ showed the potential for practical breeding application value in <i<B. rapa</i<.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Brassica rapa</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">self-incompatibility/self-compatibility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<S</i< haplotype</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<S</i< locus receptor kinase (SRK)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<S</i< locus cysteine-rich protein (SCR)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">amino acid variations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xueli Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiquan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lulin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liping Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaomei Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shengwei Dou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinxing Tu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinxiong Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bin Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tingdong Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cheng Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Changbin Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aihua Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chaozhi Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2021), 12, p 2815</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12, p 2815</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants10122815</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/18d09f05c15d465d90e8bf3ac114d421</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/10/12/2815</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">12, p 2815</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Bing Li |
spellingShingle |
Bing Li misc QK1-989 misc <i<Brassica rapa</i< misc self-incompatibility/self-compatibility misc <i<S</i< haplotype misc <i<S</i< locus receptor kinase (SRK) misc <i<S</i< locus cysteine-rich protein (SCR) misc amino acid variations misc Botany Genetic and Molecular Characterization of a Self-Compatible <i<Brassica rapa</i< Line Possessing a New Class II <i<S</i< Haplotype |
authorStr |
Bing Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737288345 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QK1-989 |
illustrated |
Not Illustrated |
issn |
22237747 |
topic_title |
QK1-989 Genetic and Molecular Characterization of a Self-Compatible <i<Brassica rapa</i< Line Possessing a New Class II <i<S</i< Haplotype <i<Brassica rapa</i< self-incompatibility/self-compatibility <i<S</i< haplotype <i<S</i< locus receptor kinase (SRK) <i<S</i< locus cysteine-rich protein (SCR) amino acid variations |
topic |
misc QK1-989 misc <i<Brassica rapa</i< misc self-incompatibility/self-compatibility misc <i<S</i< haplotype misc <i<S</i< locus receptor kinase (SRK) misc <i<S</i< locus cysteine-rich protein (SCR) misc amino acid variations misc Botany |
topic_unstemmed |
misc QK1-989 misc <i<Brassica rapa</i< misc self-incompatibility/self-compatibility misc <i<S</i< haplotype misc <i<S</i< locus receptor kinase (SRK) misc <i<S</i< locus cysteine-rich protein (SCR) misc amino acid variations misc Botany |
topic_browse |
misc QK1-989 misc <i<Brassica rapa</i< misc self-incompatibility/self-compatibility misc <i<S</i< haplotype misc <i<S</i< locus receptor kinase (SRK) misc <i<S</i< locus cysteine-rich protein (SCR) misc amino acid variations misc Botany |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Plants |
hierarchy_parent_id |
737288345 |
hierarchy_top_title |
Plants |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737288345 (DE-600)2704341-1 |
title |
Genetic and Molecular Characterization of a Self-Compatible <i<Brassica rapa</i< Line Possessing a New Class II <i<S</i< Haplotype |
ctrlnum |
(DE-627)DOAJ019373112 (DE-599)DOAJ18d09f05c15d465d90e8bf3ac114d421 |
title_full |
Genetic and Molecular Characterization of a Self-Compatible <i<Brassica rapa</i< Line Possessing a New Class II <i<S</i< Haplotype |
author_sort |
Bing Li |
journal |
Plants |
journalStr |
Plants |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Bing Li Xueli Zhang Zhiquan Liu Lulin Wang Liping Song Xiaomei Liang Shengwei Dou Jinxing Tu Jinxiong Shen Bin Yi Jing Wen Tingdong Fu Cheng Dai Changbin Gao Aihua Wang Chaozhi Ma |
container_volume |
10 |
class |
QK1-989 |
format_se |
Elektronische Aufsätze |
author-letter |
Bing Li |
doi_str_mv |
10.3390/plants10122815 |
author2-role |
verfasserin |
title_sort |
genetic and molecular characterization of a self-compatible <i<brassica rapa</i< line possessing a new class ii <i<s</i< haplotype |
callnumber |
QK1-989 |
title_auth |
Genetic and Molecular Characterization of a Self-Compatible <i<Brassica rapa</i< Line Possessing a New Class II <i<S</i< Haplotype |
abstract |
Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The <i<Brassica</i< species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and SRK. However, the mysterious molecular mechanism of SI remains largely unknown. Here, a new class II <i<S</i< haplotype, named <i<BrS-325</i<, was identified in a pak choi line ‘325’, which was responsible for the completely self-compatible phenotype. To obtain the entire <i<S</i< locus sequences, a complete pak choi genome was gained through Nanopore sequencing and de novo assembly, which provided a good reference genome for breeding and molecular research in <i<B. rapa</i<. <i<S</i< locus comparative analysis showed that the closest relatives to <i<BrS-325</i< was <i<BrS-60</i<, and high sequence polymorphism existed in the <i<S</i< locus. Meanwhile, two duplicated <i<SRKs</i< (<i<BrSRK-325a</i< and <i<BrSRK-325b</i<) were distributed in the <i<Br</i<<i<S-325</i< locus with opposite transcription directions. <i<BrSRK-325b</i< and <i<BrSCR-325</i< were expressed normally at the transcriptional level. The multiple sequence alignment of SCRs and SRKs in class II <i<S</i< haplotypes showed that a number of amino acid variations were present in the contact regions (CR II and CR III) of BrSCR-325 and the hypervariable regions (HV I and HV II) of BrSRK-325s, which may influence the binding and interaction between the ligand and the receptor. Thus, these results suggested that amino acid variations in contact sites may lead to the SI destruction of a new class II <i<S</i< haplotype <i<BrS-325</i< in <i<B. rapa</i<. The complete SC phenotype of ‘325’ showed the potential for practical breeding application value in <i<B. rapa</i<. |
abstractGer |
Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The <i<Brassica</i< species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and SRK. However, the mysterious molecular mechanism of SI remains largely unknown. Here, a new class II <i<S</i< haplotype, named <i<BrS-325</i<, was identified in a pak choi line ‘325’, which was responsible for the completely self-compatible phenotype. To obtain the entire <i<S</i< locus sequences, a complete pak choi genome was gained through Nanopore sequencing and de novo assembly, which provided a good reference genome for breeding and molecular research in <i<B. rapa</i<. <i<S</i< locus comparative analysis showed that the closest relatives to <i<BrS-325</i< was <i<BrS-60</i<, and high sequence polymorphism existed in the <i<S</i< locus. Meanwhile, two duplicated <i<SRKs</i< (<i<BrSRK-325a</i< and <i<BrSRK-325b</i<) were distributed in the <i<Br</i<<i<S-325</i< locus with opposite transcription directions. <i<BrSRK-325b</i< and <i<BrSCR-325</i< were expressed normally at the transcriptional level. The multiple sequence alignment of SCRs and SRKs in class II <i<S</i< haplotypes showed that a number of amino acid variations were present in the contact regions (CR II and CR III) of BrSCR-325 and the hypervariable regions (HV I and HV II) of BrSRK-325s, which may influence the binding and interaction between the ligand and the receptor. Thus, these results suggested that amino acid variations in contact sites may lead to the SI destruction of a new class II <i<S</i< haplotype <i<BrS-325</i< in <i<B. rapa</i<. The complete SC phenotype of ‘325’ showed the potential for practical breeding application value in <i<B. rapa</i<. |
abstract_unstemmed |
Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The <i<Brassica</i< species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and SRK. However, the mysterious molecular mechanism of SI remains largely unknown. Here, a new class II <i<S</i< haplotype, named <i<BrS-325</i<, was identified in a pak choi line ‘325’, which was responsible for the completely self-compatible phenotype. To obtain the entire <i<S</i< locus sequences, a complete pak choi genome was gained through Nanopore sequencing and de novo assembly, which provided a good reference genome for breeding and molecular research in <i<B. rapa</i<. <i<S</i< locus comparative analysis showed that the closest relatives to <i<BrS-325</i< was <i<BrS-60</i<, and high sequence polymorphism existed in the <i<S</i< locus. Meanwhile, two duplicated <i<SRKs</i< (<i<BrSRK-325a</i< and <i<BrSRK-325b</i<) were distributed in the <i<Br</i<<i<S-325</i< locus with opposite transcription directions. <i<BrSRK-325b</i< and <i<BrSCR-325</i< were expressed normally at the transcriptional level. The multiple sequence alignment of SCRs and SRKs in class II <i<S</i< haplotypes showed that a number of amino acid variations were present in the contact regions (CR II and CR III) of BrSCR-325 and the hypervariable regions (HV I and HV II) of BrSRK-325s, which may influence the binding and interaction between the ligand and the receptor. Thus, these results suggested that amino acid variations in contact sites may lead to the SI destruction of a new class II <i<S</i< haplotype <i<BrS-325</i< in <i<B. rapa</i<. The complete SC phenotype of ‘325’ showed the potential for practical breeding application value in <i<B. rapa</i<. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 2815 |
title_short |
Genetic and Molecular Characterization of a Self-Compatible <i<Brassica rapa</i< Line Possessing a New Class II <i<S</i< Haplotype |
url |
https://doi.org/10.3390/plants10122815 https://doaj.org/article/18d09f05c15d465d90e8bf3ac114d421 https://www.mdpi.com/2223-7747/10/12/2815 https://doaj.org/toc/2223-7747 |
remote_bool |
true |
author2 |
Xueli Zhang Zhiquan Liu Lulin Wang Liping Song Xiaomei Liang Shengwei Dou Jinxing Tu Jinxiong Shen Bin Yi Jing Wen Tingdong Fu Cheng Dai Changbin Gao Aihua Wang Chaozhi Ma |
author2Str |
Xueli Zhang Zhiquan Liu Lulin Wang Liping Song Xiaomei Liang Shengwei Dou Jinxing Tu Jinxiong Shen Bin Yi Jing Wen Tingdong Fu Cheng Dai Changbin Gao Aihua Wang Chaozhi Ma |
ppnlink |
737288345 |
callnumber-subject |
QK - Botany |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/plants10122815 |
callnumber-a |
QK1-989 |
up_date |
2024-07-03T23:12:43.951Z |
_version_ |
1803601433282478080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ019373112</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414222753.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants10122815</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ019373112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ18d09f05c15d465d90e8bf3ac114d421</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genetic and Molecular Characterization of a Self-Compatible <i<Brassica rapa</i< Line Possessing a New Class II <i<S</i< Haplotype</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The <i<Brassica</i< species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and SRK. However, the mysterious molecular mechanism of SI remains largely unknown. Here, a new class II <i<S</i< haplotype, named <i<BrS-325</i<, was identified in a pak choi line ‘325’, which was responsible for the completely self-compatible phenotype. To obtain the entire <i<S</i< locus sequences, a complete pak choi genome was gained through Nanopore sequencing and de novo assembly, which provided a good reference genome for breeding and molecular research in <i<B. rapa</i<. <i<S</i< locus comparative analysis showed that the closest relatives to <i<BrS-325</i< was <i<BrS-60</i<, and high sequence polymorphism existed in the <i<S</i< locus. Meanwhile, two duplicated <i<SRKs</i< (<i<BrSRK-325a</i< and <i<BrSRK-325b</i<) were distributed in the <i<Br</i<<i<S-325</i< locus with opposite transcription directions. <i<BrSRK-325b</i< and <i<BrSCR-325</i< were expressed normally at the transcriptional level. The multiple sequence alignment of SCRs and SRKs in class II <i<S</i< haplotypes showed that a number of amino acid variations were present in the contact regions (CR II and CR III) of BrSCR-325 and the hypervariable regions (HV I and HV II) of BrSRK-325s, which may influence the binding and interaction between the ligand and the receptor. Thus, these results suggested that amino acid variations in contact sites may lead to the SI destruction of a new class II <i<S</i< haplotype <i<BrS-325</i< in <i<B. rapa</i<. The complete SC phenotype of ‘325’ showed the potential for practical breeding application value in <i<B. rapa</i<.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Brassica rapa</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">self-incompatibility/self-compatibility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<S</i< haplotype</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<S</i< locus receptor kinase (SRK)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<S</i< locus cysteine-rich protein (SCR)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">amino acid variations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xueli Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiquan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lulin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liping Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaomei Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shengwei Dou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinxing Tu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinxiong Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bin Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tingdong Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cheng Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Changbin Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aihua Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chaozhi Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2021), 12, p 2815</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12, p 2815</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants10122815</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/18d09f05c15d465d90e8bf3ac114d421</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/10/12/2815</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">12, p 2815</subfield></datafield></record></collection>
|
score |
7.401121 |