Shear-induced Permeability Evolution of Sandstone Fractures
In underground coal mines, shear-induced changes in regional fluid flow are a major factor causing water inrushes from faults into working faces. Shear slip along preexisting fractures tends to be activated during hydraulic fracturing, and this movement can either enhance or diminish hydraulic fract...
Ausführliche Beschreibung
Autor*in: |
Hongwei Zhang [verfasserIn] Zhijun Wan [verfasserIn] Zijun Feng [verfasserIn] Jinwen Wu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Übergeordnetes Werk: |
In: Geofluids - Hindawi-Wiley, 2017, (2018) |
---|---|
Übergeordnetes Werk: |
year:2018 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1155/2018/2416481 |
---|
Katalog-ID: |
DOAJ020515561 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ020515561 | ||
003 | DE-627 | ||
005 | 20230501190919.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2018/2416481 |2 doi | |
035 | |a (DE-627)DOAJ020515561 | ||
035 | |a (DE-599)DOAJb71b69b311254964968bcd994f6fddfc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QE1-996.5 | |
100 | 0 | |a Hongwei Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Shear-induced Permeability Evolution of Sandstone Fractures |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In underground coal mines, shear-induced changes in regional fluid flow are a major factor causing water inrushes from faults into working faces. Shear slip along preexisting fractures tends to be activated during hydraulic fracturing, and this movement can either enhance or diminish hydraulic fracturing efficiency. To prevent water inrush disasters and further hydraulic fracturing, understanding the evolution of shear-induced permeability in fractures in sedimentary rock is very important. In this study, the evolution of shear-induced permeability in saw-cut sandstone fractures with three different types of surface roughness was investigated by conducting triaxial shear tests and examining the 3-D topography of the unsheared and sheared fracture surfaces. The results allow several important conclusions to be drawn. (1) The permeability of fractures follows a three-stage shear-displacement-dependent evolution. The permeability remains unchanged in the first stable stage. After that, permeability decreases sharply with increasing shear displacement. Finally, the permeability enters a second stable stage. (2) The shear stress versus shear-displacement curves can also be divided into three stages, namely, a stress adjustment stage, a stage of increasing stress, and a stable stage. During the experiments, the fractures always experienced stick-slip shear in the stable stage. The oscillations of the shear stress in the stick-slip stage had a higher frequency for fractures with rougher surfaces. In addition, the rougher surfaces exhibited a greater permeability drop after shearing than that shown by smoother fracture surfaces. (3) The 3-D scanning results imply that the coupled effects of grinding (plus scraping) and sealing lead to decreased permeability. During shearing, the fracture walls grind and scrape against each other resulting in partial flattening of the fracture surface and the production of fault gouge in the fracture. This leads in turn to the flow pathways being partially sealed by crushed mineral grains. | ||
653 | 0 | |a Geology | |
700 | 0 | |a Zhijun Wan |e verfasserin |4 aut | |
700 | 0 | |a Zijun Feng |e verfasserin |4 aut | |
700 | 0 | |a Jinwen Wu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Geofluids |d Hindawi-Wiley, 2017 |g (2018) |w (DE-627)328185639 |w (DE-600)2045012-6 |x 14688123 |7 nnns |
773 | 1 | 8 | |g year:2018 |
856 | 4 | 0 | |u https://doi.org/10.1155/2018/2416481 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b71b69b311254964968bcd994f6fddfc |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1155/2018/2416481 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1468-8115 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1468-8123 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2018 |
author_variant |
h z hz z w zw z f zf j w jw |
---|---|
matchkey_str |
article:14688123:2018----::haidcdemaiiyvltoosn |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
QE |
publishDate |
2018 |
allfields |
10.1155/2018/2416481 doi (DE-627)DOAJ020515561 (DE-599)DOAJb71b69b311254964968bcd994f6fddfc DE-627 ger DE-627 rakwb eng QE1-996.5 Hongwei Zhang verfasserin aut Shear-induced Permeability Evolution of Sandstone Fractures 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In underground coal mines, shear-induced changes in regional fluid flow are a major factor causing water inrushes from faults into working faces. Shear slip along preexisting fractures tends to be activated during hydraulic fracturing, and this movement can either enhance or diminish hydraulic fracturing efficiency. To prevent water inrush disasters and further hydraulic fracturing, understanding the evolution of shear-induced permeability in fractures in sedimentary rock is very important. In this study, the evolution of shear-induced permeability in saw-cut sandstone fractures with three different types of surface roughness was investigated by conducting triaxial shear tests and examining the 3-D topography of the unsheared and sheared fracture surfaces. The results allow several important conclusions to be drawn. (1) The permeability of fractures follows a three-stage shear-displacement-dependent evolution. The permeability remains unchanged in the first stable stage. After that, permeability decreases sharply with increasing shear displacement. Finally, the permeability enters a second stable stage. (2) The shear stress versus shear-displacement curves can also be divided into three stages, namely, a stress adjustment stage, a stage of increasing stress, and a stable stage. During the experiments, the fractures always experienced stick-slip shear in the stable stage. The oscillations of the shear stress in the stick-slip stage had a higher frequency for fractures with rougher surfaces. In addition, the rougher surfaces exhibited a greater permeability drop after shearing than that shown by smoother fracture surfaces. (3) The 3-D scanning results imply that the coupled effects of grinding (plus scraping) and sealing lead to decreased permeability. During shearing, the fracture walls grind and scrape against each other resulting in partial flattening of the fracture surface and the production of fault gouge in the fracture. This leads in turn to the flow pathways being partially sealed by crushed mineral grains. Geology Zhijun Wan verfasserin aut Zijun Feng verfasserin aut Jinwen Wu verfasserin aut In Geofluids Hindawi-Wiley, 2017 (2018) (DE-627)328185639 (DE-600)2045012-6 14688123 nnns year:2018 https://doi.org/10.1155/2018/2416481 kostenfrei https://doaj.org/article/b71b69b311254964968bcd994f6fddfc kostenfrei http://dx.doi.org/10.1155/2018/2416481 kostenfrei https://doaj.org/toc/1468-8115 Journal toc kostenfrei https://doaj.org/toc/1468-8123 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 |
spelling |
10.1155/2018/2416481 doi (DE-627)DOAJ020515561 (DE-599)DOAJb71b69b311254964968bcd994f6fddfc DE-627 ger DE-627 rakwb eng QE1-996.5 Hongwei Zhang verfasserin aut Shear-induced Permeability Evolution of Sandstone Fractures 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In underground coal mines, shear-induced changes in regional fluid flow are a major factor causing water inrushes from faults into working faces. Shear slip along preexisting fractures tends to be activated during hydraulic fracturing, and this movement can either enhance or diminish hydraulic fracturing efficiency. To prevent water inrush disasters and further hydraulic fracturing, understanding the evolution of shear-induced permeability in fractures in sedimentary rock is very important. In this study, the evolution of shear-induced permeability in saw-cut sandstone fractures with three different types of surface roughness was investigated by conducting triaxial shear tests and examining the 3-D topography of the unsheared and sheared fracture surfaces. The results allow several important conclusions to be drawn. (1) The permeability of fractures follows a three-stage shear-displacement-dependent evolution. The permeability remains unchanged in the first stable stage. After that, permeability decreases sharply with increasing shear displacement. Finally, the permeability enters a second stable stage. (2) The shear stress versus shear-displacement curves can also be divided into three stages, namely, a stress adjustment stage, a stage of increasing stress, and a stable stage. During the experiments, the fractures always experienced stick-slip shear in the stable stage. The oscillations of the shear stress in the stick-slip stage had a higher frequency for fractures with rougher surfaces. In addition, the rougher surfaces exhibited a greater permeability drop after shearing than that shown by smoother fracture surfaces. (3) The 3-D scanning results imply that the coupled effects of grinding (plus scraping) and sealing lead to decreased permeability. During shearing, the fracture walls grind and scrape against each other resulting in partial flattening of the fracture surface and the production of fault gouge in the fracture. This leads in turn to the flow pathways being partially sealed by crushed mineral grains. Geology Zhijun Wan verfasserin aut Zijun Feng verfasserin aut Jinwen Wu verfasserin aut In Geofluids Hindawi-Wiley, 2017 (2018) (DE-627)328185639 (DE-600)2045012-6 14688123 nnns year:2018 https://doi.org/10.1155/2018/2416481 kostenfrei https://doaj.org/article/b71b69b311254964968bcd994f6fddfc kostenfrei http://dx.doi.org/10.1155/2018/2416481 kostenfrei https://doaj.org/toc/1468-8115 Journal toc kostenfrei https://doaj.org/toc/1468-8123 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 |
allfields_unstemmed |
10.1155/2018/2416481 doi (DE-627)DOAJ020515561 (DE-599)DOAJb71b69b311254964968bcd994f6fddfc DE-627 ger DE-627 rakwb eng QE1-996.5 Hongwei Zhang verfasserin aut Shear-induced Permeability Evolution of Sandstone Fractures 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In underground coal mines, shear-induced changes in regional fluid flow are a major factor causing water inrushes from faults into working faces. Shear slip along preexisting fractures tends to be activated during hydraulic fracturing, and this movement can either enhance or diminish hydraulic fracturing efficiency. To prevent water inrush disasters and further hydraulic fracturing, understanding the evolution of shear-induced permeability in fractures in sedimentary rock is very important. In this study, the evolution of shear-induced permeability in saw-cut sandstone fractures with three different types of surface roughness was investigated by conducting triaxial shear tests and examining the 3-D topography of the unsheared and sheared fracture surfaces. The results allow several important conclusions to be drawn. (1) The permeability of fractures follows a three-stage shear-displacement-dependent evolution. The permeability remains unchanged in the first stable stage. After that, permeability decreases sharply with increasing shear displacement. Finally, the permeability enters a second stable stage. (2) The shear stress versus shear-displacement curves can also be divided into three stages, namely, a stress adjustment stage, a stage of increasing stress, and a stable stage. During the experiments, the fractures always experienced stick-slip shear in the stable stage. The oscillations of the shear stress in the stick-slip stage had a higher frequency for fractures with rougher surfaces. In addition, the rougher surfaces exhibited a greater permeability drop after shearing than that shown by smoother fracture surfaces. (3) The 3-D scanning results imply that the coupled effects of grinding (plus scraping) and sealing lead to decreased permeability. During shearing, the fracture walls grind and scrape against each other resulting in partial flattening of the fracture surface and the production of fault gouge in the fracture. This leads in turn to the flow pathways being partially sealed by crushed mineral grains. Geology Zhijun Wan verfasserin aut Zijun Feng verfasserin aut Jinwen Wu verfasserin aut In Geofluids Hindawi-Wiley, 2017 (2018) (DE-627)328185639 (DE-600)2045012-6 14688123 nnns year:2018 https://doi.org/10.1155/2018/2416481 kostenfrei https://doaj.org/article/b71b69b311254964968bcd994f6fddfc kostenfrei http://dx.doi.org/10.1155/2018/2416481 kostenfrei https://doaj.org/toc/1468-8115 Journal toc kostenfrei https://doaj.org/toc/1468-8123 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 |
allfieldsGer |
10.1155/2018/2416481 doi (DE-627)DOAJ020515561 (DE-599)DOAJb71b69b311254964968bcd994f6fddfc DE-627 ger DE-627 rakwb eng QE1-996.5 Hongwei Zhang verfasserin aut Shear-induced Permeability Evolution of Sandstone Fractures 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In underground coal mines, shear-induced changes in regional fluid flow are a major factor causing water inrushes from faults into working faces. Shear slip along preexisting fractures tends to be activated during hydraulic fracturing, and this movement can either enhance or diminish hydraulic fracturing efficiency. To prevent water inrush disasters and further hydraulic fracturing, understanding the evolution of shear-induced permeability in fractures in sedimentary rock is very important. In this study, the evolution of shear-induced permeability in saw-cut sandstone fractures with three different types of surface roughness was investigated by conducting triaxial shear tests and examining the 3-D topography of the unsheared and sheared fracture surfaces. The results allow several important conclusions to be drawn. (1) The permeability of fractures follows a three-stage shear-displacement-dependent evolution. The permeability remains unchanged in the first stable stage. After that, permeability decreases sharply with increasing shear displacement. Finally, the permeability enters a second stable stage. (2) The shear stress versus shear-displacement curves can also be divided into three stages, namely, a stress adjustment stage, a stage of increasing stress, and a stable stage. During the experiments, the fractures always experienced stick-slip shear in the stable stage. The oscillations of the shear stress in the stick-slip stage had a higher frequency for fractures with rougher surfaces. In addition, the rougher surfaces exhibited a greater permeability drop after shearing than that shown by smoother fracture surfaces. (3) The 3-D scanning results imply that the coupled effects of grinding (plus scraping) and sealing lead to decreased permeability. During shearing, the fracture walls grind and scrape against each other resulting in partial flattening of the fracture surface and the production of fault gouge in the fracture. This leads in turn to the flow pathways being partially sealed by crushed mineral grains. Geology Zhijun Wan verfasserin aut Zijun Feng verfasserin aut Jinwen Wu verfasserin aut In Geofluids Hindawi-Wiley, 2017 (2018) (DE-627)328185639 (DE-600)2045012-6 14688123 nnns year:2018 https://doi.org/10.1155/2018/2416481 kostenfrei https://doaj.org/article/b71b69b311254964968bcd994f6fddfc kostenfrei http://dx.doi.org/10.1155/2018/2416481 kostenfrei https://doaj.org/toc/1468-8115 Journal toc kostenfrei https://doaj.org/toc/1468-8123 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 |
allfieldsSound |
10.1155/2018/2416481 doi (DE-627)DOAJ020515561 (DE-599)DOAJb71b69b311254964968bcd994f6fddfc DE-627 ger DE-627 rakwb eng QE1-996.5 Hongwei Zhang verfasserin aut Shear-induced Permeability Evolution of Sandstone Fractures 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In underground coal mines, shear-induced changes in regional fluid flow are a major factor causing water inrushes from faults into working faces. Shear slip along preexisting fractures tends to be activated during hydraulic fracturing, and this movement can either enhance or diminish hydraulic fracturing efficiency. To prevent water inrush disasters and further hydraulic fracturing, understanding the evolution of shear-induced permeability in fractures in sedimentary rock is very important. In this study, the evolution of shear-induced permeability in saw-cut sandstone fractures with three different types of surface roughness was investigated by conducting triaxial shear tests and examining the 3-D topography of the unsheared and sheared fracture surfaces. The results allow several important conclusions to be drawn. (1) The permeability of fractures follows a three-stage shear-displacement-dependent evolution. The permeability remains unchanged in the first stable stage. After that, permeability decreases sharply with increasing shear displacement. Finally, the permeability enters a second stable stage. (2) The shear stress versus shear-displacement curves can also be divided into three stages, namely, a stress adjustment stage, a stage of increasing stress, and a stable stage. During the experiments, the fractures always experienced stick-slip shear in the stable stage. The oscillations of the shear stress in the stick-slip stage had a higher frequency for fractures with rougher surfaces. In addition, the rougher surfaces exhibited a greater permeability drop after shearing than that shown by smoother fracture surfaces. (3) The 3-D scanning results imply that the coupled effects of grinding (plus scraping) and sealing lead to decreased permeability. During shearing, the fracture walls grind and scrape against each other resulting in partial flattening of the fracture surface and the production of fault gouge in the fracture. This leads in turn to the flow pathways being partially sealed by crushed mineral grains. Geology Zhijun Wan verfasserin aut Zijun Feng verfasserin aut Jinwen Wu verfasserin aut In Geofluids Hindawi-Wiley, 2017 (2018) (DE-627)328185639 (DE-600)2045012-6 14688123 nnns year:2018 https://doi.org/10.1155/2018/2416481 kostenfrei https://doaj.org/article/b71b69b311254964968bcd994f6fddfc kostenfrei http://dx.doi.org/10.1155/2018/2416481 kostenfrei https://doaj.org/toc/1468-8115 Journal toc kostenfrei https://doaj.org/toc/1468-8123 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 |
language |
English |
source |
In Geofluids (2018) year:2018 |
sourceStr |
In Geofluids (2018) year:2018 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Geology |
isfreeaccess_bool |
true |
container_title |
Geofluids |
authorswithroles_txt_mv |
Hongwei Zhang @@aut@@ Zhijun Wan @@aut@@ Zijun Feng @@aut@@ Jinwen Wu @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
328185639 |
id |
DOAJ020515561 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ020515561</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501190919.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2018/2416481</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ020515561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb71b69b311254964968bcd994f6fddfc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE1-996.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hongwei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shear-induced Permeability Evolution of Sandstone Fractures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In underground coal mines, shear-induced changes in regional fluid flow are a major factor causing water inrushes from faults into working faces. Shear slip along preexisting fractures tends to be activated during hydraulic fracturing, and this movement can either enhance or diminish hydraulic fracturing efficiency. To prevent water inrush disasters and further hydraulic fracturing, understanding the evolution of shear-induced permeability in fractures in sedimentary rock is very important. In this study, the evolution of shear-induced permeability in saw-cut sandstone fractures with three different types of surface roughness was investigated by conducting triaxial shear tests and examining the 3-D topography of the unsheared and sheared fracture surfaces. The results allow several important conclusions to be drawn. (1) The permeability of fractures follows a three-stage shear-displacement-dependent evolution. The permeability remains unchanged in the first stable stage. After that, permeability decreases sharply with increasing shear displacement. Finally, the permeability enters a second stable stage. (2) The shear stress versus shear-displacement curves can also be divided into three stages, namely, a stress adjustment stage, a stage of increasing stress, and a stable stage. During the experiments, the fractures always experienced stick-slip shear in the stable stage. The oscillations of the shear stress in the stick-slip stage had a higher frequency for fractures with rougher surfaces. In addition, the rougher surfaces exhibited a greater permeability drop after shearing than that shown by smoother fracture surfaces. (3) The 3-D scanning results imply that the coupled effects of grinding (plus scraping) and sealing lead to decreased permeability. During shearing, the fracture walls grind and scrape against each other resulting in partial flattening of the fracture surface and the production of fault gouge in the fracture. This leads in turn to the flow pathways being partially sealed by crushed mineral grains.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhijun Wan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zijun Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinwen Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geofluids</subfield><subfield code="d">Hindawi-Wiley, 2017</subfield><subfield code="g">(2018)</subfield><subfield code="w">(DE-627)328185639</subfield><subfield code="w">(DE-600)2045012-6</subfield><subfield code="x">14688123</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2018</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2018/2416481</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b71b69b311254964968bcd994f6fddfc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2018/2416481</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1468-8115</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1468-8123</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2018</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Hongwei Zhang |
spellingShingle |
Hongwei Zhang misc QE1-996.5 misc Geology Shear-induced Permeability Evolution of Sandstone Fractures |
authorStr |
Hongwei Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)328185639 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QE1-996 |
illustrated |
Not Illustrated |
issn |
14688123 |
topic_title |
QE1-996.5 Shear-induced Permeability Evolution of Sandstone Fractures |
topic |
misc QE1-996.5 misc Geology |
topic_unstemmed |
misc QE1-996.5 misc Geology |
topic_browse |
misc QE1-996.5 misc Geology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geofluids |
hierarchy_parent_id |
328185639 |
hierarchy_top_title |
Geofluids |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)328185639 (DE-600)2045012-6 |
title |
Shear-induced Permeability Evolution of Sandstone Fractures |
ctrlnum |
(DE-627)DOAJ020515561 (DE-599)DOAJb71b69b311254964968bcd994f6fddfc |
title_full |
Shear-induced Permeability Evolution of Sandstone Fractures |
author_sort |
Hongwei Zhang |
journal |
Geofluids |
journalStr |
Geofluids |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Hongwei Zhang Zhijun Wan Zijun Feng Jinwen Wu |
class |
QE1-996.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Hongwei Zhang |
doi_str_mv |
10.1155/2018/2416481 |
author2-role |
verfasserin |
title_sort |
shear-induced permeability evolution of sandstone fractures |
callnumber |
QE1-996.5 |
title_auth |
Shear-induced Permeability Evolution of Sandstone Fractures |
abstract |
In underground coal mines, shear-induced changes in regional fluid flow are a major factor causing water inrushes from faults into working faces. Shear slip along preexisting fractures tends to be activated during hydraulic fracturing, and this movement can either enhance or diminish hydraulic fracturing efficiency. To prevent water inrush disasters and further hydraulic fracturing, understanding the evolution of shear-induced permeability in fractures in sedimentary rock is very important. In this study, the evolution of shear-induced permeability in saw-cut sandstone fractures with three different types of surface roughness was investigated by conducting triaxial shear tests and examining the 3-D topography of the unsheared and sheared fracture surfaces. The results allow several important conclusions to be drawn. (1) The permeability of fractures follows a three-stage shear-displacement-dependent evolution. The permeability remains unchanged in the first stable stage. After that, permeability decreases sharply with increasing shear displacement. Finally, the permeability enters a second stable stage. (2) The shear stress versus shear-displacement curves can also be divided into three stages, namely, a stress adjustment stage, a stage of increasing stress, and a stable stage. During the experiments, the fractures always experienced stick-slip shear in the stable stage. The oscillations of the shear stress in the stick-slip stage had a higher frequency for fractures with rougher surfaces. In addition, the rougher surfaces exhibited a greater permeability drop after shearing than that shown by smoother fracture surfaces. (3) The 3-D scanning results imply that the coupled effects of grinding (plus scraping) and sealing lead to decreased permeability. During shearing, the fracture walls grind and scrape against each other resulting in partial flattening of the fracture surface and the production of fault gouge in the fracture. This leads in turn to the flow pathways being partially sealed by crushed mineral grains. |
abstractGer |
In underground coal mines, shear-induced changes in regional fluid flow are a major factor causing water inrushes from faults into working faces. Shear slip along preexisting fractures tends to be activated during hydraulic fracturing, and this movement can either enhance or diminish hydraulic fracturing efficiency. To prevent water inrush disasters and further hydraulic fracturing, understanding the evolution of shear-induced permeability in fractures in sedimentary rock is very important. In this study, the evolution of shear-induced permeability in saw-cut sandstone fractures with three different types of surface roughness was investigated by conducting triaxial shear tests and examining the 3-D topography of the unsheared and sheared fracture surfaces. The results allow several important conclusions to be drawn. (1) The permeability of fractures follows a three-stage shear-displacement-dependent evolution. The permeability remains unchanged in the first stable stage. After that, permeability decreases sharply with increasing shear displacement. Finally, the permeability enters a second stable stage. (2) The shear stress versus shear-displacement curves can also be divided into three stages, namely, a stress adjustment stage, a stage of increasing stress, and a stable stage. During the experiments, the fractures always experienced stick-slip shear in the stable stage. The oscillations of the shear stress in the stick-slip stage had a higher frequency for fractures with rougher surfaces. In addition, the rougher surfaces exhibited a greater permeability drop after shearing than that shown by smoother fracture surfaces. (3) The 3-D scanning results imply that the coupled effects of grinding (plus scraping) and sealing lead to decreased permeability. During shearing, the fracture walls grind and scrape against each other resulting in partial flattening of the fracture surface and the production of fault gouge in the fracture. This leads in turn to the flow pathways being partially sealed by crushed mineral grains. |
abstract_unstemmed |
In underground coal mines, shear-induced changes in regional fluid flow are a major factor causing water inrushes from faults into working faces. Shear slip along preexisting fractures tends to be activated during hydraulic fracturing, and this movement can either enhance or diminish hydraulic fracturing efficiency. To prevent water inrush disasters and further hydraulic fracturing, understanding the evolution of shear-induced permeability in fractures in sedimentary rock is very important. In this study, the evolution of shear-induced permeability in saw-cut sandstone fractures with three different types of surface roughness was investigated by conducting triaxial shear tests and examining the 3-D topography of the unsheared and sheared fracture surfaces. The results allow several important conclusions to be drawn. (1) The permeability of fractures follows a three-stage shear-displacement-dependent evolution. The permeability remains unchanged in the first stable stage. After that, permeability decreases sharply with increasing shear displacement. Finally, the permeability enters a second stable stage. (2) The shear stress versus shear-displacement curves can also be divided into three stages, namely, a stress adjustment stage, a stage of increasing stress, and a stable stage. During the experiments, the fractures always experienced stick-slip shear in the stable stage. The oscillations of the shear stress in the stick-slip stage had a higher frequency for fractures with rougher surfaces. In addition, the rougher surfaces exhibited a greater permeability drop after shearing than that shown by smoother fracture surfaces. (3) The 3-D scanning results imply that the coupled effects of grinding (plus scraping) and sealing lead to decreased permeability. During shearing, the fracture walls grind and scrape against each other resulting in partial flattening of the fracture surface and the production of fault gouge in the fracture. This leads in turn to the flow pathways being partially sealed by crushed mineral grains. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Shear-induced Permeability Evolution of Sandstone Fractures |
url |
https://doi.org/10.1155/2018/2416481 https://doaj.org/article/b71b69b311254964968bcd994f6fddfc http://dx.doi.org/10.1155/2018/2416481 https://doaj.org/toc/1468-8115 https://doaj.org/toc/1468-8123 |
remote_bool |
true |
author2 |
Zhijun Wan Zijun Feng Jinwen Wu |
author2Str |
Zhijun Wan Zijun Feng Jinwen Wu |
ppnlink |
328185639 |
callnumber-subject |
QE - Geology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2018/2416481 |
callnumber-a |
QE1-996.5 |
up_date |
2024-07-03T15:23:51.743Z |
_version_ |
1803571934524342272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ020515561</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501190919.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2018/2416481</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ020515561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb71b69b311254964968bcd994f6fddfc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE1-996.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hongwei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shear-induced Permeability Evolution of Sandstone Fractures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In underground coal mines, shear-induced changes in regional fluid flow are a major factor causing water inrushes from faults into working faces. Shear slip along preexisting fractures tends to be activated during hydraulic fracturing, and this movement can either enhance or diminish hydraulic fracturing efficiency. To prevent water inrush disasters and further hydraulic fracturing, understanding the evolution of shear-induced permeability in fractures in sedimentary rock is very important. In this study, the evolution of shear-induced permeability in saw-cut sandstone fractures with three different types of surface roughness was investigated by conducting triaxial shear tests and examining the 3-D topography of the unsheared and sheared fracture surfaces. The results allow several important conclusions to be drawn. (1) The permeability of fractures follows a three-stage shear-displacement-dependent evolution. The permeability remains unchanged in the first stable stage. After that, permeability decreases sharply with increasing shear displacement. Finally, the permeability enters a second stable stage. (2) The shear stress versus shear-displacement curves can also be divided into three stages, namely, a stress adjustment stage, a stage of increasing stress, and a stable stage. During the experiments, the fractures always experienced stick-slip shear in the stable stage. The oscillations of the shear stress in the stick-slip stage had a higher frequency for fractures with rougher surfaces. In addition, the rougher surfaces exhibited a greater permeability drop after shearing than that shown by smoother fracture surfaces. (3) The 3-D scanning results imply that the coupled effects of grinding (plus scraping) and sealing lead to decreased permeability. During shearing, the fracture walls grind and scrape against each other resulting in partial flattening of the fracture surface and the production of fault gouge in the fracture. This leads in turn to the flow pathways being partially sealed by crushed mineral grains.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhijun Wan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zijun Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinwen Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geofluids</subfield><subfield code="d">Hindawi-Wiley, 2017</subfield><subfield code="g">(2018)</subfield><subfield code="w">(DE-627)328185639</subfield><subfield code="w">(DE-600)2045012-6</subfield><subfield code="x">14688123</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2018</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2018/2416481</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b71b69b311254964968bcd994f6fddfc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2018/2416481</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1468-8115</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1468-8123</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2018</subfield></datafield></record></collection>
|
score |
7.4000044 |