Numerical simulation of directional fracturing by shaped charge blasting
Abstract The hard roof leads to large deformation or failure of the entry and poses risks to mining safety. Shaped charge blasting is applied to directionally fracture the hard roof and release mining pressure in this paper. The stress condition around the blasting borehole required to induce fractu...
Ausführliche Beschreibung
Autor*in: |
Ningkang Meng [verfasserIn] Yong Chen [verfasserIn] Jianbiao Bai [verfasserIn] Xiangyu Wang [verfasserIn] Wenda Wu [verfasserIn] Bowen Wu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energy Science & Engineering - Wiley, 2014, 8(2020), 5, Seite 1824-1839 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; number:5 ; pages:1824-1839 |
Links: |
---|
DOI / URN: |
10.1002/ese3.635 |
---|
Katalog-ID: |
DOAJ019431708 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ019431708 | ||
003 | DE-627 | ||
005 | 20230310110556.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/ese3.635 |2 doi | |
035 | |a (DE-627)DOAJ019431708 | ||
035 | |a (DE-599)DOAJef98ba4f34be4105a0aa6c238504dc2c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Ningkang Meng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical simulation of directional fracturing by shaped charge blasting |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The hard roof leads to large deformation or failure of the entry and poses risks to mining safety. Shaped charge blasting is applied to directionally fracture the hard roof and release mining pressure in this paper. The stress condition around the blasting borehole required to induce fracture propagation is calculated by theoretical calculation and numerical simulation. Evolution of blasting‐induced fractures between adjacent boreholes, main fracture in the shaped charge jet direction and secondary fractures in other directions is analyzed. The reliability of Livemore software of explicit dynamics analysis code (LS‐DYNA) in simulating shaped charge blasting is validated by experimental results. A numerical model is established to reveal the formation processes of the shaped charge jet, disclose the evolution of the equivalent stress and understand the development of the main fractures and secondary fractures between adjacent boreholes. The failure type of the rock mass and the fracture development zone are identified. The results indicate that blasting‐induced fractures mainly initiate and propagate in the shaped charge jet direction between adjacent boreholes. Shaped charge blasting leads to the directional propagation of fractures. The field monitoring results show that shaped charge blasting is able to realize the directional propagation of blasting‐induced fractures and release mining pressure. | ||
650 | 4 | |a directional propagation of blasting‐induced fractures | |
650 | 4 | |a hard roof | |
650 | 4 | |a LS‐DYNA3D | |
650 | 4 | |a shaped charge blasting | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Yong Chen |e verfasserin |4 aut | |
700 | 0 | |a Jianbiao Bai |e verfasserin |4 aut | |
700 | 0 | |a Xiangyu Wang |e verfasserin |4 aut | |
700 | 0 | |a Wenda Wu |e verfasserin |4 aut | |
700 | 0 | |a Bowen Wu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energy Science & Engineering |d Wiley, 2014 |g 8(2020), 5, Seite 1824-1839 |w (DE-627)750089202 |w (DE-600)2720339-6 |x 20500505 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g number:5 |g pages:1824-1839 |
856 | 4 | 0 | |u https://doi.org/10.1002/ese3.635 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ef98ba4f34be4105a0aa6c238504dc2c |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/ese3.635 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2050-0505 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |e 5 |h 1824-1839 |
author_variant |
n m nm y c yc j b jb x w xw w w ww b w bw |
---|---|
matchkey_str |
article:20500505:2020----::ueiasmltoodrcinlrcuigyhp |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1002/ese3.635 doi (DE-627)DOAJ019431708 (DE-599)DOAJef98ba4f34be4105a0aa6c238504dc2c DE-627 ger DE-627 rakwb eng Ningkang Meng verfasserin aut Numerical simulation of directional fracturing by shaped charge blasting 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The hard roof leads to large deformation or failure of the entry and poses risks to mining safety. Shaped charge blasting is applied to directionally fracture the hard roof and release mining pressure in this paper. The stress condition around the blasting borehole required to induce fracture propagation is calculated by theoretical calculation and numerical simulation. Evolution of blasting‐induced fractures between adjacent boreholes, main fracture in the shaped charge jet direction and secondary fractures in other directions is analyzed. The reliability of Livemore software of explicit dynamics analysis code (LS‐DYNA) in simulating shaped charge blasting is validated by experimental results. A numerical model is established to reveal the formation processes of the shaped charge jet, disclose the evolution of the equivalent stress and understand the development of the main fractures and secondary fractures between adjacent boreholes. The failure type of the rock mass and the fracture development zone are identified. The results indicate that blasting‐induced fractures mainly initiate and propagate in the shaped charge jet direction between adjacent boreholes. Shaped charge blasting leads to the directional propagation of fractures. The field monitoring results show that shaped charge blasting is able to realize the directional propagation of blasting‐induced fractures and release mining pressure. directional propagation of blasting‐induced fractures hard roof LS‐DYNA3D shaped charge blasting Technology T Science Q Yong Chen verfasserin aut Jianbiao Bai verfasserin aut Xiangyu Wang verfasserin aut Wenda Wu verfasserin aut Bowen Wu verfasserin aut In Energy Science & Engineering Wiley, 2014 8(2020), 5, Seite 1824-1839 (DE-627)750089202 (DE-600)2720339-6 20500505 nnns volume:8 year:2020 number:5 pages:1824-1839 https://doi.org/10.1002/ese3.635 kostenfrei https://doaj.org/article/ef98ba4f34be4105a0aa6c238504dc2c kostenfrei https://doi.org/10.1002/ese3.635 kostenfrei https://doaj.org/toc/2050-0505 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 5 1824-1839 |
spelling |
10.1002/ese3.635 doi (DE-627)DOAJ019431708 (DE-599)DOAJef98ba4f34be4105a0aa6c238504dc2c DE-627 ger DE-627 rakwb eng Ningkang Meng verfasserin aut Numerical simulation of directional fracturing by shaped charge blasting 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The hard roof leads to large deformation or failure of the entry and poses risks to mining safety. Shaped charge blasting is applied to directionally fracture the hard roof and release mining pressure in this paper. The stress condition around the blasting borehole required to induce fracture propagation is calculated by theoretical calculation and numerical simulation. Evolution of blasting‐induced fractures between adjacent boreholes, main fracture in the shaped charge jet direction and secondary fractures in other directions is analyzed. The reliability of Livemore software of explicit dynamics analysis code (LS‐DYNA) in simulating shaped charge blasting is validated by experimental results. A numerical model is established to reveal the formation processes of the shaped charge jet, disclose the evolution of the equivalent stress and understand the development of the main fractures and secondary fractures between adjacent boreholes. The failure type of the rock mass and the fracture development zone are identified. The results indicate that blasting‐induced fractures mainly initiate and propagate in the shaped charge jet direction between adjacent boreholes. Shaped charge blasting leads to the directional propagation of fractures. The field monitoring results show that shaped charge blasting is able to realize the directional propagation of blasting‐induced fractures and release mining pressure. directional propagation of blasting‐induced fractures hard roof LS‐DYNA3D shaped charge blasting Technology T Science Q Yong Chen verfasserin aut Jianbiao Bai verfasserin aut Xiangyu Wang verfasserin aut Wenda Wu verfasserin aut Bowen Wu verfasserin aut In Energy Science & Engineering Wiley, 2014 8(2020), 5, Seite 1824-1839 (DE-627)750089202 (DE-600)2720339-6 20500505 nnns volume:8 year:2020 number:5 pages:1824-1839 https://doi.org/10.1002/ese3.635 kostenfrei https://doaj.org/article/ef98ba4f34be4105a0aa6c238504dc2c kostenfrei https://doi.org/10.1002/ese3.635 kostenfrei https://doaj.org/toc/2050-0505 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 5 1824-1839 |
allfields_unstemmed |
10.1002/ese3.635 doi (DE-627)DOAJ019431708 (DE-599)DOAJef98ba4f34be4105a0aa6c238504dc2c DE-627 ger DE-627 rakwb eng Ningkang Meng verfasserin aut Numerical simulation of directional fracturing by shaped charge blasting 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The hard roof leads to large deformation or failure of the entry and poses risks to mining safety. Shaped charge blasting is applied to directionally fracture the hard roof and release mining pressure in this paper. The stress condition around the blasting borehole required to induce fracture propagation is calculated by theoretical calculation and numerical simulation. Evolution of blasting‐induced fractures between adjacent boreholes, main fracture in the shaped charge jet direction and secondary fractures in other directions is analyzed. The reliability of Livemore software of explicit dynamics analysis code (LS‐DYNA) in simulating shaped charge blasting is validated by experimental results. A numerical model is established to reveal the formation processes of the shaped charge jet, disclose the evolution of the equivalent stress and understand the development of the main fractures and secondary fractures between adjacent boreholes. The failure type of the rock mass and the fracture development zone are identified. The results indicate that blasting‐induced fractures mainly initiate and propagate in the shaped charge jet direction between adjacent boreholes. Shaped charge blasting leads to the directional propagation of fractures. The field monitoring results show that shaped charge blasting is able to realize the directional propagation of blasting‐induced fractures and release mining pressure. directional propagation of blasting‐induced fractures hard roof LS‐DYNA3D shaped charge blasting Technology T Science Q Yong Chen verfasserin aut Jianbiao Bai verfasserin aut Xiangyu Wang verfasserin aut Wenda Wu verfasserin aut Bowen Wu verfasserin aut In Energy Science & Engineering Wiley, 2014 8(2020), 5, Seite 1824-1839 (DE-627)750089202 (DE-600)2720339-6 20500505 nnns volume:8 year:2020 number:5 pages:1824-1839 https://doi.org/10.1002/ese3.635 kostenfrei https://doaj.org/article/ef98ba4f34be4105a0aa6c238504dc2c kostenfrei https://doi.org/10.1002/ese3.635 kostenfrei https://doaj.org/toc/2050-0505 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 5 1824-1839 |
allfieldsGer |
10.1002/ese3.635 doi (DE-627)DOAJ019431708 (DE-599)DOAJef98ba4f34be4105a0aa6c238504dc2c DE-627 ger DE-627 rakwb eng Ningkang Meng verfasserin aut Numerical simulation of directional fracturing by shaped charge blasting 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The hard roof leads to large deformation or failure of the entry and poses risks to mining safety. Shaped charge blasting is applied to directionally fracture the hard roof and release mining pressure in this paper. The stress condition around the blasting borehole required to induce fracture propagation is calculated by theoretical calculation and numerical simulation. Evolution of blasting‐induced fractures between adjacent boreholes, main fracture in the shaped charge jet direction and secondary fractures in other directions is analyzed. The reliability of Livemore software of explicit dynamics analysis code (LS‐DYNA) in simulating shaped charge blasting is validated by experimental results. A numerical model is established to reveal the formation processes of the shaped charge jet, disclose the evolution of the equivalent stress and understand the development of the main fractures and secondary fractures between adjacent boreholes. The failure type of the rock mass and the fracture development zone are identified. The results indicate that blasting‐induced fractures mainly initiate and propagate in the shaped charge jet direction between adjacent boreholes. Shaped charge blasting leads to the directional propagation of fractures. The field monitoring results show that shaped charge blasting is able to realize the directional propagation of blasting‐induced fractures and release mining pressure. directional propagation of blasting‐induced fractures hard roof LS‐DYNA3D shaped charge blasting Technology T Science Q Yong Chen verfasserin aut Jianbiao Bai verfasserin aut Xiangyu Wang verfasserin aut Wenda Wu verfasserin aut Bowen Wu verfasserin aut In Energy Science & Engineering Wiley, 2014 8(2020), 5, Seite 1824-1839 (DE-627)750089202 (DE-600)2720339-6 20500505 nnns volume:8 year:2020 number:5 pages:1824-1839 https://doi.org/10.1002/ese3.635 kostenfrei https://doaj.org/article/ef98ba4f34be4105a0aa6c238504dc2c kostenfrei https://doi.org/10.1002/ese3.635 kostenfrei https://doaj.org/toc/2050-0505 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 5 1824-1839 |
allfieldsSound |
10.1002/ese3.635 doi (DE-627)DOAJ019431708 (DE-599)DOAJef98ba4f34be4105a0aa6c238504dc2c DE-627 ger DE-627 rakwb eng Ningkang Meng verfasserin aut Numerical simulation of directional fracturing by shaped charge blasting 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The hard roof leads to large deformation or failure of the entry and poses risks to mining safety. Shaped charge blasting is applied to directionally fracture the hard roof and release mining pressure in this paper. The stress condition around the blasting borehole required to induce fracture propagation is calculated by theoretical calculation and numerical simulation. Evolution of blasting‐induced fractures between adjacent boreholes, main fracture in the shaped charge jet direction and secondary fractures in other directions is analyzed. The reliability of Livemore software of explicit dynamics analysis code (LS‐DYNA) in simulating shaped charge blasting is validated by experimental results. A numerical model is established to reveal the formation processes of the shaped charge jet, disclose the evolution of the equivalent stress and understand the development of the main fractures and secondary fractures between adjacent boreholes. The failure type of the rock mass and the fracture development zone are identified. The results indicate that blasting‐induced fractures mainly initiate and propagate in the shaped charge jet direction between adjacent boreholes. Shaped charge blasting leads to the directional propagation of fractures. The field monitoring results show that shaped charge blasting is able to realize the directional propagation of blasting‐induced fractures and release mining pressure. directional propagation of blasting‐induced fractures hard roof LS‐DYNA3D shaped charge blasting Technology T Science Q Yong Chen verfasserin aut Jianbiao Bai verfasserin aut Xiangyu Wang verfasserin aut Wenda Wu verfasserin aut Bowen Wu verfasserin aut In Energy Science & Engineering Wiley, 2014 8(2020), 5, Seite 1824-1839 (DE-627)750089202 (DE-600)2720339-6 20500505 nnns volume:8 year:2020 number:5 pages:1824-1839 https://doi.org/10.1002/ese3.635 kostenfrei https://doaj.org/article/ef98ba4f34be4105a0aa6c238504dc2c kostenfrei https://doi.org/10.1002/ese3.635 kostenfrei https://doaj.org/toc/2050-0505 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 5 1824-1839 |
language |
English |
source |
In Energy Science & Engineering 8(2020), 5, Seite 1824-1839 volume:8 year:2020 number:5 pages:1824-1839 |
sourceStr |
In Energy Science & Engineering 8(2020), 5, Seite 1824-1839 volume:8 year:2020 number:5 pages:1824-1839 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
directional propagation of blasting‐induced fractures hard roof LS‐DYNA3D shaped charge blasting Technology T Science Q |
isfreeaccess_bool |
true |
container_title |
Energy Science & Engineering |
authorswithroles_txt_mv |
Ningkang Meng @@aut@@ Yong Chen @@aut@@ Jianbiao Bai @@aut@@ Xiangyu Wang @@aut@@ Wenda Wu @@aut@@ Bowen Wu @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
750089202 |
id |
DOAJ019431708 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ019431708</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310110556.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/ese3.635</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ019431708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJef98ba4f34be4105a0aa6c238504dc2c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ningkang Meng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical simulation of directional fracturing by shaped charge blasting</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The hard roof leads to large deformation or failure of the entry and poses risks to mining safety. Shaped charge blasting is applied to directionally fracture the hard roof and release mining pressure in this paper. The stress condition around the blasting borehole required to induce fracture propagation is calculated by theoretical calculation and numerical simulation. Evolution of blasting‐induced fractures between adjacent boreholes, main fracture in the shaped charge jet direction and secondary fractures in other directions is analyzed. The reliability of Livemore software of explicit dynamics analysis code (LS‐DYNA) in simulating shaped charge blasting is validated by experimental results. A numerical model is established to reveal the formation processes of the shaped charge jet, disclose the evolution of the equivalent stress and understand the development of the main fractures and secondary fractures between adjacent boreholes. The failure type of the rock mass and the fracture development zone are identified. The results indicate that blasting‐induced fractures mainly initiate and propagate in the shaped charge jet direction between adjacent boreholes. Shaped charge blasting leads to the directional propagation of fractures. The field monitoring results show that shaped charge blasting is able to realize the directional propagation of blasting‐induced fractures and release mining pressure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">directional propagation of blasting‐induced fractures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hard roof</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LS‐DYNA3D</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shaped charge blasting</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianbiao Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiangyu Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenda Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bowen Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Science & Engineering</subfield><subfield code="d">Wiley, 2014</subfield><subfield code="g">8(2020), 5, Seite 1824-1839</subfield><subfield code="w">(DE-627)750089202</subfield><subfield code="w">(DE-600)2720339-6</subfield><subfield code="x">20500505</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1824-1839</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ese3.635</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ef98ba4f34be4105a0aa6c238504dc2c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ese3.635</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2050-0505</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="h">1824-1839</subfield></datafield></record></collection>
|
author |
Ningkang Meng |
spellingShingle |
Ningkang Meng misc directional propagation of blasting‐induced fractures misc hard roof misc LS‐DYNA3D misc shaped charge blasting misc Technology misc T misc Science misc Q Numerical simulation of directional fracturing by shaped charge blasting |
authorStr |
Ningkang Meng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750089202 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20500505 |
topic_title |
Numerical simulation of directional fracturing by shaped charge blasting directional propagation of blasting‐induced fractures hard roof LS‐DYNA3D shaped charge blasting |
topic |
misc directional propagation of blasting‐induced fractures misc hard roof misc LS‐DYNA3D misc shaped charge blasting misc Technology misc T misc Science misc Q |
topic_unstemmed |
misc directional propagation of blasting‐induced fractures misc hard roof misc LS‐DYNA3D misc shaped charge blasting misc Technology misc T misc Science misc Q |
topic_browse |
misc directional propagation of blasting‐induced fractures misc hard roof misc LS‐DYNA3D misc shaped charge blasting misc Technology misc T misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy Science & Engineering |
hierarchy_parent_id |
750089202 |
hierarchy_top_title |
Energy Science & Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750089202 (DE-600)2720339-6 |
title |
Numerical simulation of directional fracturing by shaped charge blasting |
ctrlnum |
(DE-627)DOAJ019431708 (DE-599)DOAJef98ba4f34be4105a0aa6c238504dc2c |
title_full |
Numerical simulation of directional fracturing by shaped charge blasting |
author_sort |
Ningkang Meng |
journal |
Energy Science & Engineering |
journalStr |
Energy Science & Engineering |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
1824 |
author_browse |
Ningkang Meng Yong Chen Jianbiao Bai Xiangyu Wang Wenda Wu Bowen Wu |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Ningkang Meng |
doi_str_mv |
10.1002/ese3.635 |
author2-role |
verfasserin |
title_sort |
numerical simulation of directional fracturing by shaped charge blasting |
title_auth |
Numerical simulation of directional fracturing by shaped charge blasting |
abstract |
Abstract The hard roof leads to large deformation or failure of the entry and poses risks to mining safety. Shaped charge blasting is applied to directionally fracture the hard roof and release mining pressure in this paper. The stress condition around the blasting borehole required to induce fracture propagation is calculated by theoretical calculation and numerical simulation. Evolution of blasting‐induced fractures between adjacent boreholes, main fracture in the shaped charge jet direction and secondary fractures in other directions is analyzed. The reliability of Livemore software of explicit dynamics analysis code (LS‐DYNA) in simulating shaped charge blasting is validated by experimental results. A numerical model is established to reveal the formation processes of the shaped charge jet, disclose the evolution of the equivalent stress and understand the development of the main fractures and secondary fractures between adjacent boreholes. The failure type of the rock mass and the fracture development zone are identified. The results indicate that blasting‐induced fractures mainly initiate and propagate in the shaped charge jet direction between adjacent boreholes. Shaped charge blasting leads to the directional propagation of fractures. The field monitoring results show that shaped charge blasting is able to realize the directional propagation of blasting‐induced fractures and release mining pressure. |
abstractGer |
Abstract The hard roof leads to large deformation or failure of the entry and poses risks to mining safety. Shaped charge blasting is applied to directionally fracture the hard roof and release mining pressure in this paper. The stress condition around the blasting borehole required to induce fracture propagation is calculated by theoretical calculation and numerical simulation. Evolution of blasting‐induced fractures between adjacent boreholes, main fracture in the shaped charge jet direction and secondary fractures in other directions is analyzed. The reliability of Livemore software of explicit dynamics analysis code (LS‐DYNA) in simulating shaped charge blasting is validated by experimental results. A numerical model is established to reveal the formation processes of the shaped charge jet, disclose the evolution of the equivalent stress and understand the development of the main fractures and secondary fractures between adjacent boreholes. The failure type of the rock mass and the fracture development zone are identified. The results indicate that blasting‐induced fractures mainly initiate and propagate in the shaped charge jet direction between adjacent boreholes. Shaped charge blasting leads to the directional propagation of fractures. The field monitoring results show that shaped charge blasting is able to realize the directional propagation of blasting‐induced fractures and release mining pressure. |
abstract_unstemmed |
Abstract The hard roof leads to large deformation or failure of the entry and poses risks to mining safety. Shaped charge blasting is applied to directionally fracture the hard roof and release mining pressure in this paper. The stress condition around the blasting borehole required to induce fracture propagation is calculated by theoretical calculation and numerical simulation. Evolution of blasting‐induced fractures between adjacent boreholes, main fracture in the shaped charge jet direction and secondary fractures in other directions is analyzed. The reliability of Livemore software of explicit dynamics analysis code (LS‐DYNA) in simulating shaped charge blasting is validated by experimental results. A numerical model is established to reveal the formation processes of the shaped charge jet, disclose the evolution of the equivalent stress and understand the development of the main fractures and secondary fractures between adjacent boreholes. The failure type of the rock mass and the fracture development zone are identified. The results indicate that blasting‐induced fractures mainly initiate and propagate in the shaped charge jet direction between adjacent boreholes. Shaped charge blasting leads to the directional propagation of fractures. The field monitoring results show that shaped charge blasting is able to realize the directional propagation of blasting‐induced fractures and release mining pressure. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Numerical simulation of directional fracturing by shaped charge blasting |
url |
https://doi.org/10.1002/ese3.635 https://doaj.org/article/ef98ba4f34be4105a0aa6c238504dc2c https://doaj.org/toc/2050-0505 |
remote_bool |
true |
author2 |
Yong Chen Jianbiao Bai Xiangyu Wang Wenda Wu Bowen Wu |
author2Str |
Yong Chen Jianbiao Bai Xiangyu Wang Wenda Wu Bowen Wu |
ppnlink |
750089202 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/ese3.635 |
up_date |
2024-07-03T23:28:53.610Z |
_version_ |
1803602450043633664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ019431708</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310110556.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/ese3.635</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ019431708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJef98ba4f34be4105a0aa6c238504dc2c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ningkang Meng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical simulation of directional fracturing by shaped charge blasting</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The hard roof leads to large deformation or failure of the entry and poses risks to mining safety. Shaped charge blasting is applied to directionally fracture the hard roof and release mining pressure in this paper. The stress condition around the blasting borehole required to induce fracture propagation is calculated by theoretical calculation and numerical simulation. Evolution of blasting‐induced fractures between adjacent boreholes, main fracture in the shaped charge jet direction and secondary fractures in other directions is analyzed. The reliability of Livemore software of explicit dynamics analysis code (LS‐DYNA) in simulating shaped charge blasting is validated by experimental results. A numerical model is established to reveal the formation processes of the shaped charge jet, disclose the evolution of the equivalent stress and understand the development of the main fractures and secondary fractures between adjacent boreholes. The failure type of the rock mass and the fracture development zone are identified. The results indicate that blasting‐induced fractures mainly initiate and propagate in the shaped charge jet direction between adjacent boreholes. Shaped charge blasting leads to the directional propagation of fractures. The field monitoring results show that shaped charge blasting is able to realize the directional propagation of blasting‐induced fractures and release mining pressure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">directional propagation of blasting‐induced fractures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hard roof</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LS‐DYNA3D</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shaped charge blasting</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianbiao Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiangyu Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenda Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bowen Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Science & Engineering</subfield><subfield code="d">Wiley, 2014</subfield><subfield code="g">8(2020), 5, Seite 1824-1839</subfield><subfield code="w">(DE-627)750089202</subfield><subfield code="w">(DE-600)2720339-6</subfield><subfield code="x">20500505</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1824-1839</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ese3.635</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ef98ba4f34be4105a0aa6c238504dc2c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ese3.635</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2050-0505</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="h">1824-1839</subfield></datafield></record></collection>
|
score |
7.4010096 |