Face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission
Two novel aggregation-induced delayed fluorescence materials (AIDF) FCP-BP-PXZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-phenoxazine-10-yl) phenyl] methane and FCP-BP-PTZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-penzothiazin-10-yl) phenyl] methane were synthesized. Experiments and m...
Ausführliche Beschreibung
Autor*in: |
Xiulan Wu [verfasserIn] Chengbin Gong [verfasserIn] Xin Jiang [verfasserIn] Jingran Gao [verfasserIn] Ming Li [verfasserIn] Rongxing He [verfasserIn] Ping Chen [verfasserIn] Wei Shen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Science: Advanced Materials and Devices - Elsevier, 2017, 7(2022), 2, Seite 100432- |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2022 ; number:2 ; pages:100432- |
Links: |
---|
DOI / URN: |
10.1016/j.jsamd.2022.100432 |
---|
Katalog-ID: |
DOAJ020673132 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ020673132 | ||
003 | DE-627 | ||
005 | 20230307041115.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jsamd.2022.100432 |2 doi | |
035 | |a (DE-627)DOAJ020673132 | ||
035 | |a (DE-599)DOAJf0ff8e0993ae438d8d269f8b00722dd7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
100 | 0 | |a Xiulan Wu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Two novel aggregation-induced delayed fluorescence materials (AIDF) FCP-BP-PXZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-phenoxazine-10-yl) phenyl] methane and FCP-BP-PTZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-penzothiazin-10-yl) phenyl] methane were synthesized. Experiments and molecular dynamics (MD) simulations revealed that FCP-BP-PXZ exhibits orderly face-to-face arrangement stacking mode, which inhibits non-radiation inactivation channel and reduces energy loss by restricting larger vibration and rotation of the molecule due to abundant intermolecular hydrogen bonds and strong intermolecular π-π interactions. FCP-BP-PTZ's performance was hampered by erratic relaxation aggregation. The maximal external quantum efficiency (EQEmax) of non-doped and doped organic light-emitting diodes (OLEDs) constructed on FCP-BP-PXZ was 11.2% and 18.2%, respectively. Furthermore, at a brightness of 1000 cd m−2, non-doped and doped devices had a low turn-on voltage of 3.0–3.5 V, with 2.0% and 3.3% efficiency roll-off, owing to the microsecond-scale delayed lifetime. The FCP-BP-PXZ-based non-doped device, in particular, achieved a brightness of 62,390 cd m−2, which was crucial in non-doped yellow OLEDs. | ||
650 | 4 | |a Thermally activated delayed fluorescence | |
650 | 4 | |a Face-to-face order-packed | |
650 | 4 | |a Aggregation-induced emission | |
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
700 | 0 | |a Chengbin Gong |e verfasserin |4 aut | |
700 | 0 | |a Xin Jiang |e verfasserin |4 aut | |
700 | 0 | |a Jingran Gao |e verfasserin |4 aut | |
700 | 0 | |a Ming Li |e verfasserin |4 aut | |
700 | 0 | |a Rongxing He |e verfasserin |4 aut | |
700 | 0 | |a Ping Chen |e verfasserin |4 aut | |
700 | 0 | |a Wei Shen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Science: Advanced Materials and Devices |d Elsevier, 2017 |g 7(2022), 2, Seite 100432- |w (DE-627)859729257 |w (DE-600)2856527-7 |x 24682179 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2022 |g number:2 |g pages:100432- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jsamd.2022.100432 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f0ff8e0993ae438d8d269f8b00722dd7 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2468217922000168 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2468-2179 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2022 |e 2 |h 100432- |
author_variant |
x w xw c g cg x j xj j g jg m l ml r h rh p c pc w s ws |
---|---|
matchkey_str |
article:24682179:2022----::aeoaerepcemdpooetemlyciaedlydloecneocivsrn |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.1016/j.jsamd.2022.100432 doi (DE-627)DOAJ020673132 (DE-599)DOAJf0ff8e0993ae438d8d269f8b00722dd7 DE-627 ger DE-627 rakwb eng TA401-492 Xiulan Wu verfasserin aut Face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Two novel aggregation-induced delayed fluorescence materials (AIDF) FCP-BP-PXZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-phenoxazine-10-yl) phenyl] methane and FCP-BP-PTZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-penzothiazin-10-yl) phenyl] methane were synthesized. Experiments and molecular dynamics (MD) simulations revealed that FCP-BP-PXZ exhibits orderly face-to-face arrangement stacking mode, which inhibits non-radiation inactivation channel and reduces energy loss by restricting larger vibration and rotation of the molecule due to abundant intermolecular hydrogen bonds and strong intermolecular π-π interactions. FCP-BP-PTZ's performance was hampered by erratic relaxation aggregation. The maximal external quantum efficiency (EQEmax) of non-doped and doped organic light-emitting diodes (OLEDs) constructed on FCP-BP-PXZ was 11.2% and 18.2%, respectively. Furthermore, at a brightness of 1000 cd m−2, non-doped and doped devices had a low turn-on voltage of 3.0–3.5 V, with 2.0% and 3.3% efficiency roll-off, owing to the microsecond-scale delayed lifetime. The FCP-BP-PXZ-based non-doped device, in particular, achieved a brightness of 62,390 cd m−2, which was crucial in non-doped yellow OLEDs. Thermally activated delayed fluorescence Face-to-face order-packed Aggregation-induced emission Materials of engineering and construction. Mechanics of materials Chengbin Gong verfasserin aut Xin Jiang verfasserin aut Jingran Gao verfasserin aut Ming Li verfasserin aut Rongxing He verfasserin aut Ping Chen verfasserin aut Wei Shen verfasserin aut In Journal of Science: Advanced Materials and Devices Elsevier, 2017 7(2022), 2, Seite 100432- (DE-627)859729257 (DE-600)2856527-7 24682179 nnns volume:7 year:2022 number:2 pages:100432- https://doi.org/10.1016/j.jsamd.2022.100432 kostenfrei https://doaj.org/article/f0ff8e0993ae438d8d269f8b00722dd7 kostenfrei http://www.sciencedirect.com/science/article/pii/S2468217922000168 kostenfrei https://doaj.org/toc/2468-2179 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 7 2022 2 100432- |
spelling |
10.1016/j.jsamd.2022.100432 doi (DE-627)DOAJ020673132 (DE-599)DOAJf0ff8e0993ae438d8d269f8b00722dd7 DE-627 ger DE-627 rakwb eng TA401-492 Xiulan Wu verfasserin aut Face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Two novel aggregation-induced delayed fluorescence materials (AIDF) FCP-BP-PXZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-phenoxazine-10-yl) phenyl] methane and FCP-BP-PTZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-penzothiazin-10-yl) phenyl] methane were synthesized. Experiments and molecular dynamics (MD) simulations revealed that FCP-BP-PXZ exhibits orderly face-to-face arrangement stacking mode, which inhibits non-radiation inactivation channel and reduces energy loss by restricting larger vibration and rotation of the molecule due to abundant intermolecular hydrogen bonds and strong intermolecular π-π interactions. FCP-BP-PTZ's performance was hampered by erratic relaxation aggregation. The maximal external quantum efficiency (EQEmax) of non-doped and doped organic light-emitting diodes (OLEDs) constructed on FCP-BP-PXZ was 11.2% and 18.2%, respectively. Furthermore, at a brightness of 1000 cd m−2, non-doped and doped devices had a low turn-on voltage of 3.0–3.5 V, with 2.0% and 3.3% efficiency roll-off, owing to the microsecond-scale delayed lifetime. The FCP-BP-PXZ-based non-doped device, in particular, achieved a brightness of 62,390 cd m−2, which was crucial in non-doped yellow OLEDs. Thermally activated delayed fluorescence Face-to-face order-packed Aggregation-induced emission Materials of engineering and construction. Mechanics of materials Chengbin Gong verfasserin aut Xin Jiang verfasserin aut Jingran Gao verfasserin aut Ming Li verfasserin aut Rongxing He verfasserin aut Ping Chen verfasserin aut Wei Shen verfasserin aut In Journal of Science: Advanced Materials and Devices Elsevier, 2017 7(2022), 2, Seite 100432- (DE-627)859729257 (DE-600)2856527-7 24682179 nnns volume:7 year:2022 number:2 pages:100432- https://doi.org/10.1016/j.jsamd.2022.100432 kostenfrei https://doaj.org/article/f0ff8e0993ae438d8d269f8b00722dd7 kostenfrei http://www.sciencedirect.com/science/article/pii/S2468217922000168 kostenfrei https://doaj.org/toc/2468-2179 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 7 2022 2 100432- |
allfields_unstemmed |
10.1016/j.jsamd.2022.100432 doi (DE-627)DOAJ020673132 (DE-599)DOAJf0ff8e0993ae438d8d269f8b00722dd7 DE-627 ger DE-627 rakwb eng TA401-492 Xiulan Wu verfasserin aut Face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Two novel aggregation-induced delayed fluorescence materials (AIDF) FCP-BP-PXZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-phenoxazine-10-yl) phenyl] methane and FCP-BP-PTZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-penzothiazin-10-yl) phenyl] methane were synthesized. Experiments and molecular dynamics (MD) simulations revealed that FCP-BP-PXZ exhibits orderly face-to-face arrangement stacking mode, which inhibits non-radiation inactivation channel and reduces energy loss by restricting larger vibration and rotation of the molecule due to abundant intermolecular hydrogen bonds and strong intermolecular π-π interactions. FCP-BP-PTZ's performance was hampered by erratic relaxation aggregation. The maximal external quantum efficiency (EQEmax) of non-doped and doped organic light-emitting diodes (OLEDs) constructed on FCP-BP-PXZ was 11.2% and 18.2%, respectively. Furthermore, at a brightness of 1000 cd m−2, non-doped and doped devices had a low turn-on voltage of 3.0–3.5 V, with 2.0% and 3.3% efficiency roll-off, owing to the microsecond-scale delayed lifetime. The FCP-BP-PXZ-based non-doped device, in particular, achieved a brightness of 62,390 cd m−2, which was crucial in non-doped yellow OLEDs. Thermally activated delayed fluorescence Face-to-face order-packed Aggregation-induced emission Materials of engineering and construction. Mechanics of materials Chengbin Gong verfasserin aut Xin Jiang verfasserin aut Jingran Gao verfasserin aut Ming Li verfasserin aut Rongxing He verfasserin aut Ping Chen verfasserin aut Wei Shen verfasserin aut In Journal of Science: Advanced Materials and Devices Elsevier, 2017 7(2022), 2, Seite 100432- (DE-627)859729257 (DE-600)2856527-7 24682179 nnns volume:7 year:2022 number:2 pages:100432- https://doi.org/10.1016/j.jsamd.2022.100432 kostenfrei https://doaj.org/article/f0ff8e0993ae438d8d269f8b00722dd7 kostenfrei http://www.sciencedirect.com/science/article/pii/S2468217922000168 kostenfrei https://doaj.org/toc/2468-2179 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 7 2022 2 100432- |
allfieldsGer |
10.1016/j.jsamd.2022.100432 doi (DE-627)DOAJ020673132 (DE-599)DOAJf0ff8e0993ae438d8d269f8b00722dd7 DE-627 ger DE-627 rakwb eng TA401-492 Xiulan Wu verfasserin aut Face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Two novel aggregation-induced delayed fluorescence materials (AIDF) FCP-BP-PXZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-phenoxazine-10-yl) phenyl] methane and FCP-BP-PTZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-penzothiazin-10-yl) phenyl] methane were synthesized. Experiments and molecular dynamics (MD) simulations revealed that FCP-BP-PXZ exhibits orderly face-to-face arrangement stacking mode, which inhibits non-radiation inactivation channel and reduces energy loss by restricting larger vibration and rotation of the molecule due to abundant intermolecular hydrogen bonds and strong intermolecular π-π interactions. FCP-BP-PTZ's performance was hampered by erratic relaxation aggregation. The maximal external quantum efficiency (EQEmax) of non-doped and doped organic light-emitting diodes (OLEDs) constructed on FCP-BP-PXZ was 11.2% and 18.2%, respectively. Furthermore, at a brightness of 1000 cd m−2, non-doped and doped devices had a low turn-on voltage of 3.0–3.5 V, with 2.0% and 3.3% efficiency roll-off, owing to the microsecond-scale delayed lifetime. The FCP-BP-PXZ-based non-doped device, in particular, achieved a brightness of 62,390 cd m−2, which was crucial in non-doped yellow OLEDs. Thermally activated delayed fluorescence Face-to-face order-packed Aggregation-induced emission Materials of engineering and construction. Mechanics of materials Chengbin Gong verfasserin aut Xin Jiang verfasserin aut Jingran Gao verfasserin aut Ming Li verfasserin aut Rongxing He verfasserin aut Ping Chen verfasserin aut Wei Shen verfasserin aut In Journal of Science: Advanced Materials and Devices Elsevier, 2017 7(2022), 2, Seite 100432- (DE-627)859729257 (DE-600)2856527-7 24682179 nnns volume:7 year:2022 number:2 pages:100432- https://doi.org/10.1016/j.jsamd.2022.100432 kostenfrei https://doaj.org/article/f0ff8e0993ae438d8d269f8b00722dd7 kostenfrei http://www.sciencedirect.com/science/article/pii/S2468217922000168 kostenfrei https://doaj.org/toc/2468-2179 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 7 2022 2 100432- |
allfieldsSound |
10.1016/j.jsamd.2022.100432 doi (DE-627)DOAJ020673132 (DE-599)DOAJf0ff8e0993ae438d8d269f8b00722dd7 DE-627 ger DE-627 rakwb eng TA401-492 Xiulan Wu verfasserin aut Face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Two novel aggregation-induced delayed fluorescence materials (AIDF) FCP-BP-PXZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-phenoxazine-10-yl) phenyl] methane and FCP-BP-PTZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-penzothiazin-10-yl) phenyl] methane were synthesized. Experiments and molecular dynamics (MD) simulations revealed that FCP-BP-PXZ exhibits orderly face-to-face arrangement stacking mode, which inhibits non-radiation inactivation channel and reduces energy loss by restricting larger vibration and rotation of the molecule due to abundant intermolecular hydrogen bonds and strong intermolecular π-π interactions. FCP-BP-PTZ's performance was hampered by erratic relaxation aggregation. The maximal external quantum efficiency (EQEmax) of non-doped and doped organic light-emitting diodes (OLEDs) constructed on FCP-BP-PXZ was 11.2% and 18.2%, respectively. Furthermore, at a brightness of 1000 cd m−2, non-doped and doped devices had a low turn-on voltage of 3.0–3.5 V, with 2.0% and 3.3% efficiency roll-off, owing to the microsecond-scale delayed lifetime. The FCP-BP-PXZ-based non-doped device, in particular, achieved a brightness of 62,390 cd m−2, which was crucial in non-doped yellow OLEDs. Thermally activated delayed fluorescence Face-to-face order-packed Aggregation-induced emission Materials of engineering and construction. Mechanics of materials Chengbin Gong verfasserin aut Xin Jiang verfasserin aut Jingran Gao verfasserin aut Ming Li verfasserin aut Rongxing He verfasserin aut Ping Chen verfasserin aut Wei Shen verfasserin aut In Journal of Science: Advanced Materials and Devices Elsevier, 2017 7(2022), 2, Seite 100432- (DE-627)859729257 (DE-600)2856527-7 24682179 nnns volume:7 year:2022 number:2 pages:100432- https://doi.org/10.1016/j.jsamd.2022.100432 kostenfrei https://doaj.org/article/f0ff8e0993ae438d8d269f8b00722dd7 kostenfrei http://www.sciencedirect.com/science/article/pii/S2468217922000168 kostenfrei https://doaj.org/toc/2468-2179 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 7 2022 2 100432- |
language |
English |
source |
In Journal of Science: Advanced Materials and Devices 7(2022), 2, Seite 100432- volume:7 year:2022 number:2 pages:100432- |
sourceStr |
In Journal of Science: Advanced Materials and Devices 7(2022), 2, Seite 100432- volume:7 year:2022 number:2 pages:100432- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Thermally activated delayed fluorescence Face-to-face order-packed Aggregation-induced emission Materials of engineering and construction. Mechanics of materials |
isfreeaccess_bool |
true |
container_title |
Journal of Science: Advanced Materials and Devices |
authorswithroles_txt_mv |
Xiulan Wu @@aut@@ Chengbin Gong @@aut@@ Xin Jiang @@aut@@ Jingran Gao @@aut@@ Ming Li @@aut@@ Rongxing He @@aut@@ Ping Chen @@aut@@ Wei Shen @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
859729257 |
id |
DOAJ020673132 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ020673132</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307041115.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jsamd.2022.100432</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ020673132</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf0ff8e0993ae438d8d269f8b00722dd7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiulan Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Two novel aggregation-induced delayed fluorescence materials (AIDF) FCP-BP-PXZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-phenoxazine-10-yl) phenyl] methane and FCP-BP-PTZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-penzothiazin-10-yl) phenyl] methane were synthesized. Experiments and molecular dynamics (MD) simulations revealed that FCP-BP-PXZ exhibits orderly face-to-face arrangement stacking mode, which inhibits non-radiation inactivation channel and reduces energy loss by restricting larger vibration and rotation of the molecule due to abundant intermolecular hydrogen bonds and strong intermolecular π-π interactions. FCP-BP-PTZ's performance was hampered by erratic relaxation aggregation. The maximal external quantum efficiency (EQEmax) of non-doped and doped organic light-emitting diodes (OLEDs) constructed on FCP-BP-PXZ was 11.2% and 18.2%, respectively. Furthermore, at a brightness of 1000 cd m−2, non-doped and doped devices had a low turn-on voltage of 3.0–3.5 V, with 2.0% and 3.3% efficiency roll-off, owing to the microsecond-scale delayed lifetime. The FCP-BP-PXZ-based non-doped device, in particular, achieved a brightness of 62,390 cd m−2, which was crucial in non-doped yellow OLEDs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermally activated delayed fluorescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Face-to-face order-packed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aggregation-induced emission</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengbin Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingran Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ming Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rongxing He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Science: Advanced Materials and Devices</subfield><subfield code="d">Elsevier, 2017</subfield><subfield code="g">7(2022), 2, Seite 100432-</subfield><subfield code="w">(DE-627)859729257</subfield><subfield code="w">(DE-600)2856527-7</subfield><subfield code="x">24682179</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:100432-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jsamd.2022.100432</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f0ff8e0993ae438d8d269f8b00722dd7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2468217922000168</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2468-2179</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="h">100432-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Xiulan Wu |
spellingShingle |
Xiulan Wu misc TA401-492 misc Thermally activated delayed fluorescence misc Face-to-face order-packed misc Aggregation-induced emission misc Materials of engineering and construction. Mechanics of materials Face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission |
authorStr |
Xiulan Wu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)859729257 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
24682179 |
topic_title |
TA401-492 Face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission Thermally activated delayed fluorescence Face-to-face order-packed Aggregation-induced emission |
topic |
misc TA401-492 misc Thermally activated delayed fluorescence misc Face-to-face order-packed misc Aggregation-induced emission misc Materials of engineering and construction. Mechanics of materials |
topic_unstemmed |
misc TA401-492 misc Thermally activated delayed fluorescence misc Face-to-face order-packed misc Aggregation-induced emission misc Materials of engineering and construction. Mechanics of materials |
topic_browse |
misc TA401-492 misc Thermally activated delayed fluorescence misc Face-to-face order-packed misc Aggregation-induced emission misc Materials of engineering and construction. Mechanics of materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Science: Advanced Materials and Devices |
hierarchy_parent_id |
859729257 |
hierarchy_top_title |
Journal of Science: Advanced Materials and Devices |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)859729257 (DE-600)2856527-7 |
title |
Face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission |
ctrlnum |
(DE-627)DOAJ020673132 (DE-599)DOAJf0ff8e0993ae438d8d269f8b00722dd7 |
title_full |
Face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission |
author_sort |
Xiulan Wu |
journal |
Journal of Science: Advanced Materials and Devices |
journalStr |
Journal of Science: Advanced Materials and Devices |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
100432 |
author_browse |
Xiulan Wu Chengbin Gong Xin Jiang Jingran Gao Ming Li Rongxing He Ping Chen Wei Shen |
container_volume |
7 |
class |
TA401-492 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiulan Wu |
doi_str_mv |
10.1016/j.jsamd.2022.100432 |
author2-role |
verfasserin |
title_sort |
face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission |
callnumber |
TA401-492 |
title_auth |
Face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission |
abstract |
Two novel aggregation-induced delayed fluorescence materials (AIDF) FCP-BP-PXZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-phenoxazine-10-yl) phenyl] methane and FCP-BP-PTZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-penzothiazin-10-yl) phenyl] methane were synthesized. Experiments and molecular dynamics (MD) simulations revealed that FCP-BP-PXZ exhibits orderly face-to-face arrangement stacking mode, which inhibits non-radiation inactivation channel and reduces energy loss by restricting larger vibration and rotation of the molecule due to abundant intermolecular hydrogen bonds and strong intermolecular π-π interactions. FCP-BP-PTZ's performance was hampered by erratic relaxation aggregation. The maximal external quantum efficiency (EQEmax) of non-doped and doped organic light-emitting diodes (OLEDs) constructed on FCP-BP-PXZ was 11.2% and 18.2%, respectively. Furthermore, at a brightness of 1000 cd m−2, non-doped and doped devices had a low turn-on voltage of 3.0–3.5 V, with 2.0% and 3.3% efficiency roll-off, owing to the microsecond-scale delayed lifetime. The FCP-BP-PXZ-based non-doped device, in particular, achieved a brightness of 62,390 cd m−2, which was crucial in non-doped yellow OLEDs. |
abstractGer |
Two novel aggregation-induced delayed fluorescence materials (AIDF) FCP-BP-PXZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-phenoxazine-10-yl) phenyl] methane and FCP-BP-PTZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-penzothiazin-10-yl) phenyl] methane were synthesized. Experiments and molecular dynamics (MD) simulations revealed that FCP-BP-PXZ exhibits orderly face-to-face arrangement stacking mode, which inhibits non-radiation inactivation channel and reduces energy loss by restricting larger vibration and rotation of the molecule due to abundant intermolecular hydrogen bonds and strong intermolecular π-π interactions. FCP-BP-PTZ's performance was hampered by erratic relaxation aggregation. The maximal external quantum efficiency (EQEmax) of non-doped and doped organic light-emitting diodes (OLEDs) constructed on FCP-BP-PXZ was 11.2% and 18.2%, respectively. Furthermore, at a brightness of 1000 cd m−2, non-doped and doped devices had a low turn-on voltage of 3.0–3.5 V, with 2.0% and 3.3% efficiency roll-off, owing to the microsecond-scale delayed lifetime. The FCP-BP-PXZ-based non-doped device, in particular, achieved a brightness of 62,390 cd m−2, which was crucial in non-doped yellow OLEDs. |
abstract_unstemmed |
Two novel aggregation-induced delayed fluorescence materials (AIDF) FCP-BP-PXZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-phenoxazine-10-yl) phenyl] methane and FCP-BP-PTZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-penzothiazin-10-yl) phenyl] methane were synthesized. Experiments and molecular dynamics (MD) simulations revealed that FCP-BP-PXZ exhibits orderly face-to-face arrangement stacking mode, which inhibits non-radiation inactivation channel and reduces energy loss by restricting larger vibration and rotation of the molecule due to abundant intermolecular hydrogen bonds and strong intermolecular π-π interactions. FCP-BP-PTZ's performance was hampered by erratic relaxation aggregation. The maximal external quantum efficiency (EQEmax) of non-doped and doped organic light-emitting diodes (OLEDs) constructed on FCP-BP-PXZ was 11.2% and 18.2%, respectively. Furthermore, at a brightness of 1000 cd m−2, non-doped and doped devices had a low turn-on voltage of 3.0–3.5 V, with 2.0% and 3.3% efficiency roll-off, owing to the microsecond-scale delayed lifetime. The FCP-BP-PXZ-based non-doped device, in particular, achieved a brightness of 62,390 cd m−2, which was crucial in non-doped yellow OLEDs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission |
url |
https://doi.org/10.1016/j.jsamd.2022.100432 https://doaj.org/article/f0ff8e0993ae438d8d269f8b00722dd7 http://www.sciencedirect.com/science/article/pii/S2468217922000168 https://doaj.org/toc/2468-2179 |
remote_bool |
true |
author2 |
Chengbin Gong Xin Jiang Jingran Gao Ming Li Rongxing He Ping Chen Wei Shen |
author2Str |
Chengbin Gong Xin Jiang Jingran Gao Ming Li Rongxing He Ping Chen Wei Shen |
ppnlink |
859729257 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jsamd.2022.100432 |
callnumber-a |
TA401-492 |
up_date |
2024-07-03T16:18:00.590Z |
_version_ |
1803575341182091264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ020673132</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307041115.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jsamd.2022.100432</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ020673132</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf0ff8e0993ae438d8d269f8b00722dd7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiulan Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Two novel aggregation-induced delayed fluorescence materials (AIDF) FCP-BP-PXZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-phenoxazine-10-yl) phenyl] methane and FCP-BP-PTZ [9- (4-Fluorophenyl) -9H-carbazole-3-yl] [4- (10H-penzothiazin-10-yl) phenyl] methane were synthesized. Experiments and molecular dynamics (MD) simulations revealed that FCP-BP-PXZ exhibits orderly face-to-face arrangement stacking mode, which inhibits non-radiation inactivation channel and reduces energy loss by restricting larger vibration and rotation of the molecule due to abundant intermolecular hydrogen bonds and strong intermolecular π-π interactions. FCP-BP-PTZ's performance was hampered by erratic relaxation aggregation. The maximal external quantum efficiency (EQEmax) of non-doped and doped organic light-emitting diodes (OLEDs) constructed on FCP-BP-PXZ was 11.2% and 18.2%, respectively. Furthermore, at a brightness of 1000 cd m−2, non-doped and doped devices had a low turn-on voltage of 3.0–3.5 V, with 2.0% and 3.3% efficiency roll-off, owing to the microsecond-scale delayed lifetime. The FCP-BP-PXZ-based non-doped device, in particular, achieved a brightness of 62,390 cd m−2, which was crucial in non-doped yellow OLEDs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermally activated delayed fluorescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Face-to-face order-packed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aggregation-induced emission</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengbin Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingran Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ming Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rongxing He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Science: Advanced Materials and Devices</subfield><subfield code="d">Elsevier, 2017</subfield><subfield code="g">7(2022), 2, Seite 100432-</subfield><subfield code="w">(DE-627)859729257</subfield><subfield code="w">(DE-600)2856527-7</subfield><subfield code="x">24682179</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:100432-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jsamd.2022.100432</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f0ff8e0993ae438d8d269f8b00722dd7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2468217922000168</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2468-2179</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="h">100432-</subfield></datafield></record></collection>
|
score |
7.401143 |