Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth
A considerable amount of water is stored in vegetation, especially in regions with high precipitation rates. Knowledge of the vegetation water status is essential to monitor changes in ecosystem health and to assess the vegetation influence on the water budget. In this study, we develop and validate...
Ausführliche Beschreibung
Autor*in: |
Thomas Meyer [verfasserIn] Thomas Jagdhuber [verfasserIn] María Piles [verfasserIn] Anita Fink [verfasserIn] Jennifer Grant [verfasserIn] Harry Vereecken [verfasserIn] François Jonard [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 11(2019), 20, p 2353 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2019 ; number:20, p 2353 |
Links: |
---|
DOI / URN: |
10.3390/rs11202353 |
---|
Katalog-ID: |
DOAJ019871104 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ019871104 | ||
003 | DE-627 | ||
005 | 20230503013502.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs11202353 |2 doi | |
035 | |a (DE-627)DOAJ019871104 | ||
035 | |a (DE-599)DOAJ15df8a5081a947828e6bd22e60e5c360 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Thomas Meyer |e verfasserin |4 aut | |
245 | 1 | 0 | |a Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A considerable amount of water is stored in vegetation, especially in regions with high precipitation rates. Knowledge of the vegetation water status is essential to monitor changes in ecosystem health and to assess the vegetation influence on the water budget. In this study, we develop and validate an approach to estimate the gravimetric vegetation water content (<i<m<sub<g</sub<</i<), defined as the amount of water [kg] per wet biomass [kg], based on the attenuation of microwave radiation through vegetation. <i<m<sub<g</sub<</i< is expected to be more closely related to the actual water status of a plant than the area-based vegetation water content (VWC), which expresses the amount of water [kg] per unit area [m<sup<2</sup<]. We conducted the study at the field scale over an entire growth cycle of a winter wheat field. Tower-based L-band microwave measurements together with in situ measurements of vegetation properties (i.e., vegetation height, and <i<m<sub<g</sub<</i< for validation) were performed. The results indicated a strong agreement between the in situ measured and retrieved <i<m<sub<g</sub<</i< (R<sup<2</sup< of 0.89), with mean and standard deviation (STD) values of 0.55 and 0.26 for the in situ measured <i<m<sub<g</sub<</i< and 0.57 and 0.19 for the retrieved <i<m<sub<g</sub<</i<, respectively. Phenological changes in crop water content were captured, with the highest values of <i<m<sub<g</sub<</i< obtained during the growth phase of the vegetation (i.e., when the water content of the plants and the biomass were increasing) and the lowest values when the vegetation turned fully senescent (i.e., when the water content of the plant was the lowest). Comparing in situ measured <i<m<sub<g</sub<</i< and VWC, we found their highest agreement with an R<sup<2</sup< of 0.95 after flowering (i.e., when the vegetation started to lose water) and their main differences with an R<sup<2</sup< of 0.21 during the vegetative growth of the wheat vegetation (i.e., where the <i<m<sub<g</sub<</i< was constant and VWC increased due to structural changes in vegetation). In addition, we performed a sensitivity analysis on the vegetation volume fraction (<i<δ</i<), an input parameter to the proposed approach which represents the volume percentage of solid plant material in air. This <i<δ</i<-parameter is shown to have a distinct impact on the thermal emission at L-band, but keeping <i<δ</i< constant during the growth cycle of the winter wheat appeared to be valid for these <i<m<sub<g</sub<</i< retrievals. | ||
650 | 4 | |a gravimetric vegetation water content | |
650 | 4 | |a vegetation volume fraction | |
650 | 4 | |a vegetation optical depth | |
650 | 4 | |a winter wheat | |
650 | 4 | |a smos | |
650 | 4 | |a smap | |
650 | 4 | |a l-band | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Thomas Jagdhuber |e verfasserin |4 aut | |
700 | 0 | |a María Piles |e verfasserin |4 aut | |
700 | 0 | |a Anita Fink |e verfasserin |4 aut | |
700 | 0 | |a Jennifer Grant |e verfasserin |4 aut | |
700 | 0 | |a Harry Vereecken |e verfasserin |4 aut | |
700 | 0 | |a François Jonard |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 11(2019), 20, p 2353 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2019 |g number:20, p 2353 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs11202353 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/15df8a5081a947828e6bd22e60e5c360 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/11/20/2353 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2019 |e 20, p 2353 |
author_variant |
t m tm t j tj m p mp a f af j g jg h v hv f j fj |
---|---|
matchkey_str |
article:20724292:2019----::siaigrvmtiwtrotnoaitrhafedrmbn |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.3390/rs11202353 doi (DE-627)DOAJ019871104 (DE-599)DOAJ15df8a5081a947828e6bd22e60e5c360 DE-627 ger DE-627 rakwb eng Thomas Meyer verfasserin aut Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A considerable amount of water is stored in vegetation, especially in regions with high precipitation rates. Knowledge of the vegetation water status is essential to monitor changes in ecosystem health and to assess the vegetation influence on the water budget. In this study, we develop and validate an approach to estimate the gravimetric vegetation water content (<i<m<sub<g</sub<</i<), defined as the amount of water [kg] per wet biomass [kg], based on the attenuation of microwave radiation through vegetation. <i<m<sub<g</sub<</i< is expected to be more closely related to the actual water status of a plant than the area-based vegetation water content (VWC), which expresses the amount of water [kg] per unit area [m<sup<2</sup<]. We conducted the study at the field scale over an entire growth cycle of a winter wheat field. Tower-based L-band microwave measurements together with in situ measurements of vegetation properties (i.e., vegetation height, and <i<m<sub<g</sub<</i< for validation) were performed. The results indicated a strong agreement between the in situ measured and retrieved <i<m<sub<g</sub<</i< (R<sup<2</sup< of 0.89), with mean and standard deviation (STD) values of 0.55 and 0.26 for the in situ measured <i<m<sub<g</sub<</i< and 0.57 and 0.19 for the retrieved <i<m<sub<g</sub<</i<, respectively. Phenological changes in crop water content were captured, with the highest values of <i<m<sub<g</sub<</i< obtained during the growth phase of the vegetation (i.e., when the water content of the plants and the biomass were increasing) and the lowest values when the vegetation turned fully senescent (i.e., when the water content of the plant was the lowest). Comparing in situ measured <i<m<sub<g</sub<</i< and VWC, we found their highest agreement with an R<sup<2</sup< of 0.95 after flowering (i.e., when the vegetation started to lose water) and their main differences with an R<sup<2</sup< of 0.21 during the vegetative growth of the wheat vegetation (i.e., where the <i<m<sub<g</sub<</i< was constant and VWC increased due to structural changes in vegetation). In addition, we performed a sensitivity analysis on the vegetation volume fraction (<i<δ</i<), an input parameter to the proposed approach which represents the volume percentage of solid plant material in air. This <i<δ</i<-parameter is shown to have a distinct impact on the thermal emission at L-band, but keeping <i<δ</i< constant during the growth cycle of the winter wheat appeared to be valid for these <i<m<sub<g</sub<</i< retrievals. gravimetric vegetation water content vegetation volume fraction vegetation optical depth winter wheat smos smap l-band Science Q Thomas Jagdhuber verfasserin aut María Piles verfasserin aut Anita Fink verfasserin aut Jennifer Grant verfasserin aut Harry Vereecken verfasserin aut François Jonard verfasserin aut In Remote Sensing MDPI AG, 2009 11(2019), 20, p 2353 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2019 number:20, p 2353 https://doi.org/10.3390/rs11202353 kostenfrei https://doaj.org/article/15df8a5081a947828e6bd22e60e5c360 kostenfrei https://www.mdpi.com/2072-4292/11/20/2353 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 20, p 2353 |
spelling |
10.3390/rs11202353 doi (DE-627)DOAJ019871104 (DE-599)DOAJ15df8a5081a947828e6bd22e60e5c360 DE-627 ger DE-627 rakwb eng Thomas Meyer verfasserin aut Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A considerable amount of water is stored in vegetation, especially in regions with high precipitation rates. Knowledge of the vegetation water status is essential to monitor changes in ecosystem health and to assess the vegetation influence on the water budget. In this study, we develop and validate an approach to estimate the gravimetric vegetation water content (<i<m<sub<g</sub<</i<), defined as the amount of water [kg] per wet biomass [kg], based on the attenuation of microwave radiation through vegetation. <i<m<sub<g</sub<</i< is expected to be more closely related to the actual water status of a plant than the area-based vegetation water content (VWC), which expresses the amount of water [kg] per unit area [m<sup<2</sup<]. We conducted the study at the field scale over an entire growth cycle of a winter wheat field. Tower-based L-band microwave measurements together with in situ measurements of vegetation properties (i.e., vegetation height, and <i<m<sub<g</sub<</i< for validation) were performed. The results indicated a strong agreement between the in situ measured and retrieved <i<m<sub<g</sub<</i< (R<sup<2</sup< of 0.89), with mean and standard deviation (STD) values of 0.55 and 0.26 for the in situ measured <i<m<sub<g</sub<</i< and 0.57 and 0.19 for the retrieved <i<m<sub<g</sub<</i<, respectively. Phenological changes in crop water content were captured, with the highest values of <i<m<sub<g</sub<</i< obtained during the growth phase of the vegetation (i.e., when the water content of the plants and the biomass were increasing) and the lowest values when the vegetation turned fully senescent (i.e., when the water content of the plant was the lowest). Comparing in situ measured <i<m<sub<g</sub<</i< and VWC, we found their highest agreement with an R<sup<2</sup< of 0.95 after flowering (i.e., when the vegetation started to lose water) and their main differences with an R<sup<2</sup< of 0.21 during the vegetative growth of the wheat vegetation (i.e., where the <i<m<sub<g</sub<</i< was constant and VWC increased due to structural changes in vegetation). In addition, we performed a sensitivity analysis on the vegetation volume fraction (<i<δ</i<), an input parameter to the proposed approach which represents the volume percentage of solid plant material in air. This <i<δ</i<-parameter is shown to have a distinct impact on the thermal emission at L-band, but keeping <i<δ</i< constant during the growth cycle of the winter wheat appeared to be valid for these <i<m<sub<g</sub<</i< retrievals. gravimetric vegetation water content vegetation volume fraction vegetation optical depth winter wheat smos smap l-band Science Q Thomas Jagdhuber verfasserin aut María Piles verfasserin aut Anita Fink verfasserin aut Jennifer Grant verfasserin aut Harry Vereecken verfasserin aut François Jonard verfasserin aut In Remote Sensing MDPI AG, 2009 11(2019), 20, p 2353 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2019 number:20, p 2353 https://doi.org/10.3390/rs11202353 kostenfrei https://doaj.org/article/15df8a5081a947828e6bd22e60e5c360 kostenfrei https://www.mdpi.com/2072-4292/11/20/2353 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 20, p 2353 |
allfields_unstemmed |
10.3390/rs11202353 doi (DE-627)DOAJ019871104 (DE-599)DOAJ15df8a5081a947828e6bd22e60e5c360 DE-627 ger DE-627 rakwb eng Thomas Meyer verfasserin aut Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A considerable amount of water is stored in vegetation, especially in regions with high precipitation rates. Knowledge of the vegetation water status is essential to monitor changes in ecosystem health and to assess the vegetation influence on the water budget. In this study, we develop and validate an approach to estimate the gravimetric vegetation water content (<i<m<sub<g</sub<</i<), defined as the amount of water [kg] per wet biomass [kg], based on the attenuation of microwave radiation through vegetation. <i<m<sub<g</sub<</i< is expected to be more closely related to the actual water status of a plant than the area-based vegetation water content (VWC), which expresses the amount of water [kg] per unit area [m<sup<2</sup<]. We conducted the study at the field scale over an entire growth cycle of a winter wheat field. Tower-based L-band microwave measurements together with in situ measurements of vegetation properties (i.e., vegetation height, and <i<m<sub<g</sub<</i< for validation) were performed. The results indicated a strong agreement between the in situ measured and retrieved <i<m<sub<g</sub<</i< (R<sup<2</sup< of 0.89), with mean and standard deviation (STD) values of 0.55 and 0.26 for the in situ measured <i<m<sub<g</sub<</i< and 0.57 and 0.19 for the retrieved <i<m<sub<g</sub<</i<, respectively. Phenological changes in crop water content were captured, with the highest values of <i<m<sub<g</sub<</i< obtained during the growth phase of the vegetation (i.e., when the water content of the plants and the biomass were increasing) and the lowest values when the vegetation turned fully senescent (i.e., when the water content of the plant was the lowest). Comparing in situ measured <i<m<sub<g</sub<</i< and VWC, we found their highest agreement with an R<sup<2</sup< of 0.95 after flowering (i.e., when the vegetation started to lose water) and their main differences with an R<sup<2</sup< of 0.21 during the vegetative growth of the wheat vegetation (i.e., where the <i<m<sub<g</sub<</i< was constant and VWC increased due to structural changes in vegetation). In addition, we performed a sensitivity analysis on the vegetation volume fraction (<i<δ</i<), an input parameter to the proposed approach which represents the volume percentage of solid plant material in air. This <i<δ</i<-parameter is shown to have a distinct impact on the thermal emission at L-band, but keeping <i<δ</i< constant during the growth cycle of the winter wheat appeared to be valid for these <i<m<sub<g</sub<</i< retrievals. gravimetric vegetation water content vegetation volume fraction vegetation optical depth winter wheat smos smap l-band Science Q Thomas Jagdhuber verfasserin aut María Piles verfasserin aut Anita Fink verfasserin aut Jennifer Grant verfasserin aut Harry Vereecken verfasserin aut François Jonard verfasserin aut In Remote Sensing MDPI AG, 2009 11(2019), 20, p 2353 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2019 number:20, p 2353 https://doi.org/10.3390/rs11202353 kostenfrei https://doaj.org/article/15df8a5081a947828e6bd22e60e5c360 kostenfrei https://www.mdpi.com/2072-4292/11/20/2353 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 20, p 2353 |
allfieldsGer |
10.3390/rs11202353 doi (DE-627)DOAJ019871104 (DE-599)DOAJ15df8a5081a947828e6bd22e60e5c360 DE-627 ger DE-627 rakwb eng Thomas Meyer verfasserin aut Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A considerable amount of water is stored in vegetation, especially in regions with high precipitation rates. Knowledge of the vegetation water status is essential to monitor changes in ecosystem health and to assess the vegetation influence on the water budget. In this study, we develop and validate an approach to estimate the gravimetric vegetation water content (<i<m<sub<g</sub<</i<), defined as the amount of water [kg] per wet biomass [kg], based on the attenuation of microwave radiation through vegetation. <i<m<sub<g</sub<</i< is expected to be more closely related to the actual water status of a plant than the area-based vegetation water content (VWC), which expresses the amount of water [kg] per unit area [m<sup<2</sup<]. We conducted the study at the field scale over an entire growth cycle of a winter wheat field. Tower-based L-band microwave measurements together with in situ measurements of vegetation properties (i.e., vegetation height, and <i<m<sub<g</sub<</i< for validation) were performed. The results indicated a strong agreement between the in situ measured and retrieved <i<m<sub<g</sub<</i< (R<sup<2</sup< of 0.89), with mean and standard deviation (STD) values of 0.55 and 0.26 for the in situ measured <i<m<sub<g</sub<</i< and 0.57 and 0.19 for the retrieved <i<m<sub<g</sub<</i<, respectively. Phenological changes in crop water content were captured, with the highest values of <i<m<sub<g</sub<</i< obtained during the growth phase of the vegetation (i.e., when the water content of the plants and the biomass were increasing) and the lowest values when the vegetation turned fully senescent (i.e., when the water content of the plant was the lowest). Comparing in situ measured <i<m<sub<g</sub<</i< and VWC, we found their highest agreement with an R<sup<2</sup< of 0.95 after flowering (i.e., when the vegetation started to lose water) and their main differences with an R<sup<2</sup< of 0.21 during the vegetative growth of the wheat vegetation (i.e., where the <i<m<sub<g</sub<</i< was constant and VWC increased due to structural changes in vegetation). In addition, we performed a sensitivity analysis on the vegetation volume fraction (<i<δ</i<), an input parameter to the proposed approach which represents the volume percentage of solid plant material in air. This <i<δ</i<-parameter is shown to have a distinct impact on the thermal emission at L-band, but keeping <i<δ</i< constant during the growth cycle of the winter wheat appeared to be valid for these <i<m<sub<g</sub<</i< retrievals. gravimetric vegetation water content vegetation volume fraction vegetation optical depth winter wheat smos smap l-band Science Q Thomas Jagdhuber verfasserin aut María Piles verfasserin aut Anita Fink verfasserin aut Jennifer Grant verfasserin aut Harry Vereecken verfasserin aut François Jonard verfasserin aut In Remote Sensing MDPI AG, 2009 11(2019), 20, p 2353 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2019 number:20, p 2353 https://doi.org/10.3390/rs11202353 kostenfrei https://doaj.org/article/15df8a5081a947828e6bd22e60e5c360 kostenfrei https://www.mdpi.com/2072-4292/11/20/2353 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 20, p 2353 |
allfieldsSound |
10.3390/rs11202353 doi (DE-627)DOAJ019871104 (DE-599)DOAJ15df8a5081a947828e6bd22e60e5c360 DE-627 ger DE-627 rakwb eng Thomas Meyer verfasserin aut Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A considerable amount of water is stored in vegetation, especially in regions with high precipitation rates. Knowledge of the vegetation water status is essential to monitor changes in ecosystem health and to assess the vegetation influence on the water budget. In this study, we develop and validate an approach to estimate the gravimetric vegetation water content (<i<m<sub<g</sub<</i<), defined as the amount of water [kg] per wet biomass [kg], based on the attenuation of microwave radiation through vegetation. <i<m<sub<g</sub<</i< is expected to be more closely related to the actual water status of a plant than the area-based vegetation water content (VWC), which expresses the amount of water [kg] per unit area [m<sup<2</sup<]. We conducted the study at the field scale over an entire growth cycle of a winter wheat field. Tower-based L-band microwave measurements together with in situ measurements of vegetation properties (i.e., vegetation height, and <i<m<sub<g</sub<</i< for validation) were performed. The results indicated a strong agreement between the in situ measured and retrieved <i<m<sub<g</sub<</i< (R<sup<2</sup< of 0.89), with mean and standard deviation (STD) values of 0.55 and 0.26 for the in situ measured <i<m<sub<g</sub<</i< and 0.57 and 0.19 for the retrieved <i<m<sub<g</sub<</i<, respectively. Phenological changes in crop water content were captured, with the highest values of <i<m<sub<g</sub<</i< obtained during the growth phase of the vegetation (i.e., when the water content of the plants and the biomass were increasing) and the lowest values when the vegetation turned fully senescent (i.e., when the water content of the plant was the lowest). Comparing in situ measured <i<m<sub<g</sub<</i< and VWC, we found their highest agreement with an R<sup<2</sup< of 0.95 after flowering (i.e., when the vegetation started to lose water) and their main differences with an R<sup<2</sup< of 0.21 during the vegetative growth of the wheat vegetation (i.e., where the <i<m<sub<g</sub<</i< was constant and VWC increased due to structural changes in vegetation). In addition, we performed a sensitivity analysis on the vegetation volume fraction (<i<δ</i<), an input parameter to the proposed approach which represents the volume percentage of solid plant material in air. This <i<δ</i<-parameter is shown to have a distinct impact on the thermal emission at L-band, but keeping <i<δ</i< constant during the growth cycle of the winter wheat appeared to be valid for these <i<m<sub<g</sub<</i< retrievals. gravimetric vegetation water content vegetation volume fraction vegetation optical depth winter wheat smos smap l-band Science Q Thomas Jagdhuber verfasserin aut María Piles verfasserin aut Anita Fink verfasserin aut Jennifer Grant verfasserin aut Harry Vereecken verfasserin aut François Jonard verfasserin aut In Remote Sensing MDPI AG, 2009 11(2019), 20, p 2353 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2019 number:20, p 2353 https://doi.org/10.3390/rs11202353 kostenfrei https://doaj.org/article/15df8a5081a947828e6bd22e60e5c360 kostenfrei https://www.mdpi.com/2072-4292/11/20/2353 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 20, p 2353 |
language |
English |
source |
In Remote Sensing 11(2019), 20, p 2353 volume:11 year:2019 number:20, p 2353 |
sourceStr |
In Remote Sensing 11(2019), 20, p 2353 volume:11 year:2019 number:20, p 2353 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
gravimetric vegetation water content vegetation volume fraction vegetation optical depth winter wheat smos smap l-band Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Thomas Meyer @@aut@@ Thomas Jagdhuber @@aut@@ María Piles @@aut@@ Anita Fink @@aut@@ Jennifer Grant @@aut@@ Harry Vereecken @@aut@@ François Jonard @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ019871104 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ019871104</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503013502.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs11202353</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ019871104</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ15df8a5081a947828e6bd22e60e5c360</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Thomas Meyer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A considerable amount of water is stored in vegetation, especially in regions with high precipitation rates. Knowledge of the vegetation water status is essential to monitor changes in ecosystem health and to assess the vegetation influence on the water budget. In this study, we develop and validate an approach to estimate the gravimetric vegetation water content (<i<m<sub<g</sub<</i<), defined as the amount of water [kg] per wet biomass [kg], based on the attenuation of microwave radiation through vegetation. <i<m<sub<g</sub<</i< is expected to be more closely related to the actual water status of a plant than the area-based vegetation water content (VWC), which expresses the amount of water [kg] per unit area [m<sup<2</sup<]. We conducted the study at the field scale over an entire growth cycle of a winter wheat field. Tower-based L-band microwave measurements together with in situ measurements of vegetation properties (i.e., vegetation height, and <i<m<sub<g</sub<</i< for validation) were performed. The results indicated a strong agreement between the in situ measured and retrieved <i<m<sub<g</sub<</i< (R<sup<2</sup< of 0.89), with mean and standard deviation (STD) values of 0.55 and 0.26 for the in situ measured <i<m<sub<g</sub<</i< and 0.57 and 0.19 for the retrieved <i<m<sub<g</sub<</i<, respectively. Phenological changes in crop water content were captured, with the highest values of <i<m<sub<g</sub<</i< obtained during the growth phase of the vegetation (i.e., when the water content of the plants and the biomass were increasing) and the lowest values when the vegetation turned fully senescent (i.e., when the water content of the plant was the lowest). Comparing in situ measured <i<m<sub<g</sub<</i< and VWC, we found their highest agreement with an R<sup<2</sup< of 0.95 after flowering (i.e., when the vegetation started to lose water) and their main differences with an R<sup<2</sup< of 0.21 during the vegetative growth of the wheat vegetation (i.e., where the <i<m<sub<g</sub<</i< was constant and VWC increased due to structural changes in vegetation). In addition, we performed a sensitivity analysis on the vegetation volume fraction (<i<δ</i<), an input parameter to the proposed approach which represents the volume percentage of solid plant material in air. This <i<δ</i<-parameter is shown to have a distinct impact on the thermal emission at L-band, but keeping <i<δ</i< constant during the growth cycle of the winter wheat appeared to be valid for these <i<m<sub<g</sub<</i< retrievals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gravimetric vegetation water content</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vegetation volume fraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vegetation optical depth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">winter wheat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smap</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">l-band</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas Jagdhuber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">María Piles</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anita Fink</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jennifer Grant</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Harry Vereecken</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">François Jonard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">11(2019), 20, p 2353</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:20, p 2353</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs11202353</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/15df8a5081a947828e6bd22e60e5c360</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/11/20/2353</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2019</subfield><subfield code="e">20, p 2353</subfield></datafield></record></collection>
|
author |
Thomas Meyer |
spellingShingle |
Thomas Meyer misc gravimetric vegetation water content misc vegetation volume fraction misc vegetation optical depth misc winter wheat misc smos misc smap misc l-band misc Science misc Q Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth |
authorStr |
Thomas Meyer |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth gravimetric vegetation water content vegetation volume fraction vegetation optical depth winter wheat smos smap l-band |
topic |
misc gravimetric vegetation water content misc vegetation volume fraction misc vegetation optical depth misc winter wheat misc smos misc smap misc l-band misc Science misc Q |
topic_unstemmed |
misc gravimetric vegetation water content misc vegetation volume fraction misc vegetation optical depth misc winter wheat misc smos misc smap misc l-band misc Science misc Q |
topic_browse |
misc gravimetric vegetation water content misc vegetation volume fraction misc vegetation optical depth misc winter wheat misc smos misc smap misc l-band misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth |
ctrlnum |
(DE-627)DOAJ019871104 (DE-599)DOAJ15df8a5081a947828e6bd22e60e5c360 |
title_full |
Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth |
author_sort |
Thomas Meyer |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Thomas Meyer Thomas Jagdhuber María Piles Anita Fink Jennifer Grant Harry Vereecken François Jonard |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Thomas Meyer |
doi_str_mv |
10.3390/rs11202353 |
author2-role |
verfasserin |
title_sort |
estimating gravimetric water content of a winter wheat field from l-band vegetation optical depth |
title_auth |
Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth |
abstract |
A considerable amount of water is stored in vegetation, especially in regions with high precipitation rates. Knowledge of the vegetation water status is essential to monitor changes in ecosystem health and to assess the vegetation influence on the water budget. In this study, we develop and validate an approach to estimate the gravimetric vegetation water content (<i<m<sub<g</sub<</i<), defined as the amount of water [kg] per wet biomass [kg], based on the attenuation of microwave radiation through vegetation. <i<m<sub<g</sub<</i< is expected to be more closely related to the actual water status of a plant than the area-based vegetation water content (VWC), which expresses the amount of water [kg] per unit area [m<sup<2</sup<]. We conducted the study at the field scale over an entire growth cycle of a winter wheat field. Tower-based L-band microwave measurements together with in situ measurements of vegetation properties (i.e., vegetation height, and <i<m<sub<g</sub<</i< for validation) were performed. The results indicated a strong agreement between the in situ measured and retrieved <i<m<sub<g</sub<</i< (R<sup<2</sup< of 0.89), with mean and standard deviation (STD) values of 0.55 and 0.26 for the in situ measured <i<m<sub<g</sub<</i< and 0.57 and 0.19 for the retrieved <i<m<sub<g</sub<</i<, respectively. Phenological changes in crop water content were captured, with the highest values of <i<m<sub<g</sub<</i< obtained during the growth phase of the vegetation (i.e., when the water content of the plants and the biomass were increasing) and the lowest values when the vegetation turned fully senescent (i.e., when the water content of the plant was the lowest). Comparing in situ measured <i<m<sub<g</sub<</i< and VWC, we found their highest agreement with an R<sup<2</sup< of 0.95 after flowering (i.e., when the vegetation started to lose water) and their main differences with an R<sup<2</sup< of 0.21 during the vegetative growth of the wheat vegetation (i.e., where the <i<m<sub<g</sub<</i< was constant and VWC increased due to structural changes in vegetation). In addition, we performed a sensitivity analysis on the vegetation volume fraction (<i<δ</i<), an input parameter to the proposed approach which represents the volume percentage of solid plant material in air. This <i<δ</i<-parameter is shown to have a distinct impact on the thermal emission at L-band, but keeping <i<δ</i< constant during the growth cycle of the winter wheat appeared to be valid for these <i<m<sub<g</sub<</i< retrievals. |
abstractGer |
A considerable amount of water is stored in vegetation, especially in regions with high precipitation rates. Knowledge of the vegetation water status is essential to monitor changes in ecosystem health and to assess the vegetation influence on the water budget. In this study, we develop and validate an approach to estimate the gravimetric vegetation water content (<i<m<sub<g</sub<</i<), defined as the amount of water [kg] per wet biomass [kg], based on the attenuation of microwave radiation through vegetation. <i<m<sub<g</sub<</i< is expected to be more closely related to the actual water status of a plant than the area-based vegetation water content (VWC), which expresses the amount of water [kg] per unit area [m<sup<2</sup<]. We conducted the study at the field scale over an entire growth cycle of a winter wheat field. Tower-based L-band microwave measurements together with in situ measurements of vegetation properties (i.e., vegetation height, and <i<m<sub<g</sub<</i< for validation) were performed. The results indicated a strong agreement between the in situ measured and retrieved <i<m<sub<g</sub<</i< (R<sup<2</sup< of 0.89), with mean and standard deviation (STD) values of 0.55 and 0.26 for the in situ measured <i<m<sub<g</sub<</i< and 0.57 and 0.19 for the retrieved <i<m<sub<g</sub<</i<, respectively. Phenological changes in crop water content were captured, with the highest values of <i<m<sub<g</sub<</i< obtained during the growth phase of the vegetation (i.e., when the water content of the plants and the biomass were increasing) and the lowest values when the vegetation turned fully senescent (i.e., when the water content of the plant was the lowest). Comparing in situ measured <i<m<sub<g</sub<</i< and VWC, we found their highest agreement with an R<sup<2</sup< of 0.95 after flowering (i.e., when the vegetation started to lose water) and their main differences with an R<sup<2</sup< of 0.21 during the vegetative growth of the wheat vegetation (i.e., where the <i<m<sub<g</sub<</i< was constant and VWC increased due to structural changes in vegetation). In addition, we performed a sensitivity analysis on the vegetation volume fraction (<i<δ</i<), an input parameter to the proposed approach which represents the volume percentage of solid plant material in air. This <i<δ</i<-parameter is shown to have a distinct impact on the thermal emission at L-band, but keeping <i<δ</i< constant during the growth cycle of the winter wheat appeared to be valid for these <i<m<sub<g</sub<</i< retrievals. |
abstract_unstemmed |
A considerable amount of water is stored in vegetation, especially in regions with high precipitation rates. Knowledge of the vegetation water status is essential to monitor changes in ecosystem health and to assess the vegetation influence on the water budget. In this study, we develop and validate an approach to estimate the gravimetric vegetation water content (<i<m<sub<g</sub<</i<), defined as the amount of water [kg] per wet biomass [kg], based on the attenuation of microwave radiation through vegetation. <i<m<sub<g</sub<</i< is expected to be more closely related to the actual water status of a plant than the area-based vegetation water content (VWC), which expresses the amount of water [kg] per unit area [m<sup<2</sup<]. We conducted the study at the field scale over an entire growth cycle of a winter wheat field. Tower-based L-band microwave measurements together with in situ measurements of vegetation properties (i.e., vegetation height, and <i<m<sub<g</sub<</i< for validation) were performed. The results indicated a strong agreement between the in situ measured and retrieved <i<m<sub<g</sub<</i< (R<sup<2</sup< of 0.89), with mean and standard deviation (STD) values of 0.55 and 0.26 for the in situ measured <i<m<sub<g</sub<</i< and 0.57 and 0.19 for the retrieved <i<m<sub<g</sub<</i<, respectively. Phenological changes in crop water content were captured, with the highest values of <i<m<sub<g</sub<</i< obtained during the growth phase of the vegetation (i.e., when the water content of the plants and the biomass were increasing) and the lowest values when the vegetation turned fully senescent (i.e., when the water content of the plant was the lowest). Comparing in situ measured <i<m<sub<g</sub<</i< and VWC, we found their highest agreement with an R<sup<2</sup< of 0.95 after flowering (i.e., when the vegetation started to lose water) and their main differences with an R<sup<2</sup< of 0.21 during the vegetative growth of the wheat vegetation (i.e., where the <i<m<sub<g</sub<</i< was constant and VWC increased due to structural changes in vegetation). In addition, we performed a sensitivity analysis on the vegetation volume fraction (<i<δ</i<), an input parameter to the proposed approach which represents the volume percentage of solid plant material in air. This <i<δ</i<-parameter is shown to have a distinct impact on the thermal emission at L-band, but keeping <i<δ</i< constant during the growth cycle of the winter wheat appeared to be valid for these <i<m<sub<g</sub<</i< retrievals. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
20, p 2353 |
title_short |
Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth |
url |
https://doi.org/10.3390/rs11202353 https://doaj.org/article/15df8a5081a947828e6bd22e60e5c360 https://www.mdpi.com/2072-4292/11/20/2353 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Thomas Jagdhuber María Piles Anita Fink Jennifer Grant Harry Vereecken François Jonard |
author2Str |
Thomas Jagdhuber María Piles Anita Fink Jennifer Grant Harry Vereecken François Jonard |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs11202353 |
up_date |
2024-07-04T01:16:22.486Z |
_version_ |
1803609212179185664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ019871104</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503013502.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs11202353</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ019871104</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ15df8a5081a947828e6bd22e60e5c360</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Thomas Meyer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A considerable amount of water is stored in vegetation, especially in regions with high precipitation rates. Knowledge of the vegetation water status is essential to monitor changes in ecosystem health and to assess the vegetation influence on the water budget. In this study, we develop and validate an approach to estimate the gravimetric vegetation water content (<i<m<sub<g</sub<</i<), defined as the amount of water [kg] per wet biomass [kg], based on the attenuation of microwave radiation through vegetation. <i<m<sub<g</sub<</i< is expected to be more closely related to the actual water status of a plant than the area-based vegetation water content (VWC), which expresses the amount of water [kg] per unit area [m<sup<2</sup<]. We conducted the study at the field scale over an entire growth cycle of a winter wheat field. Tower-based L-band microwave measurements together with in situ measurements of vegetation properties (i.e., vegetation height, and <i<m<sub<g</sub<</i< for validation) were performed. The results indicated a strong agreement between the in situ measured and retrieved <i<m<sub<g</sub<</i< (R<sup<2</sup< of 0.89), with mean and standard deviation (STD) values of 0.55 and 0.26 for the in situ measured <i<m<sub<g</sub<</i< and 0.57 and 0.19 for the retrieved <i<m<sub<g</sub<</i<, respectively. Phenological changes in crop water content were captured, with the highest values of <i<m<sub<g</sub<</i< obtained during the growth phase of the vegetation (i.e., when the water content of the plants and the biomass were increasing) and the lowest values when the vegetation turned fully senescent (i.e., when the water content of the plant was the lowest). Comparing in situ measured <i<m<sub<g</sub<</i< and VWC, we found their highest agreement with an R<sup<2</sup< of 0.95 after flowering (i.e., when the vegetation started to lose water) and their main differences with an R<sup<2</sup< of 0.21 during the vegetative growth of the wheat vegetation (i.e., where the <i<m<sub<g</sub<</i< was constant and VWC increased due to structural changes in vegetation). In addition, we performed a sensitivity analysis on the vegetation volume fraction (<i<δ</i<), an input parameter to the proposed approach which represents the volume percentage of solid plant material in air. This <i<δ</i<-parameter is shown to have a distinct impact on the thermal emission at L-band, but keeping <i<δ</i< constant during the growth cycle of the winter wheat appeared to be valid for these <i<m<sub<g</sub<</i< retrievals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gravimetric vegetation water content</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vegetation volume fraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vegetation optical depth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">winter wheat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smap</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">l-band</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas Jagdhuber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">María Piles</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anita Fink</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jennifer Grant</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Harry Vereecken</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">François Jonard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">11(2019), 20, p 2353</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:20, p 2353</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs11202353</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/15df8a5081a947828e6bd22e60e5c360</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/11/20/2353</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2019</subfield><subfield code="e">20, p 2353</subfield></datafield></record></collection>
|
score |
7.3999033 |