A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ
A conservative downscaling technique was applied when comparing nitrogen dioxide (NO2) column densities from space-borne observations and a fine-scale regional model. The conservative downscaling was designed to enhance the spatial resolution of satellite measurements by applying the fine-scale spat...
Ausführliche Beschreibung
Autor*in: |
Hyun Cheol Kim [verfasserIn] Sang-Mi Lee [verfasserIn] Tianfeng Chai [verfasserIn] Fong Ngan [verfasserIn] Li Pan [verfasserIn] Pius Lee [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 10(2018), 7, p 1001 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2018 ; number:7, p 1001 |
Links: |
---|
DOI / URN: |
10.3390/rs10071001 |
---|
Katalog-ID: |
DOAJ019653913 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ019653913 | ||
003 | DE-627 | ||
005 | 20230310111949.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs10071001 |2 doi | |
035 | |a (DE-627)DOAJ019653913 | ||
035 | |a (DE-599)DOAJba4321b6ad8942d1af8c1a3cdd6f9121 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Hyun Cheol Kim |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A conservative downscaling technique was applied when comparing nitrogen dioxide (NO2) column densities from space-borne observations and a fine-scale regional model. The conservative downscaling was designed to enhance the spatial resolution of satellite measurements by applying the fine-scale spatial structure from the model, with strict mass conservation at each satellite footprint pixel level. With the downscaling approach, NO2 column densities from the Ozone Monitoring Instrument (OMI; 13 × 24 km nadir footprint resolution) and the Global Ozone Monitoring Experiment-2 (GOME-2; 40 × 80 km) show excellent agreement with the Community Multiscale Air Quality (CMAQ; 4 × 4 km) NO2 column densities, with R = 0.96 for OMI and R = 0.97 for GOME-2. We further introduce an approach to reconstruct surface NO2 concentrations by combining satellite column densities and simulated surface-to-column ratios from the model. Compared with the Environmental Protection Agency’s (EPA) Air Quality System (AQS) surface observations, the reconstructed surface concentrations show a good agreement; R = 0.86 for both OMI and GOME-2. This study demonstrates that the conservative downscaling approach is a useful tool to compare coarse-scale satellites with fine-scale models or observations in urban areas for air quality and emissions studies. The reconstructed fine-scale surface concentration field could be used for future epidemiology and urbanization studies. | ||
650 | 4 | |a downscaling | |
650 | 4 | |a NO2 column density | |
650 | 4 | |a OMI | |
650 | 4 | |a GOME-2 | |
650 | 4 | |a CMAQ | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Sang-Mi Lee |e verfasserin |4 aut | |
700 | 0 | |a Tianfeng Chai |e verfasserin |4 aut | |
700 | 0 | |a Fong Ngan |e verfasserin |4 aut | |
700 | 0 | |a Li Pan |e verfasserin |4 aut | |
700 | 0 | |a Pius Lee |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 10(2018), 7, p 1001 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2018 |g number:7, p 1001 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs10071001 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ba4321b6ad8942d1af8c1a3cdd6f9121 |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/2072-4292/10/7/1001 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2018 |e 7, p 1001 |
author_variant |
h c k hck s m l sml t c tc f n fn l p lp p l pl |
---|---|
matchkey_str |
article:20724292:2018----::cnevtvdwsaigfaeltdtceceiacmoiinn2oun |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.3390/rs10071001 doi (DE-627)DOAJ019653913 (DE-599)DOAJba4321b6ad8942d1af8c1a3cdd6f9121 DE-627 ger DE-627 rakwb eng Hyun Cheol Kim verfasserin aut A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A conservative downscaling technique was applied when comparing nitrogen dioxide (NO2) column densities from space-borne observations and a fine-scale regional model. The conservative downscaling was designed to enhance the spatial resolution of satellite measurements by applying the fine-scale spatial structure from the model, with strict mass conservation at each satellite footprint pixel level. With the downscaling approach, NO2 column densities from the Ozone Monitoring Instrument (OMI; 13 × 24 km nadir footprint resolution) and the Global Ozone Monitoring Experiment-2 (GOME-2; 40 × 80 km) show excellent agreement with the Community Multiscale Air Quality (CMAQ; 4 × 4 km) NO2 column densities, with R = 0.96 for OMI and R = 0.97 for GOME-2. We further introduce an approach to reconstruct surface NO2 concentrations by combining satellite column densities and simulated surface-to-column ratios from the model. Compared with the Environmental Protection Agency’s (EPA) Air Quality System (AQS) surface observations, the reconstructed surface concentrations show a good agreement; R = 0.86 for both OMI and GOME-2. This study demonstrates that the conservative downscaling approach is a useful tool to compare coarse-scale satellites with fine-scale models or observations in urban areas for air quality and emissions studies. The reconstructed fine-scale surface concentration field could be used for future epidemiology and urbanization studies. downscaling NO2 column density OMI GOME-2 CMAQ Science Q Sang-Mi Lee verfasserin aut Tianfeng Chai verfasserin aut Fong Ngan verfasserin aut Li Pan verfasserin aut Pius Lee verfasserin aut In Remote Sensing MDPI AG, 2009 10(2018), 7, p 1001 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:10 year:2018 number:7, p 1001 https://doi.org/10.3390/rs10071001 kostenfrei https://doaj.org/article/ba4321b6ad8942d1af8c1a3cdd6f9121 kostenfrei http://www.mdpi.com/2072-4292/10/7/1001 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2018 7, p 1001 |
spelling |
10.3390/rs10071001 doi (DE-627)DOAJ019653913 (DE-599)DOAJba4321b6ad8942d1af8c1a3cdd6f9121 DE-627 ger DE-627 rakwb eng Hyun Cheol Kim verfasserin aut A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A conservative downscaling technique was applied when comparing nitrogen dioxide (NO2) column densities from space-borne observations and a fine-scale regional model. The conservative downscaling was designed to enhance the spatial resolution of satellite measurements by applying the fine-scale spatial structure from the model, with strict mass conservation at each satellite footprint pixel level. With the downscaling approach, NO2 column densities from the Ozone Monitoring Instrument (OMI; 13 × 24 km nadir footprint resolution) and the Global Ozone Monitoring Experiment-2 (GOME-2; 40 × 80 km) show excellent agreement with the Community Multiscale Air Quality (CMAQ; 4 × 4 km) NO2 column densities, with R = 0.96 for OMI and R = 0.97 for GOME-2. We further introduce an approach to reconstruct surface NO2 concentrations by combining satellite column densities and simulated surface-to-column ratios from the model. Compared with the Environmental Protection Agency’s (EPA) Air Quality System (AQS) surface observations, the reconstructed surface concentrations show a good agreement; R = 0.86 for both OMI and GOME-2. This study demonstrates that the conservative downscaling approach is a useful tool to compare coarse-scale satellites with fine-scale models or observations in urban areas for air quality and emissions studies. The reconstructed fine-scale surface concentration field could be used for future epidemiology and urbanization studies. downscaling NO2 column density OMI GOME-2 CMAQ Science Q Sang-Mi Lee verfasserin aut Tianfeng Chai verfasserin aut Fong Ngan verfasserin aut Li Pan verfasserin aut Pius Lee verfasserin aut In Remote Sensing MDPI AG, 2009 10(2018), 7, p 1001 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:10 year:2018 number:7, p 1001 https://doi.org/10.3390/rs10071001 kostenfrei https://doaj.org/article/ba4321b6ad8942d1af8c1a3cdd6f9121 kostenfrei http://www.mdpi.com/2072-4292/10/7/1001 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2018 7, p 1001 |
allfields_unstemmed |
10.3390/rs10071001 doi (DE-627)DOAJ019653913 (DE-599)DOAJba4321b6ad8942d1af8c1a3cdd6f9121 DE-627 ger DE-627 rakwb eng Hyun Cheol Kim verfasserin aut A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A conservative downscaling technique was applied when comparing nitrogen dioxide (NO2) column densities from space-borne observations and a fine-scale regional model. The conservative downscaling was designed to enhance the spatial resolution of satellite measurements by applying the fine-scale spatial structure from the model, with strict mass conservation at each satellite footprint pixel level. With the downscaling approach, NO2 column densities from the Ozone Monitoring Instrument (OMI; 13 × 24 km nadir footprint resolution) and the Global Ozone Monitoring Experiment-2 (GOME-2; 40 × 80 km) show excellent agreement with the Community Multiscale Air Quality (CMAQ; 4 × 4 km) NO2 column densities, with R = 0.96 for OMI and R = 0.97 for GOME-2. We further introduce an approach to reconstruct surface NO2 concentrations by combining satellite column densities and simulated surface-to-column ratios from the model. Compared with the Environmental Protection Agency’s (EPA) Air Quality System (AQS) surface observations, the reconstructed surface concentrations show a good agreement; R = 0.86 for both OMI and GOME-2. This study demonstrates that the conservative downscaling approach is a useful tool to compare coarse-scale satellites with fine-scale models or observations in urban areas for air quality and emissions studies. The reconstructed fine-scale surface concentration field could be used for future epidemiology and urbanization studies. downscaling NO2 column density OMI GOME-2 CMAQ Science Q Sang-Mi Lee verfasserin aut Tianfeng Chai verfasserin aut Fong Ngan verfasserin aut Li Pan verfasserin aut Pius Lee verfasserin aut In Remote Sensing MDPI AG, 2009 10(2018), 7, p 1001 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:10 year:2018 number:7, p 1001 https://doi.org/10.3390/rs10071001 kostenfrei https://doaj.org/article/ba4321b6ad8942d1af8c1a3cdd6f9121 kostenfrei http://www.mdpi.com/2072-4292/10/7/1001 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2018 7, p 1001 |
allfieldsGer |
10.3390/rs10071001 doi (DE-627)DOAJ019653913 (DE-599)DOAJba4321b6ad8942d1af8c1a3cdd6f9121 DE-627 ger DE-627 rakwb eng Hyun Cheol Kim verfasserin aut A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A conservative downscaling technique was applied when comparing nitrogen dioxide (NO2) column densities from space-borne observations and a fine-scale regional model. The conservative downscaling was designed to enhance the spatial resolution of satellite measurements by applying the fine-scale spatial structure from the model, with strict mass conservation at each satellite footprint pixel level. With the downscaling approach, NO2 column densities from the Ozone Monitoring Instrument (OMI; 13 × 24 km nadir footprint resolution) and the Global Ozone Monitoring Experiment-2 (GOME-2; 40 × 80 km) show excellent agreement with the Community Multiscale Air Quality (CMAQ; 4 × 4 km) NO2 column densities, with R = 0.96 for OMI and R = 0.97 for GOME-2. We further introduce an approach to reconstruct surface NO2 concentrations by combining satellite column densities and simulated surface-to-column ratios from the model. Compared with the Environmental Protection Agency’s (EPA) Air Quality System (AQS) surface observations, the reconstructed surface concentrations show a good agreement; R = 0.86 for both OMI and GOME-2. This study demonstrates that the conservative downscaling approach is a useful tool to compare coarse-scale satellites with fine-scale models or observations in urban areas for air quality and emissions studies. The reconstructed fine-scale surface concentration field could be used for future epidemiology and urbanization studies. downscaling NO2 column density OMI GOME-2 CMAQ Science Q Sang-Mi Lee verfasserin aut Tianfeng Chai verfasserin aut Fong Ngan verfasserin aut Li Pan verfasserin aut Pius Lee verfasserin aut In Remote Sensing MDPI AG, 2009 10(2018), 7, p 1001 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:10 year:2018 number:7, p 1001 https://doi.org/10.3390/rs10071001 kostenfrei https://doaj.org/article/ba4321b6ad8942d1af8c1a3cdd6f9121 kostenfrei http://www.mdpi.com/2072-4292/10/7/1001 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2018 7, p 1001 |
allfieldsSound |
10.3390/rs10071001 doi (DE-627)DOAJ019653913 (DE-599)DOAJba4321b6ad8942d1af8c1a3cdd6f9121 DE-627 ger DE-627 rakwb eng Hyun Cheol Kim verfasserin aut A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A conservative downscaling technique was applied when comparing nitrogen dioxide (NO2) column densities from space-borne observations and a fine-scale regional model. The conservative downscaling was designed to enhance the spatial resolution of satellite measurements by applying the fine-scale spatial structure from the model, with strict mass conservation at each satellite footprint pixel level. With the downscaling approach, NO2 column densities from the Ozone Monitoring Instrument (OMI; 13 × 24 km nadir footprint resolution) and the Global Ozone Monitoring Experiment-2 (GOME-2; 40 × 80 km) show excellent agreement with the Community Multiscale Air Quality (CMAQ; 4 × 4 km) NO2 column densities, with R = 0.96 for OMI and R = 0.97 for GOME-2. We further introduce an approach to reconstruct surface NO2 concentrations by combining satellite column densities and simulated surface-to-column ratios from the model. Compared with the Environmental Protection Agency’s (EPA) Air Quality System (AQS) surface observations, the reconstructed surface concentrations show a good agreement; R = 0.86 for both OMI and GOME-2. This study demonstrates that the conservative downscaling approach is a useful tool to compare coarse-scale satellites with fine-scale models or observations in urban areas for air quality and emissions studies. The reconstructed fine-scale surface concentration field could be used for future epidemiology and urbanization studies. downscaling NO2 column density OMI GOME-2 CMAQ Science Q Sang-Mi Lee verfasserin aut Tianfeng Chai verfasserin aut Fong Ngan verfasserin aut Li Pan verfasserin aut Pius Lee verfasserin aut In Remote Sensing MDPI AG, 2009 10(2018), 7, p 1001 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:10 year:2018 number:7, p 1001 https://doi.org/10.3390/rs10071001 kostenfrei https://doaj.org/article/ba4321b6ad8942d1af8c1a3cdd6f9121 kostenfrei http://www.mdpi.com/2072-4292/10/7/1001 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2018 7, p 1001 |
language |
English |
source |
In Remote Sensing 10(2018), 7, p 1001 volume:10 year:2018 number:7, p 1001 |
sourceStr |
In Remote Sensing 10(2018), 7, p 1001 volume:10 year:2018 number:7, p 1001 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
downscaling NO2 column density OMI GOME-2 CMAQ Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Hyun Cheol Kim @@aut@@ Sang-Mi Lee @@aut@@ Tianfeng Chai @@aut@@ Fong Ngan @@aut@@ Li Pan @@aut@@ Pius Lee @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ019653913 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ019653913</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310111949.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs10071001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ019653913</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJba4321b6ad8942d1af8c1a3cdd6f9121</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hyun Cheol Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A conservative downscaling technique was applied when comparing nitrogen dioxide (NO2) column densities from space-borne observations and a fine-scale regional model. The conservative downscaling was designed to enhance the spatial resolution of satellite measurements by applying the fine-scale spatial structure from the model, with strict mass conservation at each satellite footprint pixel level. With the downscaling approach, NO2 column densities from the Ozone Monitoring Instrument (OMI; 13 &times; 24 km nadir footprint resolution) and the Global Ozone Monitoring Experiment-2 (GOME-2; 40 &times; 80 km) show excellent agreement with the Community Multiscale Air Quality (CMAQ; 4 &times; 4 km) NO2 column densities, with R = 0.96 for OMI and R = 0.97 for GOME-2. We further introduce an approach to reconstruct surface NO2 concentrations by combining satellite column densities and simulated surface-to-column ratios from the model. Compared with the Environmental Protection Agency&rsquo;s (EPA) Air Quality System (AQS) surface observations, the reconstructed surface concentrations show a good agreement; R = 0.86 for both OMI and GOME-2. This study demonstrates that the conservative downscaling approach is a useful tool to compare coarse-scale satellites with fine-scale models or observations in urban areas for air quality and emissions studies. The reconstructed fine-scale surface concentration field could be used for future epidemiology and urbanization studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">downscaling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NO2 column density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">OMI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GOME-2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CMAQ</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sang-Mi Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianfeng Chai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fong Ngan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pius Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">10(2018), 7, p 1001</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:7, p 1001</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs10071001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ba4321b6ad8942d1af8c1a3cdd6f9121</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2072-4292/10/7/1001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">7, p 1001</subfield></datafield></record></collection>
|
author |
Hyun Cheol Kim |
spellingShingle |
Hyun Cheol Kim misc downscaling misc NO2 column density misc OMI misc GOME-2 misc CMAQ misc Science misc Q A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ |
authorStr |
Hyun Cheol Kim |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ downscaling NO2 column density OMI GOME-2 CMAQ |
topic |
misc downscaling misc NO2 column density misc OMI misc GOME-2 misc CMAQ misc Science misc Q |
topic_unstemmed |
misc downscaling misc NO2 column density misc OMI misc GOME-2 misc CMAQ misc Science misc Q |
topic_browse |
misc downscaling misc NO2 column density misc OMI misc GOME-2 misc CMAQ misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ |
ctrlnum |
(DE-627)DOAJ019653913 (DE-599)DOAJba4321b6ad8942d1af8c1a3cdd6f9121 |
title_full |
A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ |
author_sort |
Hyun Cheol Kim |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Hyun Cheol Kim Sang-Mi Lee Tianfeng Chai Fong Ngan Li Pan Pius Lee |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Hyun Cheol Kim |
doi_str_mv |
10.3390/rs10071001 |
author2-role |
verfasserin |
title_sort |
conservative downscaling of satellite-detected chemical compositions: no2 column densities of omi, gome-2, and cmaq |
title_auth |
A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ |
abstract |
A conservative downscaling technique was applied when comparing nitrogen dioxide (NO2) column densities from space-borne observations and a fine-scale regional model. The conservative downscaling was designed to enhance the spatial resolution of satellite measurements by applying the fine-scale spatial structure from the model, with strict mass conservation at each satellite footprint pixel level. With the downscaling approach, NO2 column densities from the Ozone Monitoring Instrument (OMI; 13 × 24 km nadir footprint resolution) and the Global Ozone Monitoring Experiment-2 (GOME-2; 40 × 80 km) show excellent agreement with the Community Multiscale Air Quality (CMAQ; 4 × 4 km) NO2 column densities, with R = 0.96 for OMI and R = 0.97 for GOME-2. We further introduce an approach to reconstruct surface NO2 concentrations by combining satellite column densities and simulated surface-to-column ratios from the model. Compared with the Environmental Protection Agency’s (EPA) Air Quality System (AQS) surface observations, the reconstructed surface concentrations show a good agreement; R = 0.86 for both OMI and GOME-2. This study demonstrates that the conservative downscaling approach is a useful tool to compare coarse-scale satellites with fine-scale models or observations in urban areas for air quality and emissions studies. The reconstructed fine-scale surface concentration field could be used for future epidemiology and urbanization studies. |
abstractGer |
A conservative downscaling technique was applied when comparing nitrogen dioxide (NO2) column densities from space-borne observations and a fine-scale regional model. The conservative downscaling was designed to enhance the spatial resolution of satellite measurements by applying the fine-scale spatial structure from the model, with strict mass conservation at each satellite footprint pixel level. With the downscaling approach, NO2 column densities from the Ozone Monitoring Instrument (OMI; 13 × 24 km nadir footprint resolution) and the Global Ozone Monitoring Experiment-2 (GOME-2; 40 × 80 km) show excellent agreement with the Community Multiscale Air Quality (CMAQ; 4 × 4 km) NO2 column densities, with R = 0.96 for OMI and R = 0.97 for GOME-2. We further introduce an approach to reconstruct surface NO2 concentrations by combining satellite column densities and simulated surface-to-column ratios from the model. Compared with the Environmental Protection Agency’s (EPA) Air Quality System (AQS) surface observations, the reconstructed surface concentrations show a good agreement; R = 0.86 for both OMI and GOME-2. This study demonstrates that the conservative downscaling approach is a useful tool to compare coarse-scale satellites with fine-scale models or observations in urban areas for air quality and emissions studies. The reconstructed fine-scale surface concentration field could be used for future epidemiology and urbanization studies. |
abstract_unstemmed |
A conservative downscaling technique was applied when comparing nitrogen dioxide (NO2) column densities from space-borne observations and a fine-scale regional model. The conservative downscaling was designed to enhance the spatial resolution of satellite measurements by applying the fine-scale spatial structure from the model, with strict mass conservation at each satellite footprint pixel level. With the downscaling approach, NO2 column densities from the Ozone Monitoring Instrument (OMI; 13 × 24 km nadir footprint resolution) and the Global Ozone Monitoring Experiment-2 (GOME-2; 40 × 80 km) show excellent agreement with the Community Multiscale Air Quality (CMAQ; 4 × 4 km) NO2 column densities, with R = 0.96 for OMI and R = 0.97 for GOME-2. We further introduce an approach to reconstruct surface NO2 concentrations by combining satellite column densities and simulated surface-to-column ratios from the model. Compared with the Environmental Protection Agency’s (EPA) Air Quality System (AQS) surface observations, the reconstructed surface concentrations show a good agreement; R = 0.86 for both OMI and GOME-2. This study demonstrates that the conservative downscaling approach is a useful tool to compare coarse-scale satellites with fine-scale models or observations in urban areas for air quality and emissions studies. The reconstructed fine-scale surface concentration field could be used for future epidemiology and urbanization studies. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
7, p 1001 |
title_short |
A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ |
url |
https://doi.org/10.3390/rs10071001 https://doaj.org/article/ba4321b6ad8942d1af8c1a3cdd6f9121 http://www.mdpi.com/2072-4292/10/7/1001 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Sang-Mi Lee Tianfeng Chai Fong Ngan Li Pan Pius Lee |
author2Str |
Sang-Mi Lee Tianfeng Chai Fong Ngan Li Pan Pius Lee |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs10071001 |
up_date |
2024-07-04T00:26:16.822Z |
_version_ |
1803606060512051200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ019653913</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310111949.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs10071001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ019653913</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJba4321b6ad8942d1af8c1a3cdd6f9121</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hyun Cheol Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A conservative downscaling technique was applied when comparing nitrogen dioxide (NO2) column densities from space-borne observations and a fine-scale regional model. The conservative downscaling was designed to enhance the spatial resolution of satellite measurements by applying the fine-scale spatial structure from the model, with strict mass conservation at each satellite footprint pixel level. With the downscaling approach, NO2 column densities from the Ozone Monitoring Instrument (OMI; 13 &times; 24 km nadir footprint resolution) and the Global Ozone Monitoring Experiment-2 (GOME-2; 40 &times; 80 km) show excellent agreement with the Community Multiscale Air Quality (CMAQ; 4 &times; 4 km) NO2 column densities, with R = 0.96 for OMI and R = 0.97 for GOME-2. We further introduce an approach to reconstruct surface NO2 concentrations by combining satellite column densities and simulated surface-to-column ratios from the model. Compared with the Environmental Protection Agency&rsquo;s (EPA) Air Quality System (AQS) surface observations, the reconstructed surface concentrations show a good agreement; R = 0.86 for both OMI and GOME-2. This study demonstrates that the conservative downscaling approach is a useful tool to compare coarse-scale satellites with fine-scale models or observations in urban areas for air quality and emissions studies. The reconstructed fine-scale surface concentration field could be used for future epidemiology and urbanization studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">downscaling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NO2 column density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">OMI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GOME-2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CMAQ</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sang-Mi Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianfeng Chai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fong Ngan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pius Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">10(2018), 7, p 1001</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:7, p 1001</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs10071001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ba4321b6ad8942d1af8c1a3cdd6f9121</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2072-4292/10/7/1001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">7, p 1001</subfield></datafield></record></collection>
|
score |
7.3999033 |