Water Consumption Pattern Analysis Using Biclustering: When, Why and How
Sensors deployed within water distribution systems collect consumption data that enable the application of data analysis techniques to extract essential information. Time series clustering has been traditionally applied for modeling end-user water consumption profiles to aid water management. Howeve...
Ausführliche Beschreibung
Autor*in: |
Miguel G. Silva [verfasserIn] Sara C. Madeira [verfasserIn] Rui Henriques [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Water - MDPI AG, 2010, 14(2022), 12, p 1954 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; number:12, p 1954 |
Links: |
---|
DOI / URN: |
10.3390/w14121954 |
---|
Katalog-ID: |
DOAJ021093830 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ021093830 | ||
003 | DE-627 | ||
005 | 20240414190503.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/w14121954 |2 doi | |
035 | |a (DE-627)DOAJ021093830 | ||
035 | |a (DE-599)DOAJ85936a939db04aeb9c56e1debb511c68 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TC1-978 | |
050 | 0 | |a TD201-500 | |
100 | 0 | |a Miguel G. Silva |e verfasserin |4 aut | |
245 | 1 | 0 | |a Water Consumption Pattern Analysis Using Biclustering: When, Why and How |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Sensors deployed within water distribution systems collect consumption data that enable the application of data analysis techniques to extract essential information. Time series clustering has been traditionally applied for modeling end-user water consumption profiles to aid water management. However, its effectiveness is limited by the diversity and local nature of consumption patterns. In addition, existing techniques cannot adequately handle changes in household composition, disruptive events (e.g., vacations), and consumption dynamics at different time scales. In this context, biclustering approaches provide a natural alternative to detect groups of end-users with coherent consumption profiles during local time periods while addressing the aforementioned limitations. This work discusses when, why and how to apply biclustering techniques for water consumption data analysis, and further proposes a methodology to this end. To the best of our knowledge, this is the first work introducing biclustering to water consumption data analysis. Results on data from a real-world water distribution system—Quinta do Lago, Portugal—confirm the potentialities of the proposed approach for pattern discovery with guarantees of statistical significance and robustness that entities can rely on for strategic planning. | ||
650 | 4 | |a water consumption analysis | |
650 | 4 | |a biclustering | |
650 | 4 | |a time series | |
650 | 4 | |a pattern discovery | |
650 | 4 | |a clustering | |
650 | 4 | |a subspace clustering | |
653 | 0 | |a Hydraulic engineering | |
653 | 0 | |a Water supply for domestic and industrial purposes | |
700 | 0 | |a Sara C. Madeira |e verfasserin |4 aut | |
700 | 0 | |a Rui Henriques |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Water |d MDPI AG, 2010 |g 14(2022), 12, p 1954 |w (DE-627)611729008 |w (DE-600)2521238-2 |x 20734441 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g number:12, p 1954 |
856 | 4 | 0 | |u https://doi.org/10.3390/w14121954 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/85936a939db04aeb9c56e1debb511c68 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4441/14/12/1954 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4441 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |e 12, p 1954 |
author_variant |
m g s mgs s c m scm r h rh |
---|---|
matchkey_str |
article:20734441:2022----::aecnupinatraayiuigilse |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TC |
publishDate |
2022 |
allfields |
10.3390/w14121954 doi (DE-627)DOAJ021093830 (DE-599)DOAJ85936a939db04aeb9c56e1debb511c68 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Miguel G. Silva verfasserin aut Water Consumption Pattern Analysis Using Biclustering: When, Why and How 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sensors deployed within water distribution systems collect consumption data that enable the application of data analysis techniques to extract essential information. Time series clustering has been traditionally applied for modeling end-user water consumption profiles to aid water management. However, its effectiveness is limited by the diversity and local nature of consumption patterns. In addition, existing techniques cannot adequately handle changes in household composition, disruptive events (e.g., vacations), and consumption dynamics at different time scales. In this context, biclustering approaches provide a natural alternative to detect groups of end-users with coherent consumption profiles during local time periods while addressing the aforementioned limitations. This work discusses when, why and how to apply biclustering techniques for water consumption data analysis, and further proposes a methodology to this end. To the best of our knowledge, this is the first work introducing biclustering to water consumption data analysis. Results on data from a real-world water distribution system—Quinta do Lago, Portugal—confirm the potentialities of the proposed approach for pattern discovery with guarantees of statistical significance and robustness that entities can rely on for strategic planning. water consumption analysis biclustering time series pattern discovery clustering subspace clustering Hydraulic engineering Water supply for domestic and industrial purposes Sara C. Madeira verfasserin aut Rui Henriques verfasserin aut In Water MDPI AG, 2010 14(2022), 12, p 1954 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:14 year:2022 number:12, p 1954 https://doi.org/10.3390/w14121954 kostenfrei https://doaj.org/article/85936a939db04aeb9c56e1debb511c68 kostenfrei https://www.mdpi.com/2073-4441/14/12/1954 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 12, p 1954 |
spelling |
10.3390/w14121954 doi (DE-627)DOAJ021093830 (DE-599)DOAJ85936a939db04aeb9c56e1debb511c68 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Miguel G. Silva verfasserin aut Water Consumption Pattern Analysis Using Biclustering: When, Why and How 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sensors deployed within water distribution systems collect consumption data that enable the application of data analysis techniques to extract essential information. Time series clustering has been traditionally applied for modeling end-user water consumption profiles to aid water management. However, its effectiveness is limited by the diversity and local nature of consumption patterns. In addition, existing techniques cannot adequately handle changes in household composition, disruptive events (e.g., vacations), and consumption dynamics at different time scales. In this context, biclustering approaches provide a natural alternative to detect groups of end-users with coherent consumption profiles during local time periods while addressing the aforementioned limitations. This work discusses when, why and how to apply biclustering techniques for water consumption data analysis, and further proposes a methodology to this end. To the best of our knowledge, this is the first work introducing biclustering to water consumption data analysis. Results on data from a real-world water distribution system—Quinta do Lago, Portugal—confirm the potentialities of the proposed approach for pattern discovery with guarantees of statistical significance and robustness that entities can rely on for strategic planning. water consumption analysis biclustering time series pattern discovery clustering subspace clustering Hydraulic engineering Water supply for domestic and industrial purposes Sara C. Madeira verfasserin aut Rui Henriques verfasserin aut In Water MDPI AG, 2010 14(2022), 12, p 1954 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:14 year:2022 number:12, p 1954 https://doi.org/10.3390/w14121954 kostenfrei https://doaj.org/article/85936a939db04aeb9c56e1debb511c68 kostenfrei https://www.mdpi.com/2073-4441/14/12/1954 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 12, p 1954 |
allfields_unstemmed |
10.3390/w14121954 doi (DE-627)DOAJ021093830 (DE-599)DOAJ85936a939db04aeb9c56e1debb511c68 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Miguel G. Silva verfasserin aut Water Consumption Pattern Analysis Using Biclustering: When, Why and How 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sensors deployed within water distribution systems collect consumption data that enable the application of data analysis techniques to extract essential information. Time series clustering has been traditionally applied for modeling end-user water consumption profiles to aid water management. However, its effectiveness is limited by the diversity and local nature of consumption patterns. In addition, existing techniques cannot adequately handle changes in household composition, disruptive events (e.g., vacations), and consumption dynamics at different time scales. In this context, biclustering approaches provide a natural alternative to detect groups of end-users with coherent consumption profiles during local time periods while addressing the aforementioned limitations. This work discusses when, why and how to apply biclustering techniques for water consumption data analysis, and further proposes a methodology to this end. To the best of our knowledge, this is the first work introducing biclustering to water consumption data analysis. Results on data from a real-world water distribution system—Quinta do Lago, Portugal—confirm the potentialities of the proposed approach for pattern discovery with guarantees of statistical significance and robustness that entities can rely on for strategic planning. water consumption analysis biclustering time series pattern discovery clustering subspace clustering Hydraulic engineering Water supply for domestic and industrial purposes Sara C. Madeira verfasserin aut Rui Henriques verfasserin aut In Water MDPI AG, 2010 14(2022), 12, p 1954 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:14 year:2022 number:12, p 1954 https://doi.org/10.3390/w14121954 kostenfrei https://doaj.org/article/85936a939db04aeb9c56e1debb511c68 kostenfrei https://www.mdpi.com/2073-4441/14/12/1954 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 12, p 1954 |
allfieldsGer |
10.3390/w14121954 doi (DE-627)DOAJ021093830 (DE-599)DOAJ85936a939db04aeb9c56e1debb511c68 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Miguel G. Silva verfasserin aut Water Consumption Pattern Analysis Using Biclustering: When, Why and How 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sensors deployed within water distribution systems collect consumption data that enable the application of data analysis techniques to extract essential information. Time series clustering has been traditionally applied for modeling end-user water consumption profiles to aid water management. However, its effectiveness is limited by the diversity and local nature of consumption patterns. In addition, existing techniques cannot adequately handle changes in household composition, disruptive events (e.g., vacations), and consumption dynamics at different time scales. In this context, biclustering approaches provide a natural alternative to detect groups of end-users with coherent consumption profiles during local time periods while addressing the aforementioned limitations. This work discusses when, why and how to apply biclustering techniques for water consumption data analysis, and further proposes a methodology to this end. To the best of our knowledge, this is the first work introducing biclustering to water consumption data analysis. Results on data from a real-world water distribution system—Quinta do Lago, Portugal—confirm the potentialities of the proposed approach for pattern discovery with guarantees of statistical significance and robustness that entities can rely on for strategic planning. water consumption analysis biclustering time series pattern discovery clustering subspace clustering Hydraulic engineering Water supply for domestic and industrial purposes Sara C. Madeira verfasserin aut Rui Henriques verfasserin aut In Water MDPI AG, 2010 14(2022), 12, p 1954 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:14 year:2022 number:12, p 1954 https://doi.org/10.3390/w14121954 kostenfrei https://doaj.org/article/85936a939db04aeb9c56e1debb511c68 kostenfrei https://www.mdpi.com/2073-4441/14/12/1954 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 12, p 1954 |
allfieldsSound |
10.3390/w14121954 doi (DE-627)DOAJ021093830 (DE-599)DOAJ85936a939db04aeb9c56e1debb511c68 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Miguel G. Silva verfasserin aut Water Consumption Pattern Analysis Using Biclustering: When, Why and How 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sensors deployed within water distribution systems collect consumption data that enable the application of data analysis techniques to extract essential information. Time series clustering has been traditionally applied for modeling end-user water consumption profiles to aid water management. However, its effectiveness is limited by the diversity and local nature of consumption patterns. In addition, existing techniques cannot adequately handle changes in household composition, disruptive events (e.g., vacations), and consumption dynamics at different time scales. In this context, biclustering approaches provide a natural alternative to detect groups of end-users with coherent consumption profiles during local time periods while addressing the aforementioned limitations. This work discusses when, why and how to apply biclustering techniques for water consumption data analysis, and further proposes a methodology to this end. To the best of our knowledge, this is the first work introducing biclustering to water consumption data analysis. Results on data from a real-world water distribution system—Quinta do Lago, Portugal—confirm the potentialities of the proposed approach for pattern discovery with guarantees of statistical significance and robustness that entities can rely on for strategic planning. water consumption analysis biclustering time series pattern discovery clustering subspace clustering Hydraulic engineering Water supply for domestic and industrial purposes Sara C. Madeira verfasserin aut Rui Henriques verfasserin aut In Water MDPI AG, 2010 14(2022), 12, p 1954 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:14 year:2022 number:12, p 1954 https://doi.org/10.3390/w14121954 kostenfrei https://doaj.org/article/85936a939db04aeb9c56e1debb511c68 kostenfrei https://www.mdpi.com/2073-4441/14/12/1954 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 12, p 1954 |
language |
English |
source |
In Water 14(2022), 12, p 1954 volume:14 year:2022 number:12, p 1954 |
sourceStr |
In Water 14(2022), 12, p 1954 volume:14 year:2022 number:12, p 1954 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
water consumption analysis biclustering time series pattern discovery clustering subspace clustering Hydraulic engineering Water supply for domestic and industrial purposes |
isfreeaccess_bool |
true |
container_title |
Water |
authorswithroles_txt_mv |
Miguel G. Silva @@aut@@ Sara C. Madeira @@aut@@ Rui Henriques @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
611729008 |
id |
DOAJ021093830 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ021093830</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414190503.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/w14121954</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ021093830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ85936a939db04aeb9c56e1debb511c68</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC1-978</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD201-500</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Miguel G. Silva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Water Consumption Pattern Analysis Using Biclustering: When, Why and How</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sensors deployed within water distribution systems collect consumption data that enable the application of data analysis techniques to extract essential information. Time series clustering has been traditionally applied for modeling end-user water consumption profiles to aid water management. However, its effectiveness is limited by the diversity and local nature of consumption patterns. In addition, existing techniques cannot adequately handle changes in household composition, disruptive events (e.g., vacations), and consumption dynamics at different time scales. In this context, biclustering approaches provide a natural alternative to detect groups of end-users with coherent consumption profiles during local time periods while addressing the aforementioned limitations. This work discusses when, why and how to apply biclustering techniques for water consumption data analysis, and further proposes a methodology to this end. To the best of our knowledge, this is the first work introducing biclustering to water consumption data analysis. Results on data from a real-world water distribution system—Quinta do Lago, Portugal—confirm the potentialities of the proposed approach for pattern discovery with guarantees of statistical significance and robustness that entities can rely on for strategic planning.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water consumption analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biclustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pattern discovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subspace clustering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Hydraulic engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Water supply for domestic and industrial purposes</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sara C. Madeira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rui Henriques</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Water</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">14(2022), 12, p 1954</subfield><subfield code="w">(DE-627)611729008</subfield><subfield code="w">(DE-600)2521238-2</subfield><subfield code="x">20734441</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12, p 1954</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/w14121954</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/85936a939db04aeb9c56e1debb511c68</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4441/14/12/1954</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4441</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">12, p 1954</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Miguel G. Silva |
spellingShingle |
Miguel G. Silva misc TC1-978 misc TD201-500 misc water consumption analysis misc biclustering misc time series misc pattern discovery misc clustering misc subspace clustering misc Hydraulic engineering misc Water supply for domestic and industrial purposes Water Consumption Pattern Analysis Using Biclustering: When, Why and How |
authorStr |
Miguel G. Silva |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)611729008 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TC1-978 |
illustrated |
Not Illustrated |
issn |
20734441 |
topic_title |
TC1-978 TD201-500 Water Consumption Pattern Analysis Using Biclustering: When, Why and How water consumption analysis biclustering time series pattern discovery clustering subspace clustering |
topic |
misc TC1-978 misc TD201-500 misc water consumption analysis misc biclustering misc time series misc pattern discovery misc clustering misc subspace clustering misc Hydraulic engineering misc Water supply for domestic and industrial purposes |
topic_unstemmed |
misc TC1-978 misc TD201-500 misc water consumption analysis misc biclustering misc time series misc pattern discovery misc clustering misc subspace clustering misc Hydraulic engineering misc Water supply for domestic and industrial purposes |
topic_browse |
misc TC1-978 misc TD201-500 misc water consumption analysis misc biclustering misc time series misc pattern discovery misc clustering misc subspace clustering misc Hydraulic engineering misc Water supply for domestic and industrial purposes |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Water |
hierarchy_parent_id |
611729008 |
hierarchy_top_title |
Water |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)611729008 (DE-600)2521238-2 |
title |
Water Consumption Pattern Analysis Using Biclustering: When, Why and How |
ctrlnum |
(DE-627)DOAJ021093830 (DE-599)DOAJ85936a939db04aeb9c56e1debb511c68 |
title_full |
Water Consumption Pattern Analysis Using Biclustering: When, Why and How |
author_sort |
Miguel G. Silva |
journal |
Water |
journalStr |
Water |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Miguel G. Silva Sara C. Madeira Rui Henriques |
container_volume |
14 |
class |
TC1-978 TD201-500 |
format_se |
Elektronische Aufsätze |
author-letter |
Miguel G. Silva |
doi_str_mv |
10.3390/w14121954 |
author2-role |
verfasserin |
title_sort |
water consumption pattern analysis using biclustering: when, why and how |
callnumber |
TC1-978 |
title_auth |
Water Consumption Pattern Analysis Using Biclustering: When, Why and How |
abstract |
Sensors deployed within water distribution systems collect consumption data that enable the application of data analysis techniques to extract essential information. Time series clustering has been traditionally applied for modeling end-user water consumption profiles to aid water management. However, its effectiveness is limited by the diversity and local nature of consumption patterns. In addition, existing techniques cannot adequately handle changes in household composition, disruptive events (e.g., vacations), and consumption dynamics at different time scales. In this context, biclustering approaches provide a natural alternative to detect groups of end-users with coherent consumption profiles during local time periods while addressing the aforementioned limitations. This work discusses when, why and how to apply biclustering techniques for water consumption data analysis, and further proposes a methodology to this end. To the best of our knowledge, this is the first work introducing biclustering to water consumption data analysis. Results on data from a real-world water distribution system—Quinta do Lago, Portugal—confirm the potentialities of the proposed approach for pattern discovery with guarantees of statistical significance and robustness that entities can rely on for strategic planning. |
abstractGer |
Sensors deployed within water distribution systems collect consumption data that enable the application of data analysis techniques to extract essential information. Time series clustering has been traditionally applied for modeling end-user water consumption profiles to aid water management. However, its effectiveness is limited by the diversity and local nature of consumption patterns. In addition, existing techniques cannot adequately handle changes in household composition, disruptive events (e.g., vacations), and consumption dynamics at different time scales. In this context, biclustering approaches provide a natural alternative to detect groups of end-users with coherent consumption profiles during local time periods while addressing the aforementioned limitations. This work discusses when, why and how to apply biclustering techniques for water consumption data analysis, and further proposes a methodology to this end. To the best of our knowledge, this is the first work introducing biclustering to water consumption data analysis. Results on data from a real-world water distribution system—Quinta do Lago, Portugal—confirm the potentialities of the proposed approach for pattern discovery with guarantees of statistical significance and robustness that entities can rely on for strategic planning. |
abstract_unstemmed |
Sensors deployed within water distribution systems collect consumption data that enable the application of data analysis techniques to extract essential information. Time series clustering has been traditionally applied for modeling end-user water consumption profiles to aid water management. However, its effectiveness is limited by the diversity and local nature of consumption patterns. In addition, existing techniques cannot adequately handle changes in household composition, disruptive events (e.g., vacations), and consumption dynamics at different time scales. In this context, biclustering approaches provide a natural alternative to detect groups of end-users with coherent consumption profiles during local time periods while addressing the aforementioned limitations. This work discusses when, why and how to apply biclustering techniques for water consumption data analysis, and further proposes a methodology to this end. To the best of our knowledge, this is the first work introducing biclustering to water consumption data analysis. Results on data from a real-world water distribution system—Quinta do Lago, Portugal—confirm the potentialities of the proposed approach for pattern discovery with guarantees of statistical significance and robustness that entities can rely on for strategic planning. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 1954 |
title_short |
Water Consumption Pattern Analysis Using Biclustering: When, Why and How |
url |
https://doi.org/10.3390/w14121954 https://doaj.org/article/85936a939db04aeb9c56e1debb511c68 https://www.mdpi.com/2073-4441/14/12/1954 https://doaj.org/toc/2073-4441 |
remote_bool |
true |
author2 |
Sara C. Madeira Rui Henriques |
author2Str |
Sara C. Madeira Rui Henriques |
ppnlink |
611729008 |
callnumber-subject |
TC - Hydraulic and Ocean Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/w14121954 |
callnumber-a |
TC1-978 |
up_date |
2024-07-03T18:50:50.353Z |
_version_ |
1803584956377595904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ021093830</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414190503.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/w14121954</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ021093830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ85936a939db04aeb9c56e1debb511c68</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC1-978</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD201-500</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Miguel G. Silva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Water Consumption Pattern Analysis Using Biclustering: When, Why and How</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sensors deployed within water distribution systems collect consumption data that enable the application of data analysis techniques to extract essential information. Time series clustering has been traditionally applied for modeling end-user water consumption profiles to aid water management. However, its effectiveness is limited by the diversity and local nature of consumption patterns. In addition, existing techniques cannot adequately handle changes in household composition, disruptive events (e.g., vacations), and consumption dynamics at different time scales. In this context, biclustering approaches provide a natural alternative to detect groups of end-users with coherent consumption profiles during local time periods while addressing the aforementioned limitations. This work discusses when, why and how to apply biclustering techniques for water consumption data analysis, and further proposes a methodology to this end. To the best of our knowledge, this is the first work introducing biclustering to water consumption data analysis. Results on data from a real-world water distribution system—Quinta do Lago, Portugal—confirm the potentialities of the proposed approach for pattern discovery with guarantees of statistical significance and robustness that entities can rely on for strategic planning.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water consumption analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biclustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pattern discovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subspace clustering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Hydraulic engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Water supply for domestic and industrial purposes</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sara C. Madeira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rui Henriques</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Water</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">14(2022), 12, p 1954</subfield><subfield code="w">(DE-627)611729008</subfield><subfield code="w">(DE-600)2521238-2</subfield><subfield code="x">20734441</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12, p 1954</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/w14121954</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/85936a939db04aeb9c56e1debb511c68</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4441/14/12/1954</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4441</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">12, p 1954</subfield></datafield></record></collection>
|
score |
7.403097 |