Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing
The problems of social networks analysis and calculation of the resulting opinions of network agents are considered. Algorithms for identifying strong subgroups and satellites as well as for calculating some quantitative characteristics of a network are implemented by the R programming language and...
Ausführliche Beschreibung
Autor*in: |
M. T. Agieva [verfasserIn] A. V. Korolev [verfasserIn] G. A. Ougolnitsky [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Mathematics - MDPI AG, 2013, 8(2020), 9, p 1529 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; number:9, p 1529 |
Links: |
---|
DOI / URN: |
10.3390/math8091529 |
---|
Katalog-ID: |
DOAJ020366841 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ020366841 | ||
003 | DE-627 | ||
005 | 20240412214101.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/math8091529 |2 doi | |
035 | |a (DE-627)DOAJ020366841 | ||
035 | |a (DE-599)DOAJ4b3e4cf220b943ca9c95343a076d00c6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a M. T. Agieva |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The problems of social networks analysis and calculation of the resulting opinions of network agents are considered. Algorithms for identifying strong subgroups and satellites as well as for calculating some quantitative characteristics of a network are implemented by the R programming language and tested on model examples. A new algorithm for calculating the resulting opinions of agents is developed by the R toolkit and tested on model examples. It is important that control actions that exert impact to the opinions should be applied exclusively to the members of strong subgroups (opinion leaders of a target audience), since they fully determine the stable resulting opinions of all network members. This approach allows saving control resources without significantly affecting its efficiency. Much attention is paid to the original models of optimal control (single subject) and conflict control (several competing subjects) under the assumption that the members of strong subgroups (opinion leaders) are already identified at the previous stage of network analysis. Models of optimal opinion control on networks are constructed and investigated by computer simulations using the author’s method of qualitatively representative scenarios. Differential game-based models of opinion control on networks with budget constraints in the form of equalities and inequalities are constructed and analytically investigated. All used notions, approaches and results of this paper are interpreted in terms of marketing problems. | ||
650 | 4 | |a computer simulation | |
650 | 4 | |a difference games | |
650 | 4 | |a optimal control theory | |
650 | 4 | |a social networks | |
653 | 0 | |a Mathematics | |
700 | 0 | |a A. V. Korolev |e verfasserin |4 aut | |
700 | 0 | |a G. A. Ougolnitsky |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Mathematics |d MDPI AG, 2013 |g 8(2020), 9, p 1529 |w (DE-627)737287764 |w (DE-600)2704244-3 |x 22277390 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g number:9, p 1529 |
856 | 4 | 0 | |u https://doi.org/10.3390/math8091529 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4b3e4cf220b943ca9c95343a076d00c6 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-7390/8/9/1529 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-7390 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |e 9, p 1529 |
author_variant |
m t a mta a v k avk g a o gao |
---|---|
matchkey_str |
article:22277390:2020----::oeignsmltooipcadotoiscantokwta |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QA |
publishDate |
2020 |
allfields |
10.3390/math8091529 doi (DE-627)DOAJ020366841 (DE-599)DOAJ4b3e4cf220b943ca9c95343a076d00c6 DE-627 ger DE-627 rakwb eng QA1-939 M. T. Agieva verfasserin aut Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The problems of social networks analysis and calculation of the resulting opinions of network agents are considered. Algorithms for identifying strong subgroups and satellites as well as for calculating some quantitative characteristics of a network are implemented by the R programming language and tested on model examples. A new algorithm for calculating the resulting opinions of agents is developed by the R toolkit and tested on model examples. It is important that control actions that exert impact to the opinions should be applied exclusively to the members of strong subgroups (opinion leaders of a target audience), since they fully determine the stable resulting opinions of all network members. This approach allows saving control resources without significantly affecting its efficiency. Much attention is paid to the original models of optimal control (single subject) and conflict control (several competing subjects) under the assumption that the members of strong subgroups (opinion leaders) are already identified at the previous stage of network analysis. Models of optimal opinion control on networks are constructed and investigated by computer simulations using the author’s method of qualitatively representative scenarios. Differential game-based models of opinion control on networks with budget constraints in the form of equalities and inequalities are constructed and analytically investigated. All used notions, approaches and results of this paper are interpreted in terms of marketing problems. computer simulation difference games optimal control theory social networks Mathematics A. V. Korolev verfasserin aut G. A. Ougolnitsky verfasserin aut In Mathematics MDPI AG, 2013 8(2020), 9, p 1529 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:8 year:2020 number:9, p 1529 https://doi.org/10.3390/math8091529 kostenfrei https://doaj.org/article/4b3e4cf220b943ca9c95343a076d00c6 kostenfrei https://www.mdpi.com/2227-7390/8/9/1529 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 9, p 1529 |
spelling |
10.3390/math8091529 doi (DE-627)DOAJ020366841 (DE-599)DOAJ4b3e4cf220b943ca9c95343a076d00c6 DE-627 ger DE-627 rakwb eng QA1-939 M. T. Agieva verfasserin aut Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The problems of social networks analysis and calculation of the resulting opinions of network agents are considered. Algorithms for identifying strong subgroups and satellites as well as for calculating some quantitative characteristics of a network are implemented by the R programming language and tested on model examples. A new algorithm for calculating the resulting opinions of agents is developed by the R toolkit and tested on model examples. It is important that control actions that exert impact to the opinions should be applied exclusively to the members of strong subgroups (opinion leaders of a target audience), since they fully determine the stable resulting opinions of all network members. This approach allows saving control resources without significantly affecting its efficiency. Much attention is paid to the original models of optimal control (single subject) and conflict control (several competing subjects) under the assumption that the members of strong subgroups (opinion leaders) are already identified at the previous stage of network analysis. Models of optimal opinion control on networks are constructed and investigated by computer simulations using the author’s method of qualitatively representative scenarios. Differential game-based models of opinion control on networks with budget constraints in the form of equalities and inequalities are constructed and analytically investigated. All used notions, approaches and results of this paper are interpreted in terms of marketing problems. computer simulation difference games optimal control theory social networks Mathematics A. V. Korolev verfasserin aut G. A. Ougolnitsky verfasserin aut In Mathematics MDPI AG, 2013 8(2020), 9, p 1529 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:8 year:2020 number:9, p 1529 https://doi.org/10.3390/math8091529 kostenfrei https://doaj.org/article/4b3e4cf220b943ca9c95343a076d00c6 kostenfrei https://www.mdpi.com/2227-7390/8/9/1529 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 9, p 1529 |
allfields_unstemmed |
10.3390/math8091529 doi (DE-627)DOAJ020366841 (DE-599)DOAJ4b3e4cf220b943ca9c95343a076d00c6 DE-627 ger DE-627 rakwb eng QA1-939 M. T. Agieva verfasserin aut Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The problems of social networks analysis and calculation of the resulting opinions of network agents are considered. Algorithms for identifying strong subgroups and satellites as well as for calculating some quantitative characteristics of a network are implemented by the R programming language and tested on model examples. A new algorithm for calculating the resulting opinions of agents is developed by the R toolkit and tested on model examples. It is important that control actions that exert impact to the opinions should be applied exclusively to the members of strong subgroups (opinion leaders of a target audience), since they fully determine the stable resulting opinions of all network members. This approach allows saving control resources without significantly affecting its efficiency. Much attention is paid to the original models of optimal control (single subject) and conflict control (several competing subjects) under the assumption that the members of strong subgroups (opinion leaders) are already identified at the previous stage of network analysis. Models of optimal opinion control on networks are constructed and investigated by computer simulations using the author’s method of qualitatively representative scenarios. Differential game-based models of opinion control on networks with budget constraints in the form of equalities and inequalities are constructed and analytically investigated. All used notions, approaches and results of this paper are interpreted in terms of marketing problems. computer simulation difference games optimal control theory social networks Mathematics A. V. Korolev verfasserin aut G. A. Ougolnitsky verfasserin aut In Mathematics MDPI AG, 2013 8(2020), 9, p 1529 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:8 year:2020 number:9, p 1529 https://doi.org/10.3390/math8091529 kostenfrei https://doaj.org/article/4b3e4cf220b943ca9c95343a076d00c6 kostenfrei https://www.mdpi.com/2227-7390/8/9/1529 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 9, p 1529 |
allfieldsGer |
10.3390/math8091529 doi (DE-627)DOAJ020366841 (DE-599)DOAJ4b3e4cf220b943ca9c95343a076d00c6 DE-627 ger DE-627 rakwb eng QA1-939 M. T. Agieva verfasserin aut Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The problems of social networks analysis and calculation of the resulting opinions of network agents are considered. Algorithms for identifying strong subgroups and satellites as well as for calculating some quantitative characteristics of a network are implemented by the R programming language and tested on model examples. A new algorithm for calculating the resulting opinions of agents is developed by the R toolkit and tested on model examples. It is important that control actions that exert impact to the opinions should be applied exclusively to the members of strong subgroups (opinion leaders of a target audience), since they fully determine the stable resulting opinions of all network members. This approach allows saving control resources without significantly affecting its efficiency. Much attention is paid to the original models of optimal control (single subject) and conflict control (several competing subjects) under the assumption that the members of strong subgroups (opinion leaders) are already identified at the previous stage of network analysis. Models of optimal opinion control on networks are constructed and investigated by computer simulations using the author’s method of qualitatively representative scenarios. Differential game-based models of opinion control on networks with budget constraints in the form of equalities and inequalities are constructed and analytically investigated. All used notions, approaches and results of this paper are interpreted in terms of marketing problems. computer simulation difference games optimal control theory social networks Mathematics A. V. Korolev verfasserin aut G. A. Ougolnitsky verfasserin aut In Mathematics MDPI AG, 2013 8(2020), 9, p 1529 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:8 year:2020 number:9, p 1529 https://doi.org/10.3390/math8091529 kostenfrei https://doaj.org/article/4b3e4cf220b943ca9c95343a076d00c6 kostenfrei https://www.mdpi.com/2227-7390/8/9/1529 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 9, p 1529 |
allfieldsSound |
10.3390/math8091529 doi (DE-627)DOAJ020366841 (DE-599)DOAJ4b3e4cf220b943ca9c95343a076d00c6 DE-627 ger DE-627 rakwb eng QA1-939 M. T. Agieva verfasserin aut Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The problems of social networks analysis and calculation of the resulting opinions of network agents are considered. Algorithms for identifying strong subgroups and satellites as well as for calculating some quantitative characteristics of a network are implemented by the R programming language and tested on model examples. A new algorithm for calculating the resulting opinions of agents is developed by the R toolkit and tested on model examples. It is important that control actions that exert impact to the opinions should be applied exclusively to the members of strong subgroups (opinion leaders of a target audience), since they fully determine the stable resulting opinions of all network members. This approach allows saving control resources without significantly affecting its efficiency. Much attention is paid to the original models of optimal control (single subject) and conflict control (several competing subjects) under the assumption that the members of strong subgroups (opinion leaders) are already identified at the previous stage of network analysis. Models of optimal opinion control on networks are constructed and investigated by computer simulations using the author’s method of qualitatively representative scenarios. Differential game-based models of opinion control on networks with budget constraints in the form of equalities and inequalities are constructed and analytically investigated. All used notions, approaches and results of this paper are interpreted in terms of marketing problems. computer simulation difference games optimal control theory social networks Mathematics A. V. Korolev verfasserin aut G. A. Ougolnitsky verfasserin aut In Mathematics MDPI AG, 2013 8(2020), 9, p 1529 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:8 year:2020 number:9, p 1529 https://doi.org/10.3390/math8091529 kostenfrei https://doaj.org/article/4b3e4cf220b943ca9c95343a076d00c6 kostenfrei https://www.mdpi.com/2227-7390/8/9/1529 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 9, p 1529 |
language |
English |
source |
In Mathematics 8(2020), 9, p 1529 volume:8 year:2020 number:9, p 1529 |
sourceStr |
In Mathematics 8(2020), 9, p 1529 volume:8 year:2020 number:9, p 1529 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
computer simulation difference games optimal control theory social networks Mathematics |
isfreeaccess_bool |
true |
container_title |
Mathematics |
authorswithroles_txt_mv |
M. T. Agieva @@aut@@ A. V. Korolev @@aut@@ G. A. Ougolnitsky @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
737287764 |
id |
DOAJ020366841 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ020366841</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412214101.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/math8091529</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ020366841</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4b3e4cf220b943ca9c95343a076d00c6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M. T. Agieva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The problems of social networks analysis and calculation of the resulting opinions of network agents are considered. Algorithms for identifying strong subgroups and satellites as well as for calculating some quantitative characteristics of a network are implemented by the R programming language and tested on model examples. A new algorithm for calculating the resulting opinions of agents is developed by the R toolkit and tested on model examples. It is important that control actions that exert impact to the opinions should be applied exclusively to the members of strong subgroups (opinion leaders of a target audience), since they fully determine the stable resulting opinions of all network members. This approach allows saving control resources without significantly affecting its efficiency. Much attention is paid to the original models of optimal control (single subject) and conflict control (several competing subjects) under the assumption that the members of strong subgroups (opinion leaders) are already identified at the previous stage of network analysis. Models of optimal opinion control on networks are constructed and investigated by computer simulations using the author’s method of qualitatively representative scenarios. Differential game-based models of opinion control on networks with budget constraints in the form of equalities and inequalities are constructed and analytically investigated. All used notions, approaches and results of this paper are interpreted in terms of marketing problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">difference games</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimal control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">social networks</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. V. Korolev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">G. A. Ougolnitsky</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">8(2020), 9, p 1529</subfield><subfield code="w">(DE-627)737287764</subfield><subfield code="w">(DE-600)2704244-3</subfield><subfield code="x">22277390</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:9, p 1529</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/math8091529</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4b3e4cf220b943ca9c95343a076d00c6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7390/8/9/1529</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">9, p 1529</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
M. T. Agieva |
spellingShingle |
M. T. Agieva misc QA1-939 misc computer simulation misc difference games misc optimal control theory misc social networks misc Mathematics Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing |
authorStr |
M. T. Agieva |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287764 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
22277390 |
topic_title |
QA1-939 Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing computer simulation difference games optimal control theory social networks |
topic |
misc QA1-939 misc computer simulation misc difference games misc optimal control theory misc social networks misc Mathematics |
topic_unstemmed |
misc QA1-939 misc computer simulation misc difference games misc optimal control theory misc social networks misc Mathematics |
topic_browse |
misc QA1-939 misc computer simulation misc difference games misc optimal control theory misc social networks misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mathematics |
hierarchy_parent_id |
737287764 |
hierarchy_top_title |
Mathematics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287764 (DE-600)2704244-3 |
title |
Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing |
ctrlnum |
(DE-627)DOAJ020366841 (DE-599)DOAJ4b3e4cf220b943ca9c95343a076d00c6 |
title_full |
Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing |
author_sort |
M. T. Agieva |
journal |
Mathematics |
journalStr |
Mathematics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
M. T. Agieva A. V. Korolev G. A. Ougolnitsky |
container_volume |
8 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
M. T. Agieva |
doi_str_mv |
10.3390/math8091529 |
author2-role |
verfasserin |
title_sort |
modeling and simulation of impact and control in social networks with application to marketing |
callnumber |
QA1-939 |
title_auth |
Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing |
abstract |
The problems of social networks analysis and calculation of the resulting opinions of network agents are considered. Algorithms for identifying strong subgroups and satellites as well as for calculating some quantitative characteristics of a network are implemented by the R programming language and tested on model examples. A new algorithm for calculating the resulting opinions of agents is developed by the R toolkit and tested on model examples. It is important that control actions that exert impact to the opinions should be applied exclusively to the members of strong subgroups (opinion leaders of a target audience), since they fully determine the stable resulting opinions of all network members. This approach allows saving control resources without significantly affecting its efficiency. Much attention is paid to the original models of optimal control (single subject) and conflict control (several competing subjects) under the assumption that the members of strong subgroups (opinion leaders) are already identified at the previous stage of network analysis. Models of optimal opinion control on networks are constructed and investigated by computer simulations using the author’s method of qualitatively representative scenarios. Differential game-based models of opinion control on networks with budget constraints in the form of equalities and inequalities are constructed and analytically investigated. All used notions, approaches and results of this paper are interpreted in terms of marketing problems. |
abstractGer |
The problems of social networks analysis and calculation of the resulting opinions of network agents are considered. Algorithms for identifying strong subgroups and satellites as well as for calculating some quantitative characteristics of a network are implemented by the R programming language and tested on model examples. A new algorithm for calculating the resulting opinions of agents is developed by the R toolkit and tested on model examples. It is important that control actions that exert impact to the opinions should be applied exclusively to the members of strong subgroups (opinion leaders of a target audience), since they fully determine the stable resulting opinions of all network members. This approach allows saving control resources without significantly affecting its efficiency. Much attention is paid to the original models of optimal control (single subject) and conflict control (several competing subjects) under the assumption that the members of strong subgroups (opinion leaders) are already identified at the previous stage of network analysis. Models of optimal opinion control on networks are constructed and investigated by computer simulations using the author’s method of qualitatively representative scenarios. Differential game-based models of opinion control on networks with budget constraints in the form of equalities and inequalities are constructed and analytically investigated. All used notions, approaches and results of this paper are interpreted in terms of marketing problems. |
abstract_unstemmed |
The problems of social networks analysis and calculation of the resulting opinions of network agents are considered. Algorithms for identifying strong subgroups and satellites as well as for calculating some quantitative characteristics of a network are implemented by the R programming language and tested on model examples. A new algorithm for calculating the resulting opinions of agents is developed by the R toolkit and tested on model examples. It is important that control actions that exert impact to the opinions should be applied exclusively to the members of strong subgroups (opinion leaders of a target audience), since they fully determine the stable resulting opinions of all network members. This approach allows saving control resources without significantly affecting its efficiency. Much attention is paid to the original models of optimal control (single subject) and conflict control (several competing subjects) under the assumption that the members of strong subgroups (opinion leaders) are already identified at the previous stage of network analysis. Models of optimal opinion control on networks are constructed and investigated by computer simulations using the author’s method of qualitatively representative scenarios. Differential game-based models of opinion control on networks with budget constraints in the form of equalities and inequalities are constructed and analytically investigated. All used notions, approaches and results of this paper are interpreted in terms of marketing problems. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 1529 |
title_short |
Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing |
url |
https://doi.org/10.3390/math8091529 https://doaj.org/article/4b3e4cf220b943ca9c95343a076d00c6 https://www.mdpi.com/2227-7390/8/9/1529 https://doaj.org/toc/2227-7390 |
remote_bool |
true |
author2 |
A. V. Korolev G. A. Ougolnitsky |
author2Str |
A. V. Korolev G. A. Ougolnitsky |
ppnlink |
737287764 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/math8091529 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T14:32:21.182Z |
_version_ |
1803568693834153984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ020366841</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412214101.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/math8091529</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ020366841</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4b3e4cf220b943ca9c95343a076d00c6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M. T. Agieva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The problems of social networks analysis and calculation of the resulting opinions of network agents are considered. Algorithms for identifying strong subgroups and satellites as well as for calculating some quantitative characteristics of a network are implemented by the R programming language and tested on model examples. A new algorithm for calculating the resulting opinions of agents is developed by the R toolkit and tested on model examples. It is important that control actions that exert impact to the opinions should be applied exclusively to the members of strong subgroups (opinion leaders of a target audience), since they fully determine the stable resulting opinions of all network members. This approach allows saving control resources without significantly affecting its efficiency. Much attention is paid to the original models of optimal control (single subject) and conflict control (several competing subjects) under the assumption that the members of strong subgroups (opinion leaders) are already identified at the previous stage of network analysis. Models of optimal opinion control on networks are constructed and investigated by computer simulations using the author’s method of qualitatively representative scenarios. Differential game-based models of opinion control on networks with budget constraints in the form of equalities and inequalities are constructed and analytically investigated. All used notions, approaches and results of this paper are interpreted in terms of marketing problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">difference games</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimal control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">social networks</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. V. Korolev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">G. A. Ougolnitsky</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">8(2020), 9, p 1529</subfield><subfield code="w">(DE-627)737287764</subfield><subfield code="w">(DE-600)2704244-3</subfield><subfield code="x">22277390</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:9, p 1529</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/math8091529</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4b3e4cf220b943ca9c95343a076d00c6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7390/8/9/1529</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">9, p 1529</subfield></datafield></record></collection>
|
score |
7.4016542 |