Predicting Runoff Chloride Concentrations in Suburban Watersheds Using an Artificial Neural Network (ANN)
Road salts in stormwater runoff, from both urban and suburban areas, are of concern to many. Chloride-based deicers [i.e., sodium chloride (NaCl), magnesium chloride (MgCl<sub<2</sub<), and calcium chloride (CaCl<sub<2</sub<)], dissolve in runoff, travel downstream in the aqu...
Ausführliche Beschreibung
Autor*in: |
Khurshid Jahan [verfasserIn] Soni M. Pradhanang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Hydrology - MDPI AG, 2015, 7(2020), 4, p 80 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2020 ; number:4, p 80 |
Links: |
---|
DOI / URN: |
10.3390/hydrology7040080 |
---|
Katalog-ID: |
DOAJ020252277 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ020252277 | ||
003 | DE-627 | ||
005 | 20240412211851.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/hydrology7040080 |2 doi | |
035 | |a (DE-627)DOAJ020252277 | ||
035 | |a (DE-599)DOAJ7c6162f4596345b498995d8d7e9569ea | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Khurshid Jahan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Predicting Runoff Chloride Concentrations in Suburban Watersheds Using an Artificial Neural Network (ANN) |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Road salts in stormwater runoff, from both urban and suburban areas, are of concern to many. Chloride-based deicers [i.e., sodium chloride (NaCl), magnesium chloride (MgCl<sub<2</sub<), and calcium chloride (CaCl<sub<2</sub<)], dissolve in runoff, travel downstream in the aqueous phase, percolate into soils, and leach into groundwater. In this study, data obtained from stormwater runoff events were used to predict chloride concentrations and seasonal impacts at different sites within a suburban watershed. Water quality data for 42 rainfall events (2016–2019) greater than 12.7 mm (0.5 inches) were used. An artificial neural network (ANN) model was developed, using measured rainfall volume, turbidity, total suspended solids (TSS), dissolved organic carbon (DOC), sodium, chloride, and total nitrate concentrations. Water quality data were trained using the Levenberg-Marquardt back-propagation algorithm. The model was then applied to six different sites. The new ANN model proved accurate in predicting values. This study illustrates that road salt and deicers are the prime cause of high chloride concentrations in runoff during winter and spring, threatening the aquatic environment. | ||
650 | 4 | |a stormwater | |
650 | 4 | |a artificial neural network (ANN) | |
650 | 4 | |a water quality | |
650 | 4 | |a road salts | |
650 | 4 | |a deicers | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Soni M. Pradhanang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Hydrology |d MDPI AG, 2015 |g 7(2020), 4, p 80 |w (DE-627)791048659 |w (DE-600)2777964-6 |x 23065338 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2020 |g number:4, p 80 |
856 | 4 | 0 | |u https://doi.org/10.3390/hydrology7040080 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7c6162f4596345b498995d8d7e9569ea |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2306-5338/7/4/80 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2306-5338 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2020 |e 4, p 80 |
author_variant |
k j kj s m p smp |
---|---|
matchkey_str |
article:23065338:2020----::rdciguofhoieocnrtosnuubnaesessnaa |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.3390/hydrology7040080 doi (DE-627)DOAJ020252277 (DE-599)DOAJ7c6162f4596345b498995d8d7e9569ea DE-627 ger DE-627 rakwb eng Khurshid Jahan verfasserin aut Predicting Runoff Chloride Concentrations in Suburban Watersheds Using an Artificial Neural Network (ANN) 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Road salts in stormwater runoff, from both urban and suburban areas, are of concern to many. Chloride-based deicers [i.e., sodium chloride (NaCl), magnesium chloride (MgCl<sub<2</sub<), and calcium chloride (CaCl<sub<2</sub<)], dissolve in runoff, travel downstream in the aqueous phase, percolate into soils, and leach into groundwater. In this study, data obtained from stormwater runoff events were used to predict chloride concentrations and seasonal impacts at different sites within a suburban watershed. Water quality data for 42 rainfall events (2016–2019) greater than 12.7 mm (0.5 inches) were used. An artificial neural network (ANN) model was developed, using measured rainfall volume, turbidity, total suspended solids (TSS), dissolved organic carbon (DOC), sodium, chloride, and total nitrate concentrations. Water quality data were trained using the Levenberg-Marquardt back-propagation algorithm. The model was then applied to six different sites. The new ANN model proved accurate in predicting values. This study illustrates that road salt and deicers are the prime cause of high chloride concentrations in runoff during winter and spring, threatening the aquatic environment. stormwater artificial neural network (ANN) water quality road salts deicers Science Q Soni M. Pradhanang verfasserin aut In Hydrology MDPI AG, 2015 7(2020), 4, p 80 (DE-627)791048659 (DE-600)2777964-6 23065338 nnns volume:7 year:2020 number:4, p 80 https://doi.org/10.3390/hydrology7040080 kostenfrei https://doaj.org/article/7c6162f4596345b498995d8d7e9569ea kostenfrei https://www.mdpi.com/2306-5338/7/4/80 kostenfrei https://doaj.org/toc/2306-5338 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 7 2020 4, p 80 |
spelling |
10.3390/hydrology7040080 doi (DE-627)DOAJ020252277 (DE-599)DOAJ7c6162f4596345b498995d8d7e9569ea DE-627 ger DE-627 rakwb eng Khurshid Jahan verfasserin aut Predicting Runoff Chloride Concentrations in Suburban Watersheds Using an Artificial Neural Network (ANN) 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Road salts in stormwater runoff, from both urban and suburban areas, are of concern to many. Chloride-based deicers [i.e., sodium chloride (NaCl), magnesium chloride (MgCl<sub<2</sub<), and calcium chloride (CaCl<sub<2</sub<)], dissolve in runoff, travel downstream in the aqueous phase, percolate into soils, and leach into groundwater. In this study, data obtained from stormwater runoff events were used to predict chloride concentrations and seasonal impacts at different sites within a suburban watershed. Water quality data for 42 rainfall events (2016–2019) greater than 12.7 mm (0.5 inches) were used. An artificial neural network (ANN) model was developed, using measured rainfall volume, turbidity, total suspended solids (TSS), dissolved organic carbon (DOC), sodium, chloride, and total nitrate concentrations. Water quality data were trained using the Levenberg-Marquardt back-propagation algorithm. The model was then applied to six different sites. The new ANN model proved accurate in predicting values. This study illustrates that road salt and deicers are the prime cause of high chloride concentrations in runoff during winter and spring, threatening the aquatic environment. stormwater artificial neural network (ANN) water quality road salts deicers Science Q Soni M. Pradhanang verfasserin aut In Hydrology MDPI AG, 2015 7(2020), 4, p 80 (DE-627)791048659 (DE-600)2777964-6 23065338 nnns volume:7 year:2020 number:4, p 80 https://doi.org/10.3390/hydrology7040080 kostenfrei https://doaj.org/article/7c6162f4596345b498995d8d7e9569ea kostenfrei https://www.mdpi.com/2306-5338/7/4/80 kostenfrei https://doaj.org/toc/2306-5338 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 7 2020 4, p 80 |
allfields_unstemmed |
10.3390/hydrology7040080 doi (DE-627)DOAJ020252277 (DE-599)DOAJ7c6162f4596345b498995d8d7e9569ea DE-627 ger DE-627 rakwb eng Khurshid Jahan verfasserin aut Predicting Runoff Chloride Concentrations in Suburban Watersheds Using an Artificial Neural Network (ANN) 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Road salts in stormwater runoff, from both urban and suburban areas, are of concern to many. Chloride-based deicers [i.e., sodium chloride (NaCl), magnesium chloride (MgCl<sub<2</sub<), and calcium chloride (CaCl<sub<2</sub<)], dissolve in runoff, travel downstream in the aqueous phase, percolate into soils, and leach into groundwater. In this study, data obtained from stormwater runoff events were used to predict chloride concentrations and seasonal impacts at different sites within a suburban watershed. Water quality data for 42 rainfall events (2016–2019) greater than 12.7 mm (0.5 inches) were used. An artificial neural network (ANN) model was developed, using measured rainfall volume, turbidity, total suspended solids (TSS), dissolved organic carbon (DOC), sodium, chloride, and total nitrate concentrations. Water quality data were trained using the Levenberg-Marquardt back-propagation algorithm. The model was then applied to six different sites. The new ANN model proved accurate in predicting values. This study illustrates that road salt and deicers are the prime cause of high chloride concentrations in runoff during winter and spring, threatening the aquatic environment. stormwater artificial neural network (ANN) water quality road salts deicers Science Q Soni M. Pradhanang verfasserin aut In Hydrology MDPI AG, 2015 7(2020), 4, p 80 (DE-627)791048659 (DE-600)2777964-6 23065338 nnns volume:7 year:2020 number:4, p 80 https://doi.org/10.3390/hydrology7040080 kostenfrei https://doaj.org/article/7c6162f4596345b498995d8d7e9569ea kostenfrei https://www.mdpi.com/2306-5338/7/4/80 kostenfrei https://doaj.org/toc/2306-5338 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 7 2020 4, p 80 |
allfieldsGer |
10.3390/hydrology7040080 doi (DE-627)DOAJ020252277 (DE-599)DOAJ7c6162f4596345b498995d8d7e9569ea DE-627 ger DE-627 rakwb eng Khurshid Jahan verfasserin aut Predicting Runoff Chloride Concentrations in Suburban Watersheds Using an Artificial Neural Network (ANN) 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Road salts in stormwater runoff, from both urban and suburban areas, are of concern to many. Chloride-based deicers [i.e., sodium chloride (NaCl), magnesium chloride (MgCl<sub<2</sub<), and calcium chloride (CaCl<sub<2</sub<)], dissolve in runoff, travel downstream in the aqueous phase, percolate into soils, and leach into groundwater. In this study, data obtained from stormwater runoff events were used to predict chloride concentrations and seasonal impacts at different sites within a suburban watershed. Water quality data for 42 rainfall events (2016–2019) greater than 12.7 mm (0.5 inches) were used. An artificial neural network (ANN) model was developed, using measured rainfall volume, turbidity, total suspended solids (TSS), dissolved organic carbon (DOC), sodium, chloride, and total nitrate concentrations. Water quality data were trained using the Levenberg-Marquardt back-propagation algorithm. The model was then applied to six different sites. The new ANN model proved accurate in predicting values. This study illustrates that road salt and deicers are the prime cause of high chloride concentrations in runoff during winter and spring, threatening the aquatic environment. stormwater artificial neural network (ANN) water quality road salts deicers Science Q Soni M. Pradhanang verfasserin aut In Hydrology MDPI AG, 2015 7(2020), 4, p 80 (DE-627)791048659 (DE-600)2777964-6 23065338 nnns volume:7 year:2020 number:4, p 80 https://doi.org/10.3390/hydrology7040080 kostenfrei https://doaj.org/article/7c6162f4596345b498995d8d7e9569ea kostenfrei https://www.mdpi.com/2306-5338/7/4/80 kostenfrei https://doaj.org/toc/2306-5338 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 7 2020 4, p 80 |
allfieldsSound |
10.3390/hydrology7040080 doi (DE-627)DOAJ020252277 (DE-599)DOAJ7c6162f4596345b498995d8d7e9569ea DE-627 ger DE-627 rakwb eng Khurshid Jahan verfasserin aut Predicting Runoff Chloride Concentrations in Suburban Watersheds Using an Artificial Neural Network (ANN) 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Road salts in stormwater runoff, from both urban and suburban areas, are of concern to many. Chloride-based deicers [i.e., sodium chloride (NaCl), magnesium chloride (MgCl<sub<2</sub<), and calcium chloride (CaCl<sub<2</sub<)], dissolve in runoff, travel downstream in the aqueous phase, percolate into soils, and leach into groundwater. In this study, data obtained from stormwater runoff events were used to predict chloride concentrations and seasonal impacts at different sites within a suburban watershed. Water quality data for 42 rainfall events (2016–2019) greater than 12.7 mm (0.5 inches) were used. An artificial neural network (ANN) model was developed, using measured rainfall volume, turbidity, total suspended solids (TSS), dissolved organic carbon (DOC), sodium, chloride, and total nitrate concentrations. Water quality data were trained using the Levenberg-Marquardt back-propagation algorithm. The model was then applied to six different sites. The new ANN model proved accurate in predicting values. This study illustrates that road salt and deicers are the prime cause of high chloride concentrations in runoff during winter and spring, threatening the aquatic environment. stormwater artificial neural network (ANN) water quality road salts deicers Science Q Soni M. Pradhanang verfasserin aut In Hydrology MDPI AG, 2015 7(2020), 4, p 80 (DE-627)791048659 (DE-600)2777964-6 23065338 nnns volume:7 year:2020 number:4, p 80 https://doi.org/10.3390/hydrology7040080 kostenfrei https://doaj.org/article/7c6162f4596345b498995d8d7e9569ea kostenfrei https://www.mdpi.com/2306-5338/7/4/80 kostenfrei https://doaj.org/toc/2306-5338 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 7 2020 4, p 80 |
language |
English |
source |
In Hydrology 7(2020), 4, p 80 volume:7 year:2020 number:4, p 80 |
sourceStr |
In Hydrology 7(2020), 4, p 80 volume:7 year:2020 number:4, p 80 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
stormwater artificial neural network (ANN) water quality road salts deicers Science Q |
isfreeaccess_bool |
true |
container_title |
Hydrology |
authorswithroles_txt_mv |
Khurshid Jahan @@aut@@ Soni M. Pradhanang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
791048659 |
id |
DOAJ020252277 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ020252277</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412211851.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/hydrology7040080</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ020252277</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7c6162f4596345b498995d8d7e9569ea</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Khurshid Jahan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting Runoff Chloride Concentrations in Suburban Watersheds Using an Artificial Neural Network (ANN)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Road salts in stormwater runoff, from both urban and suburban areas, are of concern to many. Chloride-based deicers [i.e., sodium chloride (NaCl), magnesium chloride (MgCl<sub<2</sub<), and calcium chloride (CaCl<sub<2</sub<)], dissolve in runoff, travel downstream in the aqueous phase, percolate into soils, and leach into groundwater. In this study, data obtained from stormwater runoff events were used to predict chloride concentrations and seasonal impacts at different sites within a suburban watershed. Water quality data for 42 rainfall events (2016–2019) greater than 12.7 mm (0.5 inches) were used. An artificial neural network (ANN) model was developed, using measured rainfall volume, turbidity, total suspended solids (TSS), dissolved organic carbon (DOC), sodium, chloride, and total nitrate concentrations. Water quality data were trained using the Levenberg-Marquardt back-propagation algorithm. The model was then applied to six different sites. The new ANN model proved accurate in predicting values. This study illustrates that road salt and deicers are the prime cause of high chloride concentrations in runoff during winter and spring, threatening the aquatic environment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stormwater</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial neural network (ANN)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water quality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">road salts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deicers</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Soni M. Pradhanang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Hydrology</subfield><subfield code="d">MDPI AG, 2015</subfield><subfield code="g">7(2020), 4, p 80</subfield><subfield code="w">(DE-627)791048659</subfield><subfield code="w">(DE-600)2777964-6</subfield><subfield code="x">23065338</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4, p 80</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/hydrology7040080</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7c6162f4596345b498995d8d7e9569ea</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2306-5338/7/4/80</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2306-5338</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2020</subfield><subfield code="e">4, p 80</subfield></datafield></record></collection>
|
author |
Khurshid Jahan |
spellingShingle |
Khurshid Jahan misc stormwater misc artificial neural network (ANN) misc water quality misc road salts misc deicers misc Science misc Q Predicting Runoff Chloride Concentrations in Suburban Watersheds Using an Artificial Neural Network (ANN) |
authorStr |
Khurshid Jahan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)791048659 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
23065338 |
topic_title |
Predicting Runoff Chloride Concentrations in Suburban Watersheds Using an Artificial Neural Network (ANN) stormwater artificial neural network (ANN) water quality road salts deicers |
topic |
misc stormwater misc artificial neural network (ANN) misc water quality misc road salts misc deicers misc Science misc Q |
topic_unstemmed |
misc stormwater misc artificial neural network (ANN) misc water quality misc road salts misc deicers misc Science misc Q |
topic_browse |
misc stormwater misc artificial neural network (ANN) misc water quality misc road salts misc deicers misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Hydrology |
hierarchy_parent_id |
791048659 |
hierarchy_top_title |
Hydrology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)791048659 (DE-600)2777964-6 |
title |
Predicting Runoff Chloride Concentrations in Suburban Watersheds Using an Artificial Neural Network (ANN) |
ctrlnum |
(DE-627)DOAJ020252277 (DE-599)DOAJ7c6162f4596345b498995d8d7e9569ea |
title_full |
Predicting Runoff Chloride Concentrations in Suburban Watersheds Using an Artificial Neural Network (ANN) |
author_sort |
Khurshid Jahan |
journal |
Hydrology |
journalStr |
Hydrology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Khurshid Jahan Soni M. Pradhanang |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Khurshid Jahan |
doi_str_mv |
10.3390/hydrology7040080 |
author2-role |
verfasserin |
title_sort |
predicting runoff chloride concentrations in suburban watersheds using an artificial neural network (ann) |
title_auth |
Predicting Runoff Chloride Concentrations in Suburban Watersheds Using an Artificial Neural Network (ANN) |
abstract |
Road salts in stormwater runoff, from both urban and suburban areas, are of concern to many. Chloride-based deicers [i.e., sodium chloride (NaCl), magnesium chloride (MgCl<sub<2</sub<), and calcium chloride (CaCl<sub<2</sub<)], dissolve in runoff, travel downstream in the aqueous phase, percolate into soils, and leach into groundwater. In this study, data obtained from stormwater runoff events were used to predict chloride concentrations and seasonal impacts at different sites within a suburban watershed. Water quality data for 42 rainfall events (2016–2019) greater than 12.7 mm (0.5 inches) were used. An artificial neural network (ANN) model was developed, using measured rainfall volume, turbidity, total suspended solids (TSS), dissolved organic carbon (DOC), sodium, chloride, and total nitrate concentrations. Water quality data were trained using the Levenberg-Marquardt back-propagation algorithm. The model was then applied to six different sites. The new ANN model proved accurate in predicting values. This study illustrates that road salt and deicers are the prime cause of high chloride concentrations in runoff during winter and spring, threatening the aquatic environment. |
abstractGer |
Road salts in stormwater runoff, from both urban and suburban areas, are of concern to many. Chloride-based deicers [i.e., sodium chloride (NaCl), magnesium chloride (MgCl<sub<2</sub<), and calcium chloride (CaCl<sub<2</sub<)], dissolve in runoff, travel downstream in the aqueous phase, percolate into soils, and leach into groundwater. In this study, data obtained from stormwater runoff events were used to predict chloride concentrations and seasonal impacts at different sites within a suburban watershed. Water quality data for 42 rainfall events (2016–2019) greater than 12.7 mm (0.5 inches) were used. An artificial neural network (ANN) model was developed, using measured rainfall volume, turbidity, total suspended solids (TSS), dissolved organic carbon (DOC), sodium, chloride, and total nitrate concentrations. Water quality data were trained using the Levenberg-Marquardt back-propagation algorithm. The model was then applied to six different sites. The new ANN model proved accurate in predicting values. This study illustrates that road salt and deicers are the prime cause of high chloride concentrations in runoff during winter and spring, threatening the aquatic environment. |
abstract_unstemmed |
Road salts in stormwater runoff, from both urban and suburban areas, are of concern to many. Chloride-based deicers [i.e., sodium chloride (NaCl), magnesium chloride (MgCl<sub<2</sub<), and calcium chloride (CaCl<sub<2</sub<)], dissolve in runoff, travel downstream in the aqueous phase, percolate into soils, and leach into groundwater. In this study, data obtained from stormwater runoff events were used to predict chloride concentrations and seasonal impacts at different sites within a suburban watershed. Water quality data for 42 rainfall events (2016–2019) greater than 12.7 mm (0.5 inches) were used. An artificial neural network (ANN) model was developed, using measured rainfall volume, turbidity, total suspended solids (TSS), dissolved organic carbon (DOC), sodium, chloride, and total nitrate concentrations. Water quality data were trained using the Levenberg-Marquardt back-propagation algorithm. The model was then applied to six different sites. The new ANN model proved accurate in predicting values. This study illustrates that road salt and deicers are the prime cause of high chloride concentrations in runoff during winter and spring, threatening the aquatic environment. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
4, p 80 |
title_short |
Predicting Runoff Chloride Concentrations in Suburban Watersheds Using an Artificial Neural Network (ANN) |
url |
https://doi.org/10.3390/hydrology7040080 https://doaj.org/article/7c6162f4596345b498995d8d7e9569ea https://www.mdpi.com/2306-5338/7/4/80 https://doaj.org/toc/2306-5338 |
remote_bool |
true |
author2 |
Soni M. Pradhanang |
author2Str |
Soni M. Pradhanang |
ppnlink |
791048659 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/hydrology7040080 |
up_date |
2024-07-03T13:52:29.590Z |
_version_ |
1803566186068180992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ020252277</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412211851.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/hydrology7040080</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ020252277</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7c6162f4596345b498995d8d7e9569ea</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Khurshid Jahan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting Runoff Chloride Concentrations in Suburban Watersheds Using an Artificial Neural Network (ANN)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Road salts in stormwater runoff, from both urban and suburban areas, are of concern to many. Chloride-based deicers [i.e., sodium chloride (NaCl), magnesium chloride (MgCl<sub<2</sub<), and calcium chloride (CaCl<sub<2</sub<)], dissolve in runoff, travel downstream in the aqueous phase, percolate into soils, and leach into groundwater. In this study, data obtained from stormwater runoff events were used to predict chloride concentrations and seasonal impacts at different sites within a suburban watershed. Water quality data for 42 rainfall events (2016–2019) greater than 12.7 mm (0.5 inches) were used. An artificial neural network (ANN) model was developed, using measured rainfall volume, turbidity, total suspended solids (TSS), dissolved organic carbon (DOC), sodium, chloride, and total nitrate concentrations. Water quality data were trained using the Levenberg-Marquardt back-propagation algorithm. The model was then applied to six different sites. The new ANN model proved accurate in predicting values. This study illustrates that road salt and deicers are the prime cause of high chloride concentrations in runoff during winter and spring, threatening the aquatic environment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stormwater</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial neural network (ANN)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water quality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">road salts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deicers</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Soni M. Pradhanang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Hydrology</subfield><subfield code="d">MDPI AG, 2015</subfield><subfield code="g">7(2020), 4, p 80</subfield><subfield code="w">(DE-627)791048659</subfield><subfield code="w">(DE-600)2777964-6</subfield><subfield code="x">23065338</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4, p 80</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/hydrology7040080</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7c6162f4596345b498995d8d7e9569ea</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2306-5338/7/4/80</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2306-5338</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2020</subfield><subfield code="e">4, p 80</subfield></datafield></record></collection>
|
score |
7.4017677 |