An Experimental Study on the Mechanical Properties of High-Temperature Granite under Natural Cooling and Water Cooling
With the further development of deep rock mechanics engineering, such as the exploitation and utilization of geothermal resources, the exploitation of deep mineral resources, and the safe disposal of nuclear waste, the study of mechanical properties of deep high-temperature rock is gaining the atten...
Ausführliche Beschreibung
Autor*in: |
Yanan Gao [verfasserIn] Yunlong Wang [verfasserIn] Taiping Lu [verfasserIn] Liuzhou Li [verfasserIn] Jinwen Wu [verfasserIn] Zetian Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
In: Advances in Materials Science and Engineering - Hindawi Limited, 2009, (2021) |
---|---|
Übergeordnetes Werk: |
year:2021 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1155/2021/9018462 |
---|
Katalog-ID: |
DOAJ019672950 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ019672950 | ||
003 | DE-627 | ||
005 | 20230310112114.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2021/9018462 |2 doi | |
035 | |a (DE-627)DOAJ019672950 | ||
035 | |a (DE-599)DOAJf5f44449929d4cfd95890f3db5122d6c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
100 | 0 | |a Yanan Gao |e verfasserin |4 aut | |
245 | 1 | 3 | |a An Experimental Study on the Mechanical Properties of High-Temperature Granite under Natural Cooling and Water Cooling |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a With the further development of deep rock mechanics engineering, such as the exploitation and utilization of geothermal resources, the exploitation of deep mineral resources, and the safe disposal of nuclear waste, the study of mechanical properties of deep high-temperature rock is gaining the attention of the researchers. However, not only the high temperature but also the cooling condition/method that will be used in the construction such as drilling cooling will also greatly affect the mechanical properties of the rock. In this paper, the mechanical behaviour and the evolution of the mechanical properties of the high-temperature (600°C–1,000°C) granite under different cooling methods are studied. The following conclusions can be obtained: (1) The peak stress of the granite decreases with the heating temperature. Compared with natural cooling, water cooling has a more significant effect on strength degradation. (2) The increase of the heating temperature increases the maximum axial strain of the granite. The water cooling method more greatly induces the maximum axial strain of granite than the natural cooling. The maximum axial strain of the specimen under the water cooling reaches 117.3% of that under natural cooling (800°C). (3) The elastic modulus of the granite decreases with the heating temperature. Water cooling will have a stronger effect on the reduction of the elastic modulus than natural cooling. The maximum difference value (2.02 GPa) of the elastic modulus under the different cooling methods occurs at the temperature of 800°C. (4) Poisson’s ratio of the granite increases with heating temperature, and the cooling method does not have an evident effect on it. The relationship between Poisson’s ratio and the heating temperature under different cooling methods can be described using the linear model. (5) According to the influence of the temperature on the peak stress, the elastic modulus, and Poisson’s ratio, the heating temperature domain can be divided into the unapparent zone, the significant zone, and the mitigation zone. (6) The thermal stress due to the nonuniform temperature field and the different thermal expansion coefficients is incompatible. Such incompatibility stresses the essences of the degradation of the mechanical properties of the granite. | ||
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
700 | 0 | |a Yunlong Wang |e verfasserin |4 aut | |
700 | 0 | |a Taiping Lu |e verfasserin |4 aut | |
700 | 0 | |a Liuzhou Li |e verfasserin |4 aut | |
700 | 0 | |a Jinwen Wu |e verfasserin |4 aut | |
700 | 0 | |a Zetian Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Advances in Materials Science and Engineering |d Hindawi Limited, 2009 |g (2021) |w (DE-627)602540895 |w (DE-600)2501025-6 |x 16878442 |7 nnns |
773 | 1 | 8 | |g year:2021 |
856 | 4 | 0 | |u https://doi.org/10.1155/2021/9018462 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f5f44449929d4cfd95890f3db5122d6c |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1155/2021/9018462 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1687-8434 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1687-8442 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2021 |
author_variant |
y g yg y w yw t l tl l l ll j w jw z z zz |
---|---|
matchkey_str |
article:16878442:2021----::nxeietltdoteehnclrprisfiheprtrgaienen |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.1155/2021/9018462 doi (DE-627)DOAJ019672950 (DE-599)DOAJf5f44449929d4cfd95890f3db5122d6c DE-627 ger DE-627 rakwb eng TA401-492 Yanan Gao verfasserin aut An Experimental Study on the Mechanical Properties of High-Temperature Granite under Natural Cooling and Water Cooling 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the further development of deep rock mechanics engineering, such as the exploitation and utilization of geothermal resources, the exploitation of deep mineral resources, and the safe disposal of nuclear waste, the study of mechanical properties of deep high-temperature rock is gaining the attention of the researchers. However, not only the high temperature but also the cooling condition/method that will be used in the construction such as drilling cooling will also greatly affect the mechanical properties of the rock. In this paper, the mechanical behaviour and the evolution of the mechanical properties of the high-temperature (600°C–1,000°C) granite under different cooling methods are studied. The following conclusions can be obtained: (1) The peak stress of the granite decreases with the heating temperature. Compared with natural cooling, water cooling has a more significant effect on strength degradation. (2) The increase of the heating temperature increases the maximum axial strain of the granite. The water cooling method more greatly induces the maximum axial strain of granite than the natural cooling. The maximum axial strain of the specimen under the water cooling reaches 117.3% of that under natural cooling (800°C). (3) The elastic modulus of the granite decreases with the heating temperature. Water cooling will have a stronger effect on the reduction of the elastic modulus than natural cooling. The maximum difference value (2.02 GPa) of the elastic modulus under the different cooling methods occurs at the temperature of 800°C. (4) Poisson’s ratio of the granite increases with heating temperature, and the cooling method does not have an evident effect on it. The relationship between Poisson’s ratio and the heating temperature under different cooling methods can be described using the linear model. (5) According to the influence of the temperature on the peak stress, the elastic modulus, and Poisson’s ratio, the heating temperature domain can be divided into the unapparent zone, the significant zone, and the mitigation zone. (6) The thermal stress due to the nonuniform temperature field and the different thermal expansion coefficients is incompatible. Such incompatibility stresses the essences of the degradation of the mechanical properties of the granite. Materials of engineering and construction. Mechanics of materials Yunlong Wang verfasserin aut Taiping Lu verfasserin aut Liuzhou Li verfasserin aut Jinwen Wu verfasserin aut Zetian Zhang verfasserin aut In Advances in Materials Science and Engineering Hindawi Limited, 2009 (2021) (DE-627)602540895 (DE-600)2501025-6 16878442 nnns year:2021 https://doi.org/10.1155/2021/9018462 kostenfrei https://doaj.org/article/f5f44449929d4cfd95890f3db5122d6c kostenfrei http://dx.doi.org/10.1155/2021/9018462 kostenfrei https://doaj.org/toc/1687-8434 Journal toc kostenfrei https://doaj.org/toc/1687-8442 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
spelling |
10.1155/2021/9018462 doi (DE-627)DOAJ019672950 (DE-599)DOAJf5f44449929d4cfd95890f3db5122d6c DE-627 ger DE-627 rakwb eng TA401-492 Yanan Gao verfasserin aut An Experimental Study on the Mechanical Properties of High-Temperature Granite under Natural Cooling and Water Cooling 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the further development of deep rock mechanics engineering, such as the exploitation and utilization of geothermal resources, the exploitation of deep mineral resources, and the safe disposal of nuclear waste, the study of mechanical properties of deep high-temperature rock is gaining the attention of the researchers. However, not only the high temperature but also the cooling condition/method that will be used in the construction such as drilling cooling will also greatly affect the mechanical properties of the rock. In this paper, the mechanical behaviour and the evolution of the mechanical properties of the high-temperature (600°C–1,000°C) granite under different cooling methods are studied. The following conclusions can be obtained: (1) The peak stress of the granite decreases with the heating temperature. Compared with natural cooling, water cooling has a more significant effect on strength degradation. (2) The increase of the heating temperature increases the maximum axial strain of the granite. The water cooling method more greatly induces the maximum axial strain of granite than the natural cooling. The maximum axial strain of the specimen under the water cooling reaches 117.3% of that under natural cooling (800°C). (3) The elastic modulus of the granite decreases with the heating temperature. Water cooling will have a stronger effect on the reduction of the elastic modulus than natural cooling. The maximum difference value (2.02 GPa) of the elastic modulus under the different cooling methods occurs at the temperature of 800°C. (4) Poisson’s ratio of the granite increases with heating temperature, and the cooling method does not have an evident effect on it. The relationship between Poisson’s ratio and the heating temperature under different cooling methods can be described using the linear model. (5) According to the influence of the temperature on the peak stress, the elastic modulus, and Poisson’s ratio, the heating temperature domain can be divided into the unapparent zone, the significant zone, and the mitigation zone. (6) The thermal stress due to the nonuniform temperature field and the different thermal expansion coefficients is incompatible. Such incompatibility stresses the essences of the degradation of the mechanical properties of the granite. Materials of engineering and construction. Mechanics of materials Yunlong Wang verfasserin aut Taiping Lu verfasserin aut Liuzhou Li verfasserin aut Jinwen Wu verfasserin aut Zetian Zhang verfasserin aut In Advances in Materials Science and Engineering Hindawi Limited, 2009 (2021) (DE-627)602540895 (DE-600)2501025-6 16878442 nnns year:2021 https://doi.org/10.1155/2021/9018462 kostenfrei https://doaj.org/article/f5f44449929d4cfd95890f3db5122d6c kostenfrei http://dx.doi.org/10.1155/2021/9018462 kostenfrei https://doaj.org/toc/1687-8434 Journal toc kostenfrei https://doaj.org/toc/1687-8442 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
allfields_unstemmed |
10.1155/2021/9018462 doi (DE-627)DOAJ019672950 (DE-599)DOAJf5f44449929d4cfd95890f3db5122d6c DE-627 ger DE-627 rakwb eng TA401-492 Yanan Gao verfasserin aut An Experimental Study on the Mechanical Properties of High-Temperature Granite under Natural Cooling and Water Cooling 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the further development of deep rock mechanics engineering, such as the exploitation and utilization of geothermal resources, the exploitation of deep mineral resources, and the safe disposal of nuclear waste, the study of mechanical properties of deep high-temperature rock is gaining the attention of the researchers. However, not only the high temperature but also the cooling condition/method that will be used in the construction such as drilling cooling will also greatly affect the mechanical properties of the rock. In this paper, the mechanical behaviour and the evolution of the mechanical properties of the high-temperature (600°C–1,000°C) granite under different cooling methods are studied. The following conclusions can be obtained: (1) The peak stress of the granite decreases with the heating temperature. Compared with natural cooling, water cooling has a more significant effect on strength degradation. (2) The increase of the heating temperature increases the maximum axial strain of the granite. The water cooling method more greatly induces the maximum axial strain of granite than the natural cooling. The maximum axial strain of the specimen under the water cooling reaches 117.3% of that under natural cooling (800°C). (3) The elastic modulus of the granite decreases with the heating temperature. Water cooling will have a stronger effect on the reduction of the elastic modulus than natural cooling. The maximum difference value (2.02 GPa) of the elastic modulus under the different cooling methods occurs at the temperature of 800°C. (4) Poisson’s ratio of the granite increases with heating temperature, and the cooling method does not have an evident effect on it. The relationship between Poisson’s ratio and the heating temperature under different cooling methods can be described using the linear model. (5) According to the influence of the temperature on the peak stress, the elastic modulus, and Poisson’s ratio, the heating temperature domain can be divided into the unapparent zone, the significant zone, and the mitigation zone. (6) The thermal stress due to the nonuniform temperature field and the different thermal expansion coefficients is incompatible. Such incompatibility stresses the essences of the degradation of the mechanical properties of the granite. Materials of engineering and construction. Mechanics of materials Yunlong Wang verfasserin aut Taiping Lu verfasserin aut Liuzhou Li verfasserin aut Jinwen Wu verfasserin aut Zetian Zhang verfasserin aut In Advances in Materials Science and Engineering Hindawi Limited, 2009 (2021) (DE-627)602540895 (DE-600)2501025-6 16878442 nnns year:2021 https://doi.org/10.1155/2021/9018462 kostenfrei https://doaj.org/article/f5f44449929d4cfd95890f3db5122d6c kostenfrei http://dx.doi.org/10.1155/2021/9018462 kostenfrei https://doaj.org/toc/1687-8434 Journal toc kostenfrei https://doaj.org/toc/1687-8442 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
allfieldsGer |
10.1155/2021/9018462 doi (DE-627)DOAJ019672950 (DE-599)DOAJf5f44449929d4cfd95890f3db5122d6c DE-627 ger DE-627 rakwb eng TA401-492 Yanan Gao verfasserin aut An Experimental Study on the Mechanical Properties of High-Temperature Granite under Natural Cooling and Water Cooling 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the further development of deep rock mechanics engineering, such as the exploitation and utilization of geothermal resources, the exploitation of deep mineral resources, and the safe disposal of nuclear waste, the study of mechanical properties of deep high-temperature rock is gaining the attention of the researchers. However, not only the high temperature but also the cooling condition/method that will be used in the construction such as drilling cooling will also greatly affect the mechanical properties of the rock. In this paper, the mechanical behaviour and the evolution of the mechanical properties of the high-temperature (600°C–1,000°C) granite under different cooling methods are studied. The following conclusions can be obtained: (1) The peak stress of the granite decreases with the heating temperature. Compared with natural cooling, water cooling has a more significant effect on strength degradation. (2) The increase of the heating temperature increases the maximum axial strain of the granite. The water cooling method more greatly induces the maximum axial strain of granite than the natural cooling. The maximum axial strain of the specimen under the water cooling reaches 117.3% of that under natural cooling (800°C). (3) The elastic modulus of the granite decreases with the heating temperature. Water cooling will have a stronger effect on the reduction of the elastic modulus than natural cooling. The maximum difference value (2.02 GPa) of the elastic modulus under the different cooling methods occurs at the temperature of 800°C. (4) Poisson’s ratio of the granite increases with heating temperature, and the cooling method does not have an evident effect on it. The relationship between Poisson’s ratio and the heating temperature under different cooling methods can be described using the linear model. (5) According to the influence of the temperature on the peak stress, the elastic modulus, and Poisson’s ratio, the heating temperature domain can be divided into the unapparent zone, the significant zone, and the mitigation zone. (6) The thermal stress due to the nonuniform temperature field and the different thermal expansion coefficients is incompatible. Such incompatibility stresses the essences of the degradation of the mechanical properties of the granite. Materials of engineering and construction. Mechanics of materials Yunlong Wang verfasserin aut Taiping Lu verfasserin aut Liuzhou Li verfasserin aut Jinwen Wu verfasserin aut Zetian Zhang verfasserin aut In Advances in Materials Science and Engineering Hindawi Limited, 2009 (2021) (DE-627)602540895 (DE-600)2501025-6 16878442 nnns year:2021 https://doi.org/10.1155/2021/9018462 kostenfrei https://doaj.org/article/f5f44449929d4cfd95890f3db5122d6c kostenfrei http://dx.doi.org/10.1155/2021/9018462 kostenfrei https://doaj.org/toc/1687-8434 Journal toc kostenfrei https://doaj.org/toc/1687-8442 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
allfieldsSound |
10.1155/2021/9018462 doi (DE-627)DOAJ019672950 (DE-599)DOAJf5f44449929d4cfd95890f3db5122d6c DE-627 ger DE-627 rakwb eng TA401-492 Yanan Gao verfasserin aut An Experimental Study on the Mechanical Properties of High-Temperature Granite under Natural Cooling and Water Cooling 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the further development of deep rock mechanics engineering, such as the exploitation and utilization of geothermal resources, the exploitation of deep mineral resources, and the safe disposal of nuclear waste, the study of mechanical properties of deep high-temperature rock is gaining the attention of the researchers. However, not only the high temperature but also the cooling condition/method that will be used in the construction such as drilling cooling will also greatly affect the mechanical properties of the rock. In this paper, the mechanical behaviour and the evolution of the mechanical properties of the high-temperature (600°C–1,000°C) granite under different cooling methods are studied. The following conclusions can be obtained: (1) The peak stress of the granite decreases with the heating temperature. Compared with natural cooling, water cooling has a more significant effect on strength degradation. (2) The increase of the heating temperature increases the maximum axial strain of the granite. The water cooling method more greatly induces the maximum axial strain of granite than the natural cooling. The maximum axial strain of the specimen under the water cooling reaches 117.3% of that under natural cooling (800°C). (3) The elastic modulus of the granite decreases with the heating temperature. Water cooling will have a stronger effect on the reduction of the elastic modulus than natural cooling. The maximum difference value (2.02 GPa) of the elastic modulus under the different cooling methods occurs at the temperature of 800°C. (4) Poisson’s ratio of the granite increases with heating temperature, and the cooling method does not have an evident effect on it. The relationship between Poisson’s ratio and the heating temperature under different cooling methods can be described using the linear model. (5) According to the influence of the temperature on the peak stress, the elastic modulus, and Poisson’s ratio, the heating temperature domain can be divided into the unapparent zone, the significant zone, and the mitigation zone. (6) The thermal stress due to the nonuniform temperature field and the different thermal expansion coefficients is incompatible. Such incompatibility stresses the essences of the degradation of the mechanical properties of the granite. Materials of engineering and construction. Mechanics of materials Yunlong Wang verfasserin aut Taiping Lu verfasserin aut Liuzhou Li verfasserin aut Jinwen Wu verfasserin aut Zetian Zhang verfasserin aut In Advances in Materials Science and Engineering Hindawi Limited, 2009 (2021) (DE-627)602540895 (DE-600)2501025-6 16878442 nnns year:2021 https://doi.org/10.1155/2021/9018462 kostenfrei https://doaj.org/article/f5f44449929d4cfd95890f3db5122d6c kostenfrei http://dx.doi.org/10.1155/2021/9018462 kostenfrei https://doaj.org/toc/1687-8434 Journal toc kostenfrei https://doaj.org/toc/1687-8442 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
language |
English |
source |
In Advances in Materials Science and Engineering (2021) year:2021 |
sourceStr |
In Advances in Materials Science and Engineering (2021) year:2021 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Materials of engineering and construction. Mechanics of materials |
isfreeaccess_bool |
true |
container_title |
Advances in Materials Science and Engineering |
authorswithroles_txt_mv |
Yanan Gao @@aut@@ Yunlong Wang @@aut@@ Taiping Lu @@aut@@ Liuzhou Li @@aut@@ Jinwen Wu @@aut@@ Zetian Zhang @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
602540895 |
id |
DOAJ019672950 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ019672950</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310112114.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2021/9018462</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ019672950</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf5f44449929d4cfd95890f3db5122d6c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yanan Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Experimental Study on the Mechanical Properties of High-Temperature Granite under Natural Cooling and Water Cooling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the further development of deep rock mechanics engineering, such as the exploitation and utilization of geothermal resources, the exploitation of deep mineral resources, and the safe disposal of nuclear waste, the study of mechanical properties of deep high-temperature rock is gaining the attention of the researchers. However, not only the high temperature but also the cooling condition/method that will be used in the construction such as drilling cooling will also greatly affect the mechanical properties of the rock. In this paper, the mechanical behaviour and the evolution of the mechanical properties of the high-temperature (600°C–1,000°C) granite under different cooling methods are studied. The following conclusions can be obtained: (1) The peak stress of the granite decreases with the heating temperature. Compared with natural cooling, water cooling has a more significant effect on strength degradation. (2) The increase of the heating temperature increases the maximum axial strain of the granite. The water cooling method more greatly induces the maximum axial strain of granite than the natural cooling. The maximum axial strain of the specimen under the water cooling reaches 117.3% of that under natural cooling (800°C). (3) The elastic modulus of the granite decreases with the heating temperature. Water cooling will have a stronger effect on the reduction of the elastic modulus than natural cooling. The maximum difference value (2.02 GPa) of the elastic modulus under the different cooling methods occurs at the temperature of 800°C. (4) Poisson’s ratio of the granite increases with heating temperature, and the cooling method does not have an evident effect on it. The relationship between Poisson’s ratio and the heating temperature under different cooling methods can be described using the linear model. (5) According to the influence of the temperature on the peak stress, the elastic modulus, and Poisson’s ratio, the heating temperature domain can be divided into the unapparent zone, the significant zone, and the mitigation zone. (6) The thermal stress due to the nonuniform temperature field and the different thermal expansion coefficients is incompatible. Such incompatibility stresses the essences of the degradation of the mechanical properties of the granite.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunlong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taiping Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liuzhou Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinwen Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zetian Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advances in Materials Science and Engineering</subfield><subfield code="d">Hindawi Limited, 2009</subfield><subfield code="g">(2021)</subfield><subfield code="w">(DE-627)602540895</subfield><subfield code="w">(DE-600)2501025-6</subfield><subfield code="x">16878442</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2021/9018462</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f5f44449929d4cfd95890f3db5122d6c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2021/9018462</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-8434</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-8442</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2021</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yanan Gao |
spellingShingle |
Yanan Gao misc TA401-492 misc Materials of engineering and construction. Mechanics of materials An Experimental Study on the Mechanical Properties of High-Temperature Granite under Natural Cooling and Water Cooling |
authorStr |
Yanan Gao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)602540895 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
16878442 |
topic_title |
TA401-492 An Experimental Study on the Mechanical Properties of High-Temperature Granite under Natural Cooling and Water Cooling |
topic |
misc TA401-492 misc Materials of engineering and construction. Mechanics of materials |
topic_unstemmed |
misc TA401-492 misc Materials of engineering and construction. Mechanics of materials |
topic_browse |
misc TA401-492 misc Materials of engineering and construction. Mechanics of materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advances in Materials Science and Engineering |
hierarchy_parent_id |
602540895 |
hierarchy_top_title |
Advances in Materials Science and Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)602540895 (DE-600)2501025-6 |
title |
An Experimental Study on the Mechanical Properties of High-Temperature Granite under Natural Cooling and Water Cooling |
ctrlnum |
(DE-627)DOAJ019672950 (DE-599)DOAJf5f44449929d4cfd95890f3db5122d6c |
title_full |
An Experimental Study on the Mechanical Properties of High-Temperature Granite under Natural Cooling and Water Cooling |
author_sort |
Yanan Gao |
journal |
Advances in Materials Science and Engineering |
journalStr |
Advances in Materials Science and Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Yanan Gao Yunlong Wang Taiping Lu Liuzhou Li Jinwen Wu Zetian Zhang |
class |
TA401-492 |
format_se |
Elektronische Aufsätze |
author-letter |
Yanan Gao |
doi_str_mv |
10.1155/2021/9018462 |
author2-role |
verfasserin |
title_sort |
experimental study on the mechanical properties of high-temperature granite under natural cooling and water cooling |
callnumber |
TA401-492 |
title_auth |
An Experimental Study on the Mechanical Properties of High-Temperature Granite under Natural Cooling and Water Cooling |
abstract |
With the further development of deep rock mechanics engineering, such as the exploitation and utilization of geothermal resources, the exploitation of deep mineral resources, and the safe disposal of nuclear waste, the study of mechanical properties of deep high-temperature rock is gaining the attention of the researchers. However, not only the high temperature but also the cooling condition/method that will be used in the construction such as drilling cooling will also greatly affect the mechanical properties of the rock. In this paper, the mechanical behaviour and the evolution of the mechanical properties of the high-temperature (600°C–1,000°C) granite under different cooling methods are studied. The following conclusions can be obtained: (1) The peak stress of the granite decreases with the heating temperature. Compared with natural cooling, water cooling has a more significant effect on strength degradation. (2) The increase of the heating temperature increases the maximum axial strain of the granite. The water cooling method more greatly induces the maximum axial strain of granite than the natural cooling. The maximum axial strain of the specimen under the water cooling reaches 117.3% of that under natural cooling (800°C). (3) The elastic modulus of the granite decreases with the heating temperature. Water cooling will have a stronger effect on the reduction of the elastic modulus than natural cooling. The maximum difference value (2.02 GPa) of the elastic modulus under the different cooling methods occurs at the temperature of 800°C. (4) Poisson’s ratio of the granite increases with heating temperature, and the cooling method does not have an evident effect on it. The relationship between Poisson’s ratio and the heating temperature under different cooling methods can be described using the linear model. (5) According to the influence of the temperature on the peak stress, the elastic modulus, and Poisson’s ratio, the heating temperature domain can be divided into the unapparent zone, the significant zone, and the mitigation zone. (6) The thermal stress due to the nonuniform temperature field and the different thermal expansion coefficients is incompatible. Such incompatibility stresses the essences of the degradation of the mechanical properties of the granite. |
abstractGer |
With the further development of deep rock mechanics engineering, such as the exploitation and utilization of geothermal resources, the exploitation of deep mineral resources, and the safe disposal of nuclear waste, the study of mechanical properties of deep high-temperature rock is gaining the attention of the researchers. However, not only the high temperature but also the cooling condition/method that will be used in the construction such as drilling cooling will also greatly affect the mechanical properties of the rock. In this paper, the mechanical behaviour and the evolution of the mechanical properties of the high-temperature (600°C–1,000°C) granite under different cooling methods are studied. The following conclusions can be obtained: (1) The peak stress of the granite decreases with the heating temperature. Compared with natural cooling, water cooling has a more significant effect on strength degradation. (2) The increase of the heating temperature increases the maximum axial strain of the granite. The water cooling method more greatly induces the maximum axial strain of granite than the natural cooling. The maximum axial strain of the specimen under the water cooling reaches 117.3% of that under natural cooling (800°C). (3) The elastic modulus of the granite decreases with the heating temperature. Water cooling will have a stronger effect on the reduction of the elastic modulus than natural cooling. The maximum difference value (2.02 GPa) of the elastic modulus under the different cooling methods occurs at the temperature of 800°C. (4) Poisson’s ratio of the granite increases with heating temperature, and the cooling method does not have an evident effect on it. The relationship between Poisson’s ratio and the heating temperature under different cooling methods can be described using the linear model. (5) According to the influence of the temperature on the peak stress, the elastic modulus, and Poisson’s ratio, the heating temperature domain can be divided into the unapparent zone, the significant zone, and the mitigation zone. (6) The thermal stress due to the nonuniform temperature field and the different thermal expansion coefficients is incompatible. Such incompatibility stresses the essences of the degradation of the mechanical properties of the granite. |
abstract_unstemmed |
With the further development of deep rock mechanics engineering, such as the exploitation and utilization of geothermal resources, the exploitation of deep mineral resources, and the safe disposal of nuclear waste, the study of mechanical properties of deep high-temperature rock is gaining the attention of the researchers. However, not only the high temperature but also the cooling condition/method that will be used in the construction such as drilling cooling will also greatly affect the mechanical properties of the rock. In this paper, the mechanical behaviour and the evolution of the mechanical properties of the high-temperature (600°C–1,000°C) granite under different cooling methods are studied. The following conclusions can be obtained: (1) The peak stress of the granite decreases with the heating temperature. Compared with natural cooling, water cooling has a more significant effect on strength degradation. (2) The increase of the heating temperature increases the maximum axial strain of the granite. The water cooling method more greatly induces the maximum axial strain of granite than the natural cooling. The maximum axial strain of the specimen under the water cooling reaches 117.3% of that under natural cooling (800°C). (3) The elastic modulus of the granite decreases with the heating temperature. Water cooling will have a stronger effect on the reduction of the elastic modulus than natural cooling. The maximum difference value (2.02 GPa) of the elastic modulus under the different cooling methods occurs at the temperature of 800°C. (4) Poisson’s ratio of the granite increases with heating temperature, and the cooling method does not have an evident effect on it. The relationship between Poisson’s ratio and the heating temperature under different cooling methods can be described using the linear model. (5) According to the influence of the temperature on the peak stress, the elastic modulus, and Poisson’s ratio, the heating temperature domain can be divided into the unapparent zone, the significant zone, and the mitigation zone. (6) The thermal stress due to the nonuniform temperature field and the different thermal expansion coefficients is incompatible. Such incompatibility stresses the essences of the degradation of the mechanical properties of the granite. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
An Experimental Study on the Mechanical Properties of High-Temperature Granite under Natural Cooling and Water Cooling |
url |
https://doi.org/10.1155/2021/9018462 https://doaj.org/article/f5f44449929d4cfd95890f3db5122d6c http://dx.doi.org/10.1155/2021/9018462 https://doaj.org/toc/1687-8434 https://doaj.org/toc/1687-8442 |
remote_bool |
true |
author2 |
Yunlong Wang Taiping Lu Liuzhou Li Jinwen Wu Zetian Zhang |
author2Str |
Yunlong Wang Taiping Lu Liuzhou Li Jinwen Wu Zetian Zhang |
ppnlink |
602540895 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2021/9018462 |
callnumber-a |
TA401-492 |
up_date |
2024-07-04T00:30:50.938Z |
_version_ |
1803606347942461440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ019672950</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310112114.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2021/9018462</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ019672950</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf5f44449929d4cfd95890f3db5122d6c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yanan Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Experimental Study on the Mechanical Properties of High-Temperature Granite under Natural Cooling and Water Cooling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the further development of deep rock mechanics engineering, such as the exploitation and utilization of geothermal resources, the exploitation of deep mineral resources, and the safe disposal of nuclear waste, the study of mechanical properties of deep high-temperature rock is gaining the attention of the researchers. However, not only the high temperature but also the cooling condition/method that will be used in the construction such as drilling cooling will also greatly affect the mechanical properties of the rock. In this paper, the mechanical behaviour and the evolution of the mechanical properties of the high-temperature (600°C–1,000°C) granite under different cooling methods are studied. The following conclusions can be obtained: (1) The peak stress of the granite decreases with the heating temperature. Compared with natural cooling, water cooling has a more significant effect on strength degradation. (2) The increase of the heating temperature increases the maximum axial strain of the granite. The water cooling method more greatly induces the maximum axial strain of granite than the natural cooling. The maximum axial strain of the specimen under the water cooling reaches 117.3% of that under natural cooling (800°C). (3) The elastic modulus of the granite decreases with the heating temperature. Water cooling will have a stronger effect on the reduction of the elastic modulus than natural cooling. The maximum difference value (2.02 GPa) of the elastic modulus under the different cooling methods occurs at the temperature of 800°C. (4) Poisson’s ratio of the granite increases with heating temperature, and the cooling method does not have an evident effect on it. The relationship between Poisson’s ratio and the heating temperature under different cooling methods can be described using the linear model. (5) According to the influence of the temperature on the peak stress, the elastic modulus, and Poisson’s ratio, the heating temperature domain can be divided into the unapparent zone, the significant zone, and the mitigation zone. (6) The thermal stress due to the nonuniform temperature field and the different thermal expansion coefficients is incompatible. Such incompatibility stresses the essences of the degradation of the mechanical properties of the granite.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunlong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taiping Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liuzhou Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinwen Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zetian Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advances in Materials Science and Engineering</subfield><subfield code="d">Hindawi Limited, 2009</subfield><subfield code="g">(2021)</subfield><subfield code="w">(DE-627)602540895</subfield><subfield code="w">(DE-600)2501025-6</subfield><subfield code="x">16878442</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2021/9018462</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f5f44449929d4cfd95890f3db5122d6c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2021/9018462</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-8434</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-8442</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2021</subfield></datafield></record></collection>
|
score |
7.4007626 |