Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand
Lowland rice is an important cereal crop that plays a key role in the food security and the economy of Thailand. Terminal water stress (TWS) in rainfed lowland areas poses threats to rice productivity due to stress occurrence at terminal crop stages and extreme sensitivity of rice to TWS. A two-year...
Ausführliche Beschreibung
Autor*in: |
Tajamul Hussain [verfasserIn] Nurda Hussain [verfasserIn] Mukhtar Ahmed [verfasserIn] Charassri Nualsri [verfasserIn] Saowapa Duangpan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Plants - MDPI AG, 2013, 10(2021), 12, p 2565 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2021 ; number:12, p 2565 |
Links: |
---|
DOI / URN: |
10.3390/plants10122565 |
---|
Katalog-ID: |
DOAJ019485999 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ019485999 | ||
003 | DE-627 | ||
005 | 20240414222837.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/plants10122565 |2 doi | |
035 | |a (DE-627)DOAJ019485999 | ||
035 | |a (DE-599)DOAJ932af4a094674c7eb2c6408b6ac0e50e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QK1-989 | |
100 | 0 | |a Tajamul Hussain |e verfasserin |4 aut | |
245 | 1 | 0 | |a Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Lowland rice is an important cereal crop that plays a key role in the food security and the economy of Thailand. Terminal water stress (TWS) in rainfed lowland areas poses threats to rice productivity due to stress occurrence at terminal crop stages and extreme sensitivity of rice to TWS. A two-year study was conducted to characterize the performance of yield and yield attributes of twelve Thai lowland rice genotypes under TWS, to identify stress-tolerant genotypes using stress response indices and to identify promising stress indices which are correlated with grain yield (GY) under well-watered (WW) and TWS conditions for their use as rapid identifiers in a rice crop breeding program for enhancing drought stress tolerance. Measurements were recorded under WW and TWS conditions. Highly significant variations were observed amongst assessed genotypes for their yield productivity responses. According to stress response indices, genotypes were categorized into stress-tolerant and stress susceptible genotypes. Genotypes Hom Pathum, Sang Yod, Dum Ja and Pathum Thani-1 were found highly stress tolerant and relatively high yielding; genotypes Look Pla and Lep Nok were stress tolerant, whereas genotypes Chor Lung, Hom Nang Kaew and Hom Chan were moderately tolerant genotypes. Hence, stress-tolerant genotypes could be potentially used for cultivation under rainfed and water-limited conditions, where TWS is predicted particularly in southern Thailand to stabilize rice productivity. Stress tolerance indices, including stress tolerance index (STI), geometric mean productivity (GMP), mean productivity index (M<sub<PRO</sub<) and harmonic mean index (M<sub<HAR</sub<), indicated strong and positive associations with GY under WW and TWS; thus, these indices could be used to indicate stress tolerance in rice crop breeding program aimed at a rapid screening of lowland rice genotypes for stress tolerance. | ||
650 | 4 | |a lowland rice | |
650 | 4 | |a terminal water stress | |
650 | 4 | |a grain yield | |
650 | 4 | |a stress indices | |
650 | 4 | |a stress tolerance | |
653 | 0 | |a Botany | |
700 | 0 | |a Nurda Hussain |e verfasserin |4 aut | |
700 | 0 | |a Mukhtar Ahmed |e verfasserin |4 aut | |
700 | 0 | |a Charassri Nualsri |e verfasserin |4 aut | |
700 | 0 | |a Saowapa Duangpan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Plants |d MDPI AG, 2013 |g 10(2021), 12, p 2565 |w (DE-627)737288345 |w (DE-600)2704341-1 |x 22237747 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2021 |g number:12, p 2565 |
856 | 4 | 0 | |u https://doi.org/10.3390/plants10122565 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/932af4a094674c7eb2c6408b6ac0e50e |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2223-7747/10/12/2565 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2223-7747 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2021 |e 12, p 2565 |
author_variant |
t h th n h nh m a ma c n cn s d sd |
---|---|
matchkey_str |
article:22237747:2021----::epneolwadieeoyeudremnlaesrsaddniiainfruhtlrneotbl |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QK |
publishDate |
2021 |
allfields |
10.3390/plants10122565 doi (DE-627)DOAJ019485999 (DE-599)DOAJ932af4a094674c7eb2c6408b6ac0e50e DE-627 ger DE-627 rakwb eng QK1-989 Tajamul Hussain verfasserin aut Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lowland rice is an important cereal crop that plays a key role in the food security and the economy of Thailand. Terminal water stress (TWS) in rainfed lowland areas poses threats to rice productivity due to stress occurrence at terminal crop stages and extreme sensitivity of rice to TWS. A two-year study was conducted to characterize the performance of yield and yield attributes of twelve Thai lowland rice genotypes under TWS, to identify stress-tolerant genotypes using stress response indices and to identify promising stress indices which are correlated with grain yield (GY) under well-watered (WW) and TWS conditions for their use as rapid identifiers in a rice crop breeding program for enhancing drought stress tolerance. Measurements were recorded under WW and TWS conditions. Highly significant variations were observed amongst assessed genotypes for their yield productivity responses. According to stress response indices, genotypes were categorized into stress-tolerant and stress susceptible genotypes. Genotypes Hom Pathum, Sang Yod, Dum Ja and Pathum Thani-1 were found highly stress tolerant and relatively high yielding; genotypes Look Pla and Lep Nok were stress tolerant, whereas genotypes Chor Lung, Hom Nang Kaew and Hom Chan were moderately tolerant genotypes. Hence, stress-tolerant genotypes could be potentially used for cultivation under rainfed and water-limited conditions, where TWS is predicted particularly in southern Thailand to stabilize rice productivity. Stress tolerance indices, including stress tolerance index (STI), geometric mean productivity (GMP), mean productivity index (M<sub<PRO</sub<) and harmonic mean index (M<sub<HAR</sub<), indicated strong and positive associations with GY under WW and TWS; thus, these indices could be used to indicate stress tolerance in rice crop breeding program aimed at a rapid screening of lowland rice genotypes for stress tolerance. lowland rice terminal water stress grain yield stress indices stress tolerance Botany Nurda Hussain verfasserin aut Mukhtar Ahmed verfasserin aut Charassri Nualsri verfasserin aut Saowapa Duangpan verfasserin aut In Plants MDPI AG, 2013 10(2021), 12, p 2565 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:10 year:2021 number:12, p 2565 https://doi.org/10.3390/plants10122565 kostenfrei https://doaj.org/article/932af4a094674c7eb2c6408b6ac0e50e kostenfrei https://www.mdpi.com/2223-7747/10/12/2565 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 12, p 2565 |
spelling |
10.3390/plants10122565 doi (DE-627)DOAJ019485999 (DE-599)DOAJ932af4a094674c7eb2c6408b6ac0e50e DE-627 ger DE-627 rakwb eng QK1-989 Tajamul Hussain verfasserin aut Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lowland rice is an important cereal crop that plays a key role in the food security and the economy of Thailand. Terminal water stress (TWS) in rainfed lowland areas poses threats to rice productivity due to stress occurrence at terminal crop stages and extreme sensitivity of rice to TWS. A two-year study was conducted to characterize the performance of yield and yield attributes of twelve Thai lowland rice genotypes under TWS, to identify stress-tolerant genotypes using stress response indices and to identify promising stress indices which are correlated with grain yield (GY) under well-watered (WW) and TWS conditions for their use as rapid identifiers in a rice crop breeding program for enhancing drought stress tolerance. Measurements were recorded under WW and TWS conditions. Highly significant variations were observed amongst assessed genotypes for their yield productivity responses. According to stress response indices, genotypes were categorized into stress-tolerant and stress susceptible genotypes. Genotypes Hom Pathum, Sang Yod, Dum Ja and Pathum Thani-1 were found highly stress tolerant and relatively high yielding; genotypes Look Pla and Lep Nok were stress tolerant, whereas genotypes Chor Lung, Hom Nang Kaew and Hom Chan were moderately tolerant genotypes. Hence, stress-tolerant genotypes could be potentially used for cultivation under rainfed and water-limited conditions, where TWS is predicted particularly in southern Thailand to stabilize rice productivity. Stress tolerance indices, including stress tolerance index (STI), geometric mean productivity (GMP), mean productivity index (M<sub<PRO</sub<) and harmonic mean index (M<sub<HAR</sub<), indicated strong and positive associations with GY under WW and TWS; thus, these indices could be used to indicate stress tolerance in rice crop breeding program aimed at a rapid screening of lowland rice genotypes for stress tolerance. lowland rice terminal water stress grain yield stress indices stress tolerance Botany Nurda Hussain verfasserin aut Mukhtar Ahmed verfasserin aut Charassri Nualsri verfasserin aut Saowapa Duangpan verfasserin aut In Plants MDPI AG, 2013 10(2021), 12, p 2565 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:10 year:2021 number:12, p 2565 https://doi.org/10.3390/plants10122565 kostenfrei https://doaj.org/article/932af4a094674c7eb2c6408b6ac0e50e kostenfrei https://www.mdpi.com/2223-7747/10/12/2565 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 12, p 2565 |
allfields_unstemmed |
10.3390/plants10122565 doi (DE-627)DOAJ019485999 (DE-599)DOAJ932af4a094674c7eb2c6408b6ac0e50e DE-627 ger DE-627 rakwb eng QK1-989 Tajamul Hussain verfasserin aut Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lowland rice is an important cereal crop that plays a key role in the food security and the economy of Thailand. Terminal water stress (TWS) in rainfed lowland areas poses threats to rice productivity due to stress occurrence at terminal crop stages and extreme sensitivity of rice to TWS. A two-year study was conducted to characterize the performance of yield and yield attributes of twelve Thai lowland rice genotypes under TWS, to identify stress-tolerant genotypes using stress response indices and to identify promising stress indices which are correlated with grain yield (GY) under well-watered (WW) and TWS conditions for their use as rapid identifiers in a rice crop breeding program for enhancing drought stress tolerance. Measurements were recorded under WW and TWS conditions. Highly significant variations were observed amongst assessed genotypes for their yield productivity responses. According to stress response indices, genotypes were categorized into stress-tolerant and stress susceptible genotypes. Genotypes Hom Pathum, Sang Yod, Dum Ja and Pathum Thani-1 were found highly stress tolerant and relatively high yielding; genotypes Look Pla and Lep Nok were stress tolerant, whereas genotypes Chor Lung, Hom Nang Kaew and Hom Chan were moderately tolerant genotypes. Hence, stress-tolerant genotypes could be potentially used for cultivation under rainfed and water-limited conditions, where TWS is predicted particularly in southern Thailand to stabilize rice productivity. Stress tolerance indices, including stress tolerance index (STI), geometric mean productivity (GMP), mean productivity index (M<sub<PRO</sub<) and harmonic mean index (M<sub<HAR</sub<), indicated strong and positive associations with GY under WW and TWS; thus, these indices could be used to indicate stress tolerance in rice crop breeding program aimed at a rapid screening of lowland rice genotypes for stress tolerance. lowland rice terminal water stress grain yield stress indices stress tolerance Botany Nurda Hussain verfasserin aut Mukhtar Ahmed verfasserin aut Charassri Nualsri verfasserin aut Saowapa Duangpan verfasserin aut In Plants MDPI AG, 2013 10(2021), 12, p 2565 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:10 year:2021 number:12, p 2565 https://doi.org/10.3390/plants10122565 kostenfrei https://doaj.org/article/932af4a094674c7eb2c6408b6ac0e50e kostenfrei https://www.mdpi.com/2223-7747/10/12/2565 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 12, p 2565 |
allfieldsGer |
10.3390/plants10122565 doi (DE-627)DOAJ019485999 (DE-599)DOAJ932af4a094674c7eb2c6408b6ac0e50e DE-627 ger DE-627 rakwb eng QK1-989 Tajamul Hussain verfasserin aut Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lowland rice is an important cereal crop that plays a key role in the food security and the economy of Thailand. Terminal water stress (TWS) in rainfed lowland areas poses threats to rice productivity due to stress occurrence at terminal crop stages and extreme sensitivity of rice to TWS. A two-year study was conducted to characterize the performance of yield and yield attributes of twelve Thai lowland rice genotypes under TWS, to identify stress-tolerant genotypes using stress response indices and to identify promising stress indices which are correlated with grain yield (GY) under well-watered (WW) and TWS conditions for their use as rapid identifiers in a rice crop breeding program for enhancing drought stress tolerance. Measurements were recorded under WW and TWS conditions. Highly significant variations were observed amongst assessed genotypes for their yield productivity responses. According to stress response indices, genotypes were categorized into stress-tolerant and stress susceptible genotypes. Genotypes Hom Pathum, Sang Yod, Dum Ja and Pathum Thani-1 were found highly stress tolerant and relatively high yielding; genotypes Look Pla and Lep Nok were stress tolerant, whereas genotypes Chor Lung, Hom Nang Kaew and Hom Chan were moderately tolerant genotypes. Hence, stress-tolerant genotypes could be potentially used for cultivation under rainfed and water-limited conditions, where TWS is predicted particularly in southern Thailand to stabilize rice productivity. Stress tolerance indices, including stress tolerance index (STI), geometric mean productivity (GMP), mean productivity index (M<sub<PRO</sub<) and harmonic mean index (M<sub<HAR</sub<), indicated strong and positive associations with GY under WW and TWS; thus, these indices could be used to indicate stress tolerance in rice crop breeding program aimed at a rapid screening of lowland rice genotypes for stress tolerance. lowland rice terminal water stress grain yield stress indices stress tolerance Botany Nurda Hussain verfasserin aut Mukhtar Ahmed verfasserin aut Charassri Nualsri verfasserin aut Saowapa Duangpan verfasserin aut In Plants MDPI AG, 2013 10(2021), 12, p 2565 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:10 year:2021 number:12, p 2565 https://doi.org/10.3390/plants10122565 kostenfrei https://doaj.org/article/932af4a094674c7eb2c6408b6ac0e50e kostenfrei https://www.mdpi.com/2223-7747/10/12/2565 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 12, p 2565 |
allfieldsSound |
10.3390/plants10122565 doi (DE-627)DOAJ019485999 (DE-599)DOAJ932af4a094674c7eb2c6408b6ac0e50e DE-627 ger DE-627 rakwb eng QK1-989 Tajamul Hussain verfasserin aut Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lowland rice is an important cereal crop that plays a key role in the food security and the economy of Thailand. Terminal water stress (TWS) in rainfed lowland areas poses threats to rice productivity due to stress occurrence at terminal crop stages and extreme sensitivity of rice to TWS. A two-year study was conducted to characterize the performance of yield and yield attributes of twelve Thai lowland rice genotypes under TWS, to identify stress-tolerant genotypes using stress response indices and to identify promising stress indices which are correlated with grain yield (GY) under well-watered (WW) and TWS conditions for their use as rapid identifiers in a rice crop breeding program for enhancing drought stress tolerance. Measurements were recorded under WW and TWS conditions. Highly significant variations were observed amongst assessed genotypes for their yield productivity responses. According to stress response indices, genotypes were categorized into stress-tolerant and stress susceptible genotypes. Genotypes Hom Pathum, Sang Yod, Dum Ja and Pathum Thani-1 were found highly stress tolerant and relatively high yielding; genotypes Look Pla and Lep Nok were stress tolerant, whereas genotypes Chor Lung, Hom Nang Kaew and Hom Chan were moderately tolerant genotypes. Hence, stress-tolerant genotypes could be potentially used for cultivation under rainfed and water-limited conditions, where TWS is predicted particularly in southern Thailand to stabilize rice productivity. Stress tolerance indices, including stress tolerance index (STI), geometric mean productivity (GMP), mean productivity index (M<sub<PRO</sub<) and harmonic mean index (M<sub<HAR</sub<), indicated strong and positive associations with GY under WW and TWS; thus, these indices could be used to indicate stress tolerance in rice crop breeding program aimed at a rapid screening of lowland rice genotypes for stress tolerance. lowland rice terminal water stress grain yield stress indices stress tolerance Botany Nurda Hussain verfasserin aut Mukhtar Ahmed verfasserin aut Charassri Nualsri verfasserin aut Saowapa Duangpan verfasserin aut In Plants MDPI AG, 2013 10(2021), 12, p 2565 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:10 year:2021 number:12, p 2565 https://doi.org/10.3390/plants10122565 kostenfrei https://doaj.org/article/932af4a094674c7eb2c6408b6ac0e50e kostenfrei https://www.mdpi.com/2223-7747/10/12/2565 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 12, p 2565 |
language |
English |
source |
In Plants 10(2021), 12, p 2565 volume:10 year:2021 number:12, p 2565 |
sourceStr |
In Plants 10(2021), 12, p 2565 volume:10 year:2021 number:12, p 2565 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
lowland rice terminal water stress grain yield stress indices stress tolerance Botany |
isfreeaccess_bool |
true |
container_title |
Plants |
authorswithroles_txt_mv |
Tajamul Hussain @@aut@@ Nurda Hussain @@aut@@ Mukhtar Ahmed @@aut@@ Charassri Nualsri @@aut@@ Saowapa Duangpan @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
737288345 |
id |
DOAJ019485999 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ019485999</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414222837.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants10122565</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ019485999</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ932af4a094674c7eb2c6408b6ac0e50e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tajamul Hussain</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Lowland rice is an important cereal crop that plays a key role in the food security and the economy of Thailand. Terminal water stress (TWS) in rainfed lowland areas poses threats to rice productivity due to stress occurrence at terminal crop stages and extreme sensitivity of rice to TWS. A two-year study was conducted to characterize the performance of yield and yield attributes of twelve Thai lowland rice genotypes under TWS, to identify stress-tolerant genotypes using stress response indices and to identify promising stress indices which are correlated with grain yield (GY) under well-watered (WW) and TWS conditions for their use as rapid identifiers in a rice crop breeding program for enhancing drought stress tolerance. Measurements were recorded under WW and TWS conditions. Highly significant variations were observed amongst assessed genotypes for their yield productivity responses. According to stress response indices, genotypes were categorized into stress-tolerant and stress susceptible genotypes. Genotypes Hom Pathum, Sang Yod, Dum Ja and Pathum Thani-1 were found highly stress tolerant and relatively high yielding; genotypes Look Pla and Lep Nok were stress tolerant, whereas genotypes Chor Lung, Hom Nang Kaew and Hom Chan were moderately tolerant genotypes. Hence, stress-tolerant genotypes could be potentially used for cultivation under rainfed and water-limited conditions, where TWS is predicted particularly in southern Thailand to stabilize rice productivity. Stress tolerance indices, including stress tolerance index (STI), geometric mean productivity (GMP), mean productivity index (M<sub<PRO</sub<) and harmonic mean index (M<sub<HAR</sub<), indicated strong and positive associations with GY under WW and TWS; thus, these indices could be used to indicate stress tolerance in rice crop breeding program aimed at a rapid screening of lowland rice genotypes for stress tolerance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lowland rice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">terminal water stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">grain yield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stress indices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stress tolerance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nurda Hussain</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mukhtar Ahmed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charassri Nualsri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saowapa Duangpan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2021), 12, p 2565</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12, p 2565</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants10122565</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/932af4a094674c7eb2c6408b6ac0e50e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/10/12/2565</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">12, p 2565</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Tajamul Hussain |
spellingShingle |
Tajamul Hussain misc QK1-989 misc lowland rice misc terminal water stress misc grain yield misc stress indices misc stress tolerance misc Botany Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand |
authorStr |
Tajamul Hussain |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737288345 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QK1-989 |
illustrated |
Not Illustrated |
issn |
22237747 |
topic_title |
QK1-989 Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand lowland rice terminal water stress grain yield stress indices stress tolerance |
topic |
misc QK1-989 misc lowland rice misc terminal water stress misc grain yield misc stress indices misc stress tolerance misc Botany |
topic_unstemmed |
misc QK1-989 misc lowland rice misc terminal water stress misc grain yield misc stress indices misc stress tolerance misc Botany |
topic_browse |
misc QK1-989 misc lowland rice misc terminal water stress misc grain yield misc stress indices misc stress tolerance misc Botany |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Plants |
hierarchy_parent_id |
737288345 |
hierarchy_top_title |
Plants |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737288345 (DE-600)2704341-1 |
title |
Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand |
ctrlnum |
(DE-627)DOAJ019485999 (DE-599)DOAJ932af4a094674c7eb2c6408b6ac0e50e |
title_full |
Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand |
author_sort |
Tajamul Hussain |
journal |
Plants |
journalStr |
Plants |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Tajamul Hussain Nurda Hussain Mukhtar Ahmed Charassri Nualsri Saowapa Duangpan |
container_volume |
10 |
class |
QK1-989 |
format_se |
Elektronische Aufsätze |
author-letter |
Tajamul Hussain |
doi_str_mv |
10.3390/plants10122565 |
author2-role |
verfasserin |
title_sort |
responses of lowland rice genotypes under terminal water stress and identification of drought tolerance to stabilize rice productivity in southern thailand |
callnumber |
QK1-989 |
title_auth |
Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand |
abstract |
Lowland rice is an important cereal crop that plays a key role in the food security and the economy of Thailand. Terminal water stress (TWS) in rainfed lowland areas poses threats to rice productivity due to stress occurrence at terminal crop stages and extreme sensitivity of rice to TWS. A two-year study was conducted to characterize the performance of yield and yield attributes of twelve Thai lowland rice genotypes under TWS, to identify stress-tolerant genotypes using stress response indices and to identify promising stress indices which are correlated with grain yield (GY) under well-watered (WW) and TWS conditions for their use as rapid identifiers in a rice crop breeding program for enhancing drought stress tolerance. Measurements were recorded under WW and TWS conditions. Highly significant variations were observed amongst assessed genotypes for their yield productivity responses. According to stress response indices, genotypes were categorized into stress-tolerant and stress susceptible genotypes. Genotypes Hom Pathum, Sang Yod, Dum Ja and Pathum Thani-1 were found highly stress tolerant and relatively high yielding; genotypes Look Pla and Lep Nok were stress tolerant, whereas genotypes Chor Lung, Hom Nang Kaew and Hom Chan were moderately tolerant genotypes. Hence, stress-tolerant genotypes could be potentially used for cultivation under rainfed and water-limited conditions, where TWS is predicted particularly in southern Thailand to stabilize rice productivity. Stress tolerance indices, including stress tolerance index (STI), geometric mean productivity (GMP), mean productivity index (M<sub<PRO</sub<) and harmonic mean index (M<sub<HAR</sub<), indicated strong and positive associations with GY under WW and TWS; thus, these indices could be used to indicate stress tolerance in rice crop breeding program aimed at a rapid screening of lowland rice genotypes for stress tolerance. |
abstractGer |
Lowland rice is an important cereal crop that plays a key role in the food security and the economy of Thailand. Terminal water stress (TWS) in rainfed lowland areas poses threats to rice productivity due to stress occurrence at terminal crop stages and extreme sensitivity of rice to TWS. A two-year study was conducted to characterize the performance of yield and yield attributes of twelve Thai lowland rice genotypes under TWS, to identify stress-tolerant genotypes using stress response indices and to identify promising stress indices which are correlated with grain yield (GY) under well-watered (WW) and TWS conditions for their use as rapid identifiers in a rice crop breeding program for enhancing drought stress tolerance. Measurements were recorded under WW and TWS conditions. Highly significant variations were observed amongst assessed genotypes for their yield productivity responses. According to stress response indices, genotypes were categorized into stress-tolerant and stress susceptible genotypes. Genotypes Hom Pathum, Sang Yod, Dum Ja and Pathum Thani-1 were found highly stress tolerant and relatively high yielding; genotypes Look Pla and Lep Nok were stress tolerant, whereas genotypes Chor Lung, Hom Nang Kaew and Hom Chan were moderately tolerant genotypes. Hence, stress-tolerant genotypes could be potentially used for cultivation under rainfed and water-limited conditions, where TWS is predicted particularly in southern Thailand to stabilize rice productivity. Stress tolerance indices, including stress tolerance index (STI), geometric mean productivity (GMP), mean productivity index (M<sub<PRO</sub<) and harmonic mean index (M<sub<HAR</sub<), indicated strong and positive associations with GY under WW and TWS; thus, these indices could be used to indicate stress tolerance in rice crop breeding program aimed at a rapid screening of lowland rice genotypes for stress tolerance. |
abstract_unstemmed |
Lowland rice is an important cereal crop that plays a key role in the food security and the economy of Thailand. Terminal water stress (TWS) in rainfed lowland areas poses threats to rice productivity due to stress occurrence at terminal crop stages and extreme sensitivity of rice to TWS. A two-year study was conducted to characterize the performance of yield and yield attributes of twelve Thai lowland rice genotypes under TWS, to identify stress-tolerant genotypes using stress response indices and to identify promising stress indices which are correlated with grain yield (GY) under well-watered (WW) and TWS conditions for their use as rapid identifiers in a rice crop breeding program for enhancing drought stress tolerance. Measurements were recorded under WW and TWS conditions. Highly significant variations were observed amongst assessed genotypes for their yield productivity responses. According to stress response indices, genotypes were categorized into stress-tolerant and stress susceptible genotypes. Genotypes Hom Pathum, Sang Yod, Dum Ja and Pathum Thani-1 were found highly stress tolerant and relatively high yielding; genotypes Look Pla and Lep Nok were stress tolerant, whereas genotypes Chor Lung, Hom Nang Kaew and Hom Chan were moderately tolerant genotypes. Hence, stress-tolerant genotypes could be potentially used for cultivation under rainfed and water-limited conditions, where TWS is predicted particularly in southern Thailand to stabilize rice productivity. Stress tolerance indices, including stress tolerance index (STI), geometric mean productivity (GMP), mean productivity index (M<sub<PRO</sub<) and harmonic mean index (M<sub<HAR</sub<), indicated strong and positive associations with GY under WW and TWS; thus, these indices could be used to indicate stress tolerance in rice crop breeding program aimed at a rapid screening of lowland rice genotypes for stress tolerance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 2565 |
title_short |
Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand |
url |
https://doi.org/10.3390/plants10122565 https://doaj.org/article/932af4a094674c7eb2c6408b6ac0e50e https://www.mdpi.com/2223-7747/10/12/2565 https://doaj.org/toc/2223-7747 |
remote_bool |
true |
author2 |
Nurda Hussain Mukhtar Ahmed Charassri Nualsri Saowapa Duangpan |
author2Str |
Nurda Hussain Mukhtar Ahmed Charassri Nualsri Saowapa Duangpan |
ppnlink |
737288345 |
callnumber-subject |
QK - Botany |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/plants10122565 |
callnumber-a |
QK1-989 |
up_date |
2024-07-03T23:43:21.414Z |
_version_ |
1803603359998935040 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ019485999</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414222837.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants10122565</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ019485999</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ932af4a094674c7eb2c6408b6ac0e50e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tajamul Hussain</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Lowland rice is an important cereal crop that plays a key role in the food security and the economy of Thailand. Terminal water stress (TWS) in rainfed lowland areas poses threats to rice productivity due to stress occurrence at terminal crop stages and extreme sensitivity of rice to TWS. A two-year study was conducted to characterize the performance of yield and yield attributes of twelve Thai lowland rice genotypes under TWS, to identify stress-tolerant genotypes using stress response indices and to identify promising stress indices which are correlated with grain yield (GY) under well-watered (WW) and TWS conditions for their use as rapid identifiers in a rice crop breeding program for enhancing drought stress tolerance. Measurements were recorded under WW and TWS conditions. Highly significant variations were observed amongst assessed genotypes for their yield productivity responses. According to stress response indices, genotypes were categorized into stress-tolerant and stress susceptible genotypes. Genotypes Hom Pathum, Sang Yod, Dum Ja and Pathum Thani-1 were found highly stress tolerant and relatively high yielding; genotypes Look Pla and Lep Nok were stress tolerant, whereas genotypes Chor Lung, Hom Nang Kaew and Hom Chan were moderately tolerant genotypes. Hence, stress-tolerant genotypes could be potentially used for cultivation under rainfed and water-limited conditions, where TWS is predicted particularly in southern Thailand to stabilize rice productivity. Stress tolerance indices, including stress tolerance index (STI), geometric mean productivity (GMP), mean productivity index (M<sub<PRO</sub<) and harmonic mean index (M<sub<HAR</sub<), indicated strong and positive associations with GY under WW and TWS; thus, these indices could be used to indicate stress tolerance in rice crop breeding program aimed at a rapid screening of lowland rice genotypes for stress tolerance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lowland rice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">terminal water stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">grain yield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stress indices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stress tolerance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nurda Hussain</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mukhtar Ahmed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charassri Nualsri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saowapa Duangpan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2021), 12, p 2565</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12, p 2565</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants10122565</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/932af4a094674c7eb2c6408b6ac0e50e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/10/12/2565</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">12, p 2565</subfield></datafield></record></collection>
|
score |
7.400893 |