Responding time scales of vegetation production to extreme droughts over China
Extreme drought events have caused extensive and severe impacts on terrestrial ecosystem in last decades in China. Given droughts may be more intense and frequent under future climate change, accurate assessment of the drought impact on vegetation primary production can provide reliably scientific s...
Ausführliche Beschreibung
Autor*in: |
Ying Deng [verfasserIn] Donghai Wu [verfasserIn] Xuhui Wang [verfasserIn] Zongqiang Xie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
Standardized Precipitation Evapotranspiration Index (SPEI) |
---|
Übergeordnetes Werk: |
In: Ecological Indicators - Elsevier, 2021, 136(2022), Seite 108630- |
---|---|
Übergeordnetes Werk: |
volume:136 ; year:2022 ; pages:108630- |
Links: |
---|
DOI / URN: |
10.1016/j.ecolind.2022.108630 |
---|
Katalog-ID: |
DOAJ019550391 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ019550391 | ||
003 | DE-627 | ||
005 | 20230502062232.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ecolind.2022.108630 |2 doi | |
035 | |a (DE-627)DOAJ019550391 | ||
035 | |a (DE-599)DOAJaabd2eada0d242828d98e7dedd6eba7e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH540-549.5 | |
100 | 0 | |a Ying Deng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Responding time scales of vegetation production to extreme droughts over China |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Extreme drought events have caused extensive and severe impacts on terrestrial ecosystem in last decades in China. Given droughts may be more intense and frequent under future climate change, accurate assessment of the drought impact on vegetation primary production can provide reliably scientific supports for the carbon sink potential. Numerous existing studies have used Standardized Precipitation Evapotranspiration Index (SPEI) to discover the drought-production relationships, however, most of them just considered the strongest correlation between production and different time scales (i.e. correlation-based method), which may underestimate the production loss because of the asymmetric responses under dry and wet conditions. In this work, we proposed a new method which assumed that the dominant time scale should correspond to the lowest primary production during each drought year (extreme-based method). Based on six independent Gross Primary Productivity (GPP) products and SPEI dataset, it showed that the extreme-based method was more reasonable and robust (with a larger inter-consistency of 0.50 than that of 0.05 for correlation-based method) to determine at which time scale GPP predominantly responded to extreme droughts. And the GPP loss can be underestimated by 45 ± 26% (mean ± s.d.) if the time scale was randomly selected. Furthermore, spatial analysis suggested that vegetation type, water balance and soil textures mainly affected the spatial heterogeneity of the dominant time scales. In detail, forests, humid biomes, and vegetation planted in loam tended to be more sensitive to longer-term droughts. This study highlighted that optimal time-scale selection using extreme-based assumption can give more accurate estimation of the drought impacts on vegetation primary production. | ||
650 | 4 | |a Standardized Precipitation Evapotranspiration Index (SPEI) | |
650 | 4 | |a Gross Primary Productivity (GPP) | |
650 | 4 | |a Time scale | |
650 | 4 | |a Extreme droughts | |
650 | 4 | |a Linear correlation | |
653 | 0 | |a Ecology | |
700 | 0 | |a Donghai Wu |e verfasserin |4 aut | |
700 | 0 | |a Xuhui Wang |e verfasserin |4 aut | |
700 | 0 | |a Zongqiang Xie |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ecological Indicators |d Elsevier, 2021 |g 136(2022), Seite 108630- |w (DE-627)338074163 |w (DE-600)2063587-4 |x 18727034 |7 nnns |
773 | 1 | 8 | |g volume:136 |g year:2022 |g pages:108630- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ecolind.2022.108630 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/aabd2eada0d242828d98e7dedd6eba7e |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1470160X22001017 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1470-160X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 136 |j 2022 |h 108630- |
author_variant |
y d yd d w dw x w xw z x zx |
---|---|
matchkey_str |
article:18727034:2022----::epnigieclsfeeainrdcinoxrm |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QH |
publishDate |
2022 |
allfields |
10.1016/j.ecolind.2022.108630 doi (DE-627)DOAJ019550391 (DE-599)DOAJaabd2eada0d242828d98e7dedd6eba7e DE-627 ger DE-627 rakwb eng QH540-549.5 Ying Deng verfasserin aut Responding time scales of vegetation production to extreme droughts over China 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Extreme drought events have caused extensive and severe impacts on terrestrial ecosystem in last decades in China. Given droughts may be more intense and frequent under future climate change, accurate assessment of the drought impact on vegetation primary production can provide reliably scientific supports for the carbon sink potential. Numerous existing studies have used Standardized Precipitation Evapotranspiration Index (SPEI) to discover the drought-production relationships, however, most of them just considered the strongest correlation between production and different time scales (i.e. correlation-based method), which may underestimate the production loss because of the asymmetric responses under dry and wet conditions. In this work, we proposed a new method which assumed that the dominant time scale should correspond to the lowest primary production during each drought year (extreme-based method). Based on six independent Gross Primary Productivity (GPP) products and SPEI dataset, it showed that the extreme-based method was more reasonable and robust (with a larger inter-consistency of 0.50 than that of 0.05 for correlation-based method) to determine at which time scale GPP predominantly responded to extreme droughts. And the GPP loss can be underestimated by 45 ± 26% (mean ± s.d.) if the time scale was randomly selected. Furthermore, spatial analysis suggested that vegetation type, water balance and soil textures mainly affected the spatial heterogeneity of the dominant time scales. In detail, forests, humid biomes, and vegetation planted in loam tended to be more sensitive to longer-term droughts. This study highlighted that optimal time-scale selection using extreme-based assumption can give more accurate estimation of the drought impacts on vegetation primary production. Standardized Precipitation Evapotranspiration Index (SPEI) Gross Primary Productivity (GPP) Time scale Extreme droughts Linear correlation Ecology Donghai Wu verfasserin aut Xuhui Wang verfasserin aut Zongqiang Xie verfasserin aut In Ecological Indicators Elsevier, 2021 136(2022), Seite 108630- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:136 year:2022 pages:108630- https://doi.org/10.1016/j.ecolind.2022.108630 kostenfrei https://doaj.org/article/aabd2eada0d242828d98e7dedd6eba7e kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X22001017 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 136 2022 108630- |
spelling |
10.1016/j.ecolind.2022.108630 doi (DE-627)DOAJ019550391 (DE-599)DOAJaabd2eada0d242828d98e7dedd6eba7e DE-627 ger DE-627 rakwb eng QH540-549.5 Ying Deng verfasserin aut Responding time scales of vegetation production to extreme droughts over China 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Extreme drought events have caused extensive and severe impacts on terrestrial ecosystem in last decades in China. Given droughts may be more intense and frequent under future climate change, accurate assessment of the drought impact on vegetation primary production can provide reliably scientific supports for the carbon sink potential. Numerous existing studies have used Standardized Precipitation Evapotranspiration Index (SPEI) to discover the drought-production relationships, however, most of them just considered the strongest correlation between production and different time scales (i.e. correlation-based method), which may underestimate the production loss because of the asymmetric responses under dry and wet conditions. In this work, we proposed a new method which assumed that the dominant time scale should correspond to the lowest primary production during each drought year (extreme-based method). Based on six independent Gross Primary Productivity (GPP) products and SPEI dataset, it showed that the extreme-based method was more reasonable and robust (with a larger inter-consistency of 0.50 than that of 0.05 for correlation-based method) to determine at which time scale GPP predominantly responded to extreme droughts. And the GPP loss can be underestimated by 45 ± 26% (mean ± s.d.) if the time scale was randomly selected. Furthermore, spatial analysis suggested that vegetation type, water balance and soil textures mainly affected the spatial heterogeneity of the dominant time scales. In detail, forests, humid biomes, and vegetation planted in loam tended to be more sensitive to longer-term droughts. This study highlighted that optimal time-scale selection using extreme-based assumption can give more accurate estimation of the drought impacts on vegetation primary production. Standardized Precipitation Evapotranspiration Index (SPEI) Gross Primary Productivity (GPP) Time scale Extreme droughts Linear correlation Ecology Donghai Wu verfasserin aut Xuhui Wang verfasserin aut Zongqiang Xie verfasserin aut In Ecological Indicators Elsevier, 2021 136(2022), Seite 108630- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:136 year:2022 pages:108630- https://doi.org/10.1016/j.ecolind.2022.108630 kostenfrei https://doaj.org/article/aabd2eada0d242828d98e7dedd6eba7e kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X22001017 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 136 2022 108630- |
allfields_unstemmed |
10.1016/j.ecolind.2022.108630 doi (DE-627)DOAJ019550391 (DE-599)DOAJaabd2eada0d242828d98e7dedd6eba7e DE-627 ger DE-627 rakwb eng QH540-549.5 Ying Deng verfasserin aut Responding time scales of vegetation production to extreme droughts over China 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Extreme drought events have caused extensive and severe impacts on terrestrial ecosystem in last decades in China. Given droughts may be more intense and frequent under future climate change, accurate assessment of the drought impact on vegetation primary production can provide reliably scientific supports for the carbon sink potential. Numerous existing studies have used Standardized Precipitation Evapotranspiration Index (SPEI) to discover the drought-production relationships, however, most of them just considered the strongest correlation between production and different time scales (i.e. correlation-based method), which may underestimate the production loss because of the asymmetric responses under dry and wet conditions. In this work, we proposed a new method which assumed that the dominant time scale should correspond to the lowest primary production during each drought year (extreme-based method). Based on six independent Gross Primary Productivity (GPP) products and SPEI dataset, it showed that the extreme-based method was more reasonable and robust (with a larger inter-consistency of 0.50 than that of 0.05 for correlation-based method) to determine at which time scale GPP predominantly responded to extreme droughts. And the GPP loss can be underestimated by 45 ± 26% (mean ± s.d.) if the time scale was randomly selected. Furthermore, spatial analysis suggested that vegetation type, water balance and soil textures mainly affected the spatial heterogeneity of the dominant time scales. In detail, forests, humid biomes, and vegetation planted in loam tended to be more sensitive to longer-term droughts. This study highlighted that optimal time-scale selection using extreme-based assumption can give more accurate estimation of the drought impacts on vegetation primary production. Standardized Precipitation Evapotranspiration Index (SPEI) Gross Primary Productivity (GPP) Time scale Extreme droughts Linear correlation Ecology Donghai Wu verfasserin aut Xuhui Wang verfasserin aut Zongqiang Xie verfasserin aut In Ecological Indicators Elsevier, 2021 136(2022), Seite 108630- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:136 year:2022 pages:108630- https://doi.org/10.1016/j.ecolind.2022.108630 kostenfrei https://doaj.org/article/aabd2eada0d242828d98e7dedd6eba7e kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X22001017 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 136 2022 108630- |
allfieldsGer |
10.1016/j.ecolind.2022.108630 doi (DE-627)DOAJ019550391 (DE-599)DOAJaabd2eada0d242828d98e7dedd6eba7e DE-627 ger DE-627 rakwb eng QH540-549.5 Ying Deng verfasserin aut Responding time scales of vegetation production to extreme droughts over China 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Extreme drought events have caused extensive and severe impacts on terrestrial ecosystem in last decades in China. Given droughts may be more intense and frequent under future climate change, accurate assessment of the drought impact on vegetation primary production can provide reliably scientific supports for the carbon sink potential. Numerous existing studies have used Standardized Precipitation Evapotranspiration Index (SPEI) to discover the drought-production relationships, however, most of them just considered the strongest correlation between production and different time scales (i.e. correlation-based method), which may underestimate the production loss because of the asymmetric responses under dry and wet conditions. In this work, we proposed a new method which assumed that the dominant time scale should correspond to the lowest primary production during each drought year (extreme-based method). Based on six independent Gross Primary Productivity (GPP) products and SPEI dataset, it showed that the extreme-based method was more reasonable and robust (with a larger inter-consistency of 0.50 than that of 0.05 for correlation-based method) to determine at which time scale GPP predominantly responded to extreme droughts. And the GPP loss can be underestimated by 45 ± 26% (mean ± s.d.) if the time scale was randomly selected. Furthermore, spatial analysis suggested that vegetation type, water balance and soil textures mainly affected the spatial heterogeneity of the dominant time scales. In detail, forests, humid biomes, and vegetation planted in loam tended to be more sensitive to longer-term droughts. This study highlighted that optimal time-scale selection using extreme-based assumption can give more accurate estimation of the drought impacts on vegetation primary production. Standardized Precipitation Evapotranspiration Index (SPEI) Gross Primary Productivity (GPP) Time scale Extreme droughts Linear correlation Ecology Donghai Wu verfasserin aut Xuhui Wang verfasserin aut Zongqiang Xie verfasserin aut In Ecological Indicators Elsevier, 2021 136(2022), Seite 108630- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:136 year:2022 pages:108630- https://doi.org/10.1016/j.ecolind.2022.108630 kostenfrei https://doaj.org/article/aabd2eada0d242828d98e7dedd6eba7e kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X22001017 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 136 2022 108630- |
allfieldsSound |
10.1016/j.ecolind.2022.108630 doi (DE-627)DOAJ019550391 (DE-599)DOAJaabd2eada0d242828d98e7dedd6eba7e DE-627 ger DE-627 rakwb eng QH540-549.5 Ying Deng verfasserin aut Responding time scales of vegetation production to extreme droughts over China 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Extreme drought events have caused extensive and severe impacts on terrestrial ecosystem in last decades in China. Given droughts may be more intense and frequent under future climate change, accurate assessment of the drought impact on vegetation primary production can provide reliably scientific supports for the carbon sink potential. Numerous existing studies have used Standardized Precipitation Evapotranspiration Index (SPEI) to discover the drought-production relationships, however, most of them just considered the strongest correlation between production and different time scales (i.e. correlation-based method), which may underestimate the production loss because of the asymmetric responses under dry and wet conditions. In this work, we proposed a new method which assumed that the dominant time scale should correspond to the lowest primary production during each drought year (extreme-based method). Based on six independent Gross Primary Productivity (GPP) products and SPEI dataset, it showed that the extreme-based method was more reasonable and robust (with a larger inter-consistency of 0.50 than that of 0.05 for correlation-based method) to determine at which time scale GPP predominantly responded to extreme droughts. And the GPP loss can be underestimated by 45 ± 26% (mean ± s.d.) if the time scale was randomly selected. Furthermore, spatial analysis suggested that vegetation type, water balance and soil textures mainly affected the spatial heterogeneity of the dominant time scales. In detail, forests, humid biomes, and vegetation planted in loam tended to be more sensitive to longer-term droughts. This study highlighted that optimal time-scale selection using extreme-based assumption can give more accurate estimation of the drought impacts on vegetation primary production. Standardized Precipitation Evapotranspiration Index (SPEI) Gross Primary Productivity (GPP) Time scale Extreme droughts Linear correlation Ecology Donghai Wu verfasserin aut Xuhui Wang verfasserin aut Zongqiang Xie verfasserin aut In Ecological Indicators Elsevier, 2021 136(2022), Seite 108630- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:136 year:2022 pages:108630- https://doi.org/10.1016/j.ecolind.2022.108630 kostenfrei https://doaj.org/article/aabd2eada0d242828d98e7dedd6eba7e kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X22001017 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 136 2022 108630- |
language |
English |
source |
In Ecological Indicators 136(2022), Seite 108630- volume:136 year:2022 pages:108630- |
sourceStr |
In Ecological Indicators 136(2022), Seite 108630- volume:136 year:2022 pages:108630- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Standardized Precipitation Evapotranspiration Index (SPEI) Gross Primary Productivity (GPP) Time scale Extreme droughts Linear correlation Ecology |
isfreeaccess_bool |
true |
container_title |
Ecological Indicators |
authorswithroles_txt_mv |
Ying Deng @@aut@@ Donghai Wu @@aut@@ Xuhui Wang @@aut@@ Zongqiang Xie @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
338074163 |
id |
DOAJ019550391 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ019550391</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502062232.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2022.108630</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ019550391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJaabd2eada0d242828d98e7dedd6eba7e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ying Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Responding time scales of vegetation production to extreme droughts over China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Extreme drought events have caused extensive and severe impacts on terrestrial ecosystem in last decades in China. Given droughts may be more intense and frequent under future climate change, accurate assessment of the drought impact on vegetation primary production can provide reliably scientific supports for the carbon sink potential. Numerous existing studies have used Standardized Precipitation Evapotranspiration Index (SPEI) to discover the drought-production relationships, however, most of them just considered the strongest correlation between production and different time scales (i.e. correlation-based method), which may underestimate the production loss because of the asymmetric responses under dry and wet conditions. In this work, we proposed a new method which assumed that the dominant time scale should correspond to the lowest primary production during each drought year (extreme-based method). Based on six independent Gross Primary Productivity (GPP) products and SPEI dataset, it showed that the extreme-based method was more reasonable and robust (with a larger inter-consistency of 0.50 than that of 0.05 for correlation-based method) to determine at which time scale GPP predominantly responded to extreme droughts. And the GPP loss can be underestimated by 45 ± 26% (mean ± s.d.) if the time scale was randomly selected. Furthermore, spatial analysis suggested that vegetation type, water balance and soil textures mainly affected the spatial heterogeneity of the dominant time scales. In detail, forests, humid biomes, and vegetation planted in loam tended to be more sensitive to longer-term droughts. This study highlighted that optimal time-scale selection using extreme-based assumption can give more accurate estimation of the drought impacts on vegetation primary production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Standardized Precipitation Evapotranspiration Index (SPEI)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gross Primary Productivity (GPP)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time scale</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extreme droughts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear correlation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Donghai Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuhui Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zongqiang Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecological Indicators</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">136(2022), Seite 108630-</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="x">18727034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:136</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:108630-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecolind.2022.108630</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/aabd2eada0d242828d98e7dedd6eba7e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1470160X22001017</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1470-160X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">136</subfield><subfield code="j">2022</subfield><subfield code="h">108630-</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Ying Deng |
spellingShingle |
Ying Deng misc QH540-549.5 misc Standardized Precipitation Evapotranspiration Index (SPEI) misc Gross Primary Productivity (GPP) misc Time scale misc Extreme droughts misc Linear correlation misc Ecology Responding time scales of vegetation production to extreme droughts over China |
authorStr |
Ying Deng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)338074163 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH540-549 |
illustrated |
Not Illustrated |
issn |
18727034 |
topic_title |
QH540-549.5 Responding time scales of vegetation production to extreme droughts over China Standardized Precipitation Evapotranspiration Index (SPEI) Gross Primary Productivity (GPP) Time scale Extreme droughts Linear correlation |
topic |
misc QH540-549.5 misc Standardized Precipitation Evapotranspiration Index (SPEI) misc Gross Primary Productivity (GPP) misc Time scale misc Extreme droughts misc Linear correlation misc Ecology |
topic_unstemmed |
misc QH540-549.5 misc Standardized Precipitation Evapotranspiration Index (SPEI) misc Gross Primary Productivity (GPP) misc Time scale misc Extreme droughts misc Linear correlation misc Ecology |
topic_browse |
misc QH540-549.5 misc Standardized Precipitation Evapotranspiration Index (SPEI) misc Gross Primary Productivity (GPP) misc Time scale misc Extreme droughts misc Linear correlation misc Ecology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecological Indicators |
hierarchy_parent_id |
338074163 |
hierarchy_top_title |
Ecological Indicators |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)338074163 (DE-600)2063587-4 |
title |
Responding time scales of vegetation production to extreme droughts over China |
ctrlnum |
(DE-627)DOAJ019550391 (DE-599)DOAJaabd2eada0d242828d98e7dedd6eba7e |
title_full |
Responding time scales of vegetation production to extreme droughts over China |
author_sort |
Ying Deng |
journal |
Ecological Indicators |
journalStr |
Ecological Indicators |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
108630 |
author_browse |
Ying Deng Donghai Wu Xuhui Wang Zongqiang Xie |
container_volume |
136 |
class |
QH540-549.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Ying Deng |
doi_str_mv |
10.1016/j.ecolind.2022.108630 |
author2-role |
verfasserin |
title_sort |
responding time scales of vegetation production to extreme droughts over china |
callnumber |
QH540-549.5 |
title_auth |
Responding time scales of vegetation production to extreme droughts over China |
abstract |
Extreme drought events have caused extensive and severe impacts on terrestrial ecosystem in last decades in China. Given droughts may be more intense and frequent under future climate change, accurate assessment of the drought impact on vegetation primary production can provide reliably scientific supports for the carbon sink potential. Numerous existing studies have used Standardized Precipitation Evapotranspiration Index (SPEI) to discover the drought-production relationships, however, most of them just considered the strongest correlation between production and different time scales (i.e. correlation-based method), which may underestimate the production loss because of the asymmetric responses under dry and wet conditions. In this work, we proposed a new method which assumed that the dominant time scale should correspond to the lowest primary production during each drought year (extreme-based method). Based on six independent Gross Primary Productivity (GPP) products and SPEI dataset, it showed that the extreme-based method was more reasonable and robust (with a larger inter-consistency of 0.50 than that of 0.05 for correlation-based method) to determine at which time scale GPP predominantly responded to extreme droughts. And the GPP loss can be underestimated by 45 ± 26% (mean ± s.d.) if the time scale was randomly selected. Furthermore, spatial analysis suggested that vegetation type, water balance and soil textures mainly affected the spatial heterogeneity of the dominant time scales. In detail, forests, humid biomes, and vegetation planted in loam tended to be more sensitive to longer-term droughts. This study highlighted that optimal time-scale selection using extreme-based assumption can give more accurate estimation of the drought impacts on vegetation primary production. |
abstractGer |
Extreme drought events have caused extensive and severe impacts on terrestrial ecosystem in last decades in China. Given droughts may be more intense and frequent under future climate change, accurate assessment of the drought impact on vegetation primary production can provide reliably scientific supports for the carbon sink potential. Numerous existing studies have used Standardized Precipitation Evapotranspiration Index (SPEI) to discover the drought-production relationships, however, most of them just considered the strongest correlation between production and different time scales (i.e. correlation-based method), which may underestimate the production loss because of the asymmetric responses under dry and wet conditions. In this work, we proposed a new method which assumed that the dominant time scale should correspond to the lowest primary production during each drought year (extreme-based method). Based on six independent Gross Primary Productivity (GPP) products and SPEI dataset, it showed that the extreme-based method was more reasonable and robust (with a larger inter-consistency of 0.50 than that of 0.05 for correlation-based method) to determine at which time scale GPP predominantly responded to extreme droughts. And the GPP loss can be underestimated by 45 ± 26% (mean ± s.d.) if the time scale was randomly selected. Furthermore, spatial analysis suggested that vegetation type, water balance and soil textures mainly affected the spatial heterogeneity of the dominant time scales. In detail, forests, humid biomes, and vegetation planted in loam tended to be more sensitive to longer-term droughts. This study highlighted that optimal time-scale selection using extreme-based assumption can give more accurate estimation of the drought impacts on vegetation primary production. |
abstract_unstemmed |
Extreme drought events have caused extensive and severe impacts on terrestrial ecosystem in last decades in China. Given droughts may be more intense and frequent under future climate change, accurate assessment of the drought impact on vegetation primary production can provide reliably scientific supports for the carbon sink potential. Numerous existing studies have used Standardized Precipitation Evapotranspiration Index (SPEI) to discover the drought-production relationships, however, most of them just considered the strongest correlation between production and different time scales (i.e. correlation-based method), which may underestimate the production loss because of the asymmetric responses under dry and wet conditions. In this work, we proposed a new method which assumed that the dominant time scale should correspond to the lowest primary production during each drought year (extreme-based method). Based on six independent Gross Primary Productivity (GPP) products and SPEI dataset, it showed that the extreme-based method was more reasonable and robust (with a larger inter-consistency of 0.50 than that of 0.05 for correlation-based method) to determine at which time scale GPP predominantly responded to extreme droughts. And the GPP loss can be underestimated by 45 ± 26% (mean ± s.d.) if the time scale was randomly selected. Furthermore, spatial analysis suggested that vegetation type, water balance and soil textures mainly affected the spatial heterogeneity of the dominant time scales. In detail, forests, humid biomes, and vegetation planted in loam tended to be more sensitive to longer-term droughts. This study highlighted that optimal time-scale selection using extreme-based assumption can give more accurate estimation of the drought impacts on vegetation primary production. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Responding time scales of vegetation production to extreme droughts over China |
url |
https://doi.org/10.1016/j.ecolind.2022.108630 https://doaj.org/article/aabd2eada0d242828d98e7dedd6eba7e http://www.sciencedirect.com/science/article/pii/S1470160X22001017 https://doaj.org/toc/1470-160X |
remote_bool |
true |
author2 |
Donghai Wu Xuhui Wang Zongqiang Xie |
author2Str |
Donghai Wu Xuhui Wang Zongqiang Xie |
ppnlink |
338074163 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ecolind.2022.108630 |
callnumber-a |
QH540-549.5 |
up_date |
2024-07-04T00:00:17.071Z |
_version_ |
1803604424995635200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ019550391</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502062232.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2022.108630</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ019550391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJaabd2eada0d242828d98e7dedd6eba7e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ying Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Responding time scales of vegetation production to extreme droughts over China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Extreme drought events have caused extensive and severe impacts on terrestrial ecosystem in last decades in China. Given droughts may be more intense and frequent under future climate change, accurate assessment of the drought impact on vegetation primary production can provide reliably scientific supports for the carbon sink potential. Numerous existing studies have used Standardized Precipitation Evapotranspiration Index (SPEI) to discover the drought-production relationships, however, most of them just considered the strongest correlation between production and different time scales (i.e. correlation-based method), which may underestimate the production loss because of the asymmetric responses under dry and wet conditions. In this work, we proposed a new method which assumed that the dominant time scale should correspond to the lowest primary production during each drought year (extreme-based method). Based on six independent Gross Primary Productivity (GPP) products and SPEI dataset, it showed that the extreme-based method was more reasonable and robust (with a larger inter-consistency of 0.50 than that of 0.05 for correlation-based method) to determine at which time scale GPP predominantly responded to extreme droughts. And the GPP loss can be underestimated by 45 ± 26% (mean ± s.d.) if the time scale was randomly selected. Furthermore, spatial analysis suggested that vegetation type, water balance and soil textures mainly affected the spatial heterogeneity of the dominant time scales. In detail, forests, humid biomes, and vegetation planted in loam tended to be more sensitive to longer-term droughts. This study highlighted that optimal time-scale selection using extreme-based assumption can give more accurate estimation of the drought impacts on vegetation primary production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Standardized Precipitation Evapotranspiration Index (SPEI)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gross Primary Productivity (GPP)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time scale</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extreme droughts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear correlation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Donghai Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuhui Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zongqiang Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecological Indicators</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">136(2022), Seite 108630-</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="x">18727034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:136</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:108630-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecolind.2022.108630</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/aabd2eada0d242828d98e7dedd6eba7e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1470160X22001017</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1470-160X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">136</subfield><subfield code="j">2022</subfield><subfield code="h">108630-</subfield></datafield></record></collection>
|
score |
7.399102 |