Climate and vegetation in a semi-arid savanna: Development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores
A framework to establish the expected effects of climate on forage quantity and quality in a local savanna system was developed to interpret large herbivore population performance patterns in the Kruger National Park. We developed a climate–vegetation response model based on interpretation and synth...
Ausführliche Beschreibung
Autor*in: |
Armin H. Seydack [verfasserIn] Cornelia C. Grant [verfasserIn] Izak P. Smit [verfasserIn] Wessel J. Vermeulen [verfasserIn] Johan Baard [verfasserIn] Nick Zambatis [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Koedoe: African Protected Area Conservation and Science - AOSIS, 2008, 54(2012), 1, Seite e1-e12 |
---|---|
Übergeordnetes Werk: |
volume:54 ; year:2012 ; number:1 ; pages:e1-e12 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.4102/koedoe.v54i1.1046 |
---|
Katalog-ID: |
DOAJ02118965X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ02118965X | ||
003 | DE-627 | ||
005 | 20230307044334.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.4102/koedoe.v54i1.1046 |2 doi | |
035 | |a (DE-627)DOAJ02118965X | ||
035 | |a (DE-599)DOAJ49a77c1d70184a9b8a4580c10787a8de | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH1-199.5 | |
100 | 0 | |a Armin H. Seydack |e verfasserin |4 aut | |
245 | 1 | 0 | |a Climate and vegetation in a semi-arid savanna: Development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A framework to establish the expected effects of climate on forage quantity and quality in a local savanna system was developed to interpret large herbivore population performance patterns in the Kruger National Park. We developed a climate–vegetation response model based on interpretation and synthesis of existing knowledge (literature review) and supported by investigation and analyses of local patterns of climate effects on forage plant performance and chemical composition. Developing the climate–vegetation response model involved three main components, namely (1) defining indicators of forage availability to herbivores (nitrogen productivity, nitrogen quality, carbon-nutrient quality), (2) identifying herbivore species guilds of similar nutritional requirements with respect to these indicators [bulk feeders with tolerance to fibrous herbage (buffalo, waterbuck), bulk feeders with preference for high nitrogen quality forage (short grass preference grazers: blue wildebeest and zebra) and selective feeders where dietary items of relatively high carbon-nutrient quality represented key forage resources (selective grazers: sable antelope, roan antelope, tsessebe, eland)] and (3) developing a process model where the expected effects of plant metabolic responses to climate on key forage resources were made explicit. According to the climate–vegetation response model both shorter-term transient temperature acclimation pulses and longer-term shifts in plant metabolic functionality settings were predicted to have occurred in response to temperature trends over the past century. These temperature acclimation responses were expected to have resulted in transient pulses of increased forage availability (increased nitrogen- and carbon-nutrient quality), as well as the progressive long-term decline of the carbon-nutrient quality of forage. Conservation implications: The climate–vegetation response model represents a research framework for further studies contributing towards the enhanced understanding of landscape-scale functioning of savanna systems with reference to the interplay between climate, vegetation and herbivore population dynamics. Gains in such understanding can support sound conservation management. | ||
650 | 4 | |a Climate effects | |
650 | 4 | |a climate–vegetation response model | |
650 | 4 | |a Kruger National Park | |
650 | 4 | |a large herbivores | |
650 | 4 | |a savanna system | |
653 | 0 | |a General. Including nature conservation, geographical distribution | |
700 | 0 | |a Cornelia C. Grant |e verfasserin |4 aut | |
700 | 0 | |a Izak P. Smit |e verfasserin |4 aut | |
700 | 0 | |a Wessel J. Vermeulen |e verfasserin |4 aut | |
700 | 0 | |a Johan Baard |e verfasserin |4 aut | |
700 | 0 | |a Nick Zambatis |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Koedoe: African Protected Area Conservation and Science |d AOSIS, 2008 |g 54(2012), 1, Seite e1-e12 |w (DE-627)559431880 |w (DE-600)2413347-4 |x 20710771 |7 nnns |
773 | 1 | 8 | |g volume:54 |g year:2012 |g number:1 |g pages:e1-e12 |
856 | 4 | 0 | |u https://doi.org/10.4102/koedoe.v54i1.1046 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/49a77c1d70184a9b8a4580c10787a8de |z kostenfrei |
856 | 4 | 0 | |u https://koedoe.co.za/index.php/koedoe/article/view/1046 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0075-6458 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2071-0771 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 54 |j 2012 |e 1 |h e1-e12 |
author_variant |
a h s ahs c c g ccg i p s ips w j v wjv j b jb n z nz |
---|---|
matchkey_str |
article:20710771:2012----::lmtadeeainnsmaisvnaeeomnoalmtvgttorsosmdliknpateaoipromneolmtadh |
hierarchy_sort_str |
2012 |
callnumber-subject-code |
QH |
publishDate |
2012 |
allfields |
10.4102/koedoe.v54i1.1046 doi (DE-627)DOAJ02118965X (DE-599)DOAJ49a77c1d70184a9b8a4580c10787a8de DE-627 ger DE-627 rakwb eng QH1-199.5 Armin H. Seydack verfasserin aut Climate and vegetation in a semi-arid savanna: Development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A framework to establish the expected effects of climate on forage quantity and quality in a local savanna system was developed to interpret large herbivore population performance patterns in the Kruger National Park. We developed a climate–vegetation response model based on interpretation and synthesis of existing knowledge (literature review) and supported by investigation and analyses of local patterns of climate effects on forage plant performance and chemical composition. Developing the climate–vegetation response model involved three main components, namely (1) defining indicators of forage availability to herbivores (nitrogen productivity, nitrogen quality, carbon-nutrient quality), (2) identifying herbivore species guilds of similar nutritional requirements with respect to these indicators [bulk feeders with tolerance to fibrous herbage (buffalo, waterbuck), bulk feeders with preference for high nitrogen quality forage (short grass preference grazers: blue wildebeest and zebra) and selective feeders where dietary items of relatively high carbon-nutrient quality represented key forage resources (selective grazers: sable antelope, roan antelope, tsessebe, eland)] and (3) developing a process model where the expected effects of plant metabolic responses to climate on key forage resources were made explicit. According to the climate–vegetation response model both shorter-term transient temperature acclimation pulses and longer-term shifts in plant metabolic functionality settings were predicted to have occurred in response to temperature trends over the past century. These temperature acclimation responses were expected to have resulted in transient pulses of increased forage availability (increased nitrogen- and carbon-nutrient quality), as well as the progressive long-term decline of the carbon-nutrient quality of forage. Conservation implications: The climate–vegetation response model represents a research framework for further studies contributing towards the enhanced understanding of landscape-scale functioning of savanna systems with reference to the interplay between climate, vegetation and herbivore population dynamics. Gains in such understanding can support sound conservation management. Climate effects climate–vegetation response model Kruger National Park large herbivores savanna system General. Including nature conservation, geographical distribution Cornelia C. Grant verfasserin aut Izak P. Smit verfasserin aut Wessel J. Vermeulen verfasserin aut Johan Baard verfasserin aut Nick Zambatis verfasserin aut In Koedoe: African Protected Area Conservation and Science AOSIS, 2008 54(2012), 1, Seite e1-e12 (DE-627)559431880 (DE-600)2413347-4 20710771 nnns volume:54 year:2012 number:1 pages:e1-e12 https://doi.org/10.4102/koedoe.v54i1.1046 kostenfrei https://doaj.org/article/49a77c1d70184a9b8a4580c10787a8de kostenfrei https://koedoe.co.za/index.php/koedoe/article/view/1046 kostenfrei https://doaj.org/toc/0075-6458 Journal toc kostenfrei https://doaj.org/toc/2071-0771 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 54 2012 1 e1-e12 |
spelling |
10.4102/koedoe.v54i1.1046 doi (DE-627)DOAJ02118965X (DE-599)DOAJ49a77c1d70184a9b8a4580c10787a8de DE-627 ger DE-627 rakwb eng QH1-199.5 Armin H. Seydack verfasserin aut Climate and vegetation in a semi-arid savanna: Development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A framework to establish the expected effects of climate on forage quantity and quality in a local savanna system was developed to interpret large herbivore population performance patterns in the Kruger National Park. We developed a climate–vegetation response model based on interpretation and synthesis of existing knowledge (literature review) and supported by investigation and analyses of local patterns of climate effects on forage plant performance and chemical composition. Developing the climate–vegetation response model involved three main components, namely (1) defining indicators of forage availability to herbivores (nitrogen productivity, nitrogen quality, carbon-nutrient quality), (2) identifying herbivore species guilds of similar nutritional requirements with respect to these indicators [bulk feeders with tolerance to fibrous herbage (buffalo, waterbuck), bulk feeders with preference for high nitrogen quality forage (short grass preference grazers: blue wildebeest and zebra) and selective feeders where dietary items of relatively high carbon-nutrient quality represented key forage resources (selective grazers: sable antelope, roan antelope, tsessebe, eland)] and (3) developing a process model where the expected effects of plant metabolic responses to climate on key forage resources were made explicit. According to the climate–vegetation response model both shorter-term transient temperature acclimation pulses and longer-term shifts in plant metabolic functionality settings were predicted to have occurred in response to temperature trends over the past century. These temperature acclimation responses were expected to have resulted in transient pulses of increased forage availability (increased nitrogen- and carbon-nutrient quality), as well as the progressive long-term decline of the carbon-nutrient quality of forage. Conservation implications: The climate–vegetation response model represents a research framework for further studies contributing towards the enhanced understanding of landscape-scale functioning of savanna systems with reference to the interplay between climate, vegetation and herbivore population dynamics. Gains in such understanding can support sound conservation management. Climate effects climate–vegetation response model Kruger National Park large herbivores savanna system General. Including nature conservation, geographical distribution Cornelia C. Grant verfasserin aut Izak P. Smit verfasserin aut Wessel J. Vermeulen verfasserin aut Johan Baard verfasserin aut Nick Zambatis verfasserin aut In Koedoe: African Protected Area Conservation and Science AOSIS, 2008 54(2012), 1, Seite e1-e12 (DE-627)559431880 (DE-600)2413347-4 20710771 nnns volume:54 year:2012 number:1 pages:e1-e12 https://doi.org/10.4102/koedoe.v54i1.1046 kostenfrei https://doaj.org/article/49a77c1d70184a9b8a4580c10787a8de kostenfrei https://koedoe.co.za/index.php/koedoe/article/view/1046 kostenfrei https://doaj.org/toc/0075-6458 Journal toc kostenfrei https://doaj.org/toc/2071-0771 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 54 2012 1 e1-e12 |
allfields_unstemmed |
10.4102/koedoe.v54i1.1046 doi (DE-627)DOAJ02118965X (DE-599)DOAJ49a77c1d70184a9b8a4580c10787a8de DE-627 ger DE-627 rakwb eng QH1-199.5 Armin H. Seydack verfasserin aut Climate and vegetation in a semi-arid savanna: Development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A framework to establish the expected effects of climate on forage quantity and quality in a local savanna system was developed to interpret large herbivore population performance patterns in the Kruger National Park. We developed a climate–vegetation response model based on interpretation and synthesis of existing knowledge (literature review) and supported by investigation and analyses of local patterns of climate effects on forage plant performance and chemical composition. Developing the climate–vegetation response model involved three main components, namely (1) defining indicators of forage availability to herbivores (nitrogen productivity, nitrogen quality, carbon-nutrient quality), (2) identifying herbivore species guilds of similar nutritional requirements with respect to these indicators [bulk feeders with tolerance to fibrous herbage (buffalo, waterbuck), bulk feeders with preference for high nitrogen quality forage (short grass preference grazers: blue wildebeest and zebra) and selective feeders where dietary items of relatively high carbon-nutrient quality represented key forage resources (selective grazers: sable antelope, roan antelope, tsessebe, eland)] and (3) developing a process model where the expected effects of plant metabolic responses to climate on key forage resources were made explicit. According to the climate–vegetation response model both shorter-term transient temperature acclimation pulses and longer-term shifts in plant metabolic functionality settings were predicted to have occurred in response to temperature trends over the past century. These temperature acclimation responses were expected to have resulted in transient pulses of increased forage availability (increased nitrogen- and carbon-nutrient quality), as well as the progressive long-term decline of the carbon-nutrient quality of forage. Conservation implications: The climate–vegetation response model represents a research framework for further studies contributing towards the enhanced understanding of landscape-scale functioning of savanna systems with reference to the interplay between climate, vegetation and herbivore population dynamics. Gains in such understanding can support sound conservation management. Climate effects climate–vegetation response model Kruger National Park large herbivores savanna system General. Including nature conservation, geographical distribution Cornelia C. Grant verfasserin aut Izak P. Smit verfasserin aut Wessel J. Vermeulen verfasserin aut Johan Baard verfasserin aut Nick Zambatis verfasserin aut In Koedoe: African Protected Area Conservation and Science AOSIS, 2008 54(2012), 1, Seite e1-e12 (DE-627)559431880 (DE-600)2413347-4 20710771 nnns volume:54 year:2012 number:1 pages:e1-e12 https://doi.org/10.4102/koedoe.v54i1.1046 kostenfrei https://doaj.org/article/49a77c1d70184a9b8a4580c10787a8de kostenfrei https://koedoe.co.za/index.php/koedoe/article/view/1046 kostenfrei https://doaj.org/toc/0075-6458 Journal toc kostenfrei https://doaj.org/toc/2071-0771 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 54 2012 1 e1-e12 |
allfieldsGer |
10.4102/koedoe.v54i1.1046 doi (DE-627)DOAJ02118965X (DE-599)DOAJ49a77c1d70184a9b8a4580c10787a8de DE-627 ger DE-627 rakwb eng QH1-199.5 Armin H. Seydack verfasserin aut Climate and vegetation in a semi-arid savanna: Development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A framework to establish the expected effects of climate on forage quantity and quality in a local savanna system was developed to interpret large herbivore population performance patterns in the Kruger National Park. We developed a climate–vegetation response model based on interpretation and synthesis of existing knowledge (literature review) and supported by investigation and analyses of local patterns of climate effects on forage plant performance and chemical composition. Developing the climate–vegetation response model involved three main components, namely (1) defining indicators of forage availability to herbivores (nitrogen productivity, nitrogen quality, carbon-nutrient quality), (2) identifying herbivore species guilds of similar nutritional requirements with respect to these indicators [bulk feeders with tolerance to fibrous herbage (buffalo, waterbuck), bulk feeders with preference for high nitrogen quality forage (short grass preference grazers: blue wildebeest and zebra) and selective feeders where dietary items of relatively high carbon-nutrient quality represented key forage resources (selective grazers: sable antelope, roan antelope, tsessebe, eland)] and (3) developing a process model where the expected effects of plant metabolic responses to climate on key forage resources were made explicit. According to the climate–vegetation response model both shorter-term transient temperature acclimation pulses and longer-term shifts in plant metabolic functionality settings were predicted to have occurred in response to temperature trends over the past century. These temperature acclimation responses were expected to have resulted in transient pulses of increased forage availability (increased nitrogen- and carbon-nutrient quality), as well as the progressive long-term decline of the carbon-nutrient quality of forage. Conservation implications: The climate–vegetation response model represents a research framework for further studies contributing towards the enhanced understanding of landscape-scale functioning of savanna systems with reference to the interplay between climate, vegetation and herbivore population dynamics. Gains in such understanding can support sound conservation management. Climate effects climate–vegetation response model Kruger National Park large herbivores savanna system General. Including nature conservation, geographical distribution Cornelia C. Grant verfasserin aut Izak P. Smit verfasserin aut Wessel J. Vermeulen verfasserin aut Johan Baard verfasserin aut Nick Zambatis verfasserin aut In Koedoe: African Protected Area Conservation and Science AOSIS, 2008 54(2012), 1, Seite e1-e12 (DE-627)559431880 (DE-600)2413347-4 20710771 nnns volume:54 year:2012 number:1 pages:e1-e12 https://doi.org/10.4102/koedoe.v54i1.1046 kostenfrei https://doaj.org/article/49a77c1d70184a9b8a4580c10787a8de kostenfrei https://koedoe.co.za/index.php/koedoe/article/view/1046 kostenfrei https://doaj.org/toc/0075-6458 Journal toc kostenfrei https://doaj.org/toc/2071-0771 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 54 2012 1 e1-e12 |
allfieldsSound |
10.4102/koedoe.v54i1.1046 doi (DE-627)DOAJ02118965X (DE-599)DOAJ49a77c1d70184a9b8a4580c10787a8de DE-627 ger DE-627 rakwb eng QH1-199.5 Armin H. Seydack verfasserin aut Climate and vegetation in a semi-arid savanna: Development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A framework to establish the expected effects of climate on forage quantity and quality in a local savanna system was developed to interpret large herbivore population performance patterns in the Kruger National Park. We developed a climate–vegetation response model based on interpretation and synthesis of existing knowledge (literature review) and supported by investigation and analyses of local patterns of climate effects on forage plant performance and chemical composition. Developing the climate–vegetation response model involved three main components, namely (1) defining indicators of forage availability to herbivores (nitrogen productivity, nitrogen quality, carbon-nutrient quality), (2) identifying herbivore species guilds of similar nutritional requirements with respect to these indicators [bulk feeders with tolerance to fibrous herbage (buffalo, waterbuck), bulk feeders with preference for high nitrogen quality forage (short grass preference grazers: blue wildebeest and zebra) and selective feeders where dietary items of relatively high carbon-nutrient quality represented key forage resources (selective grazers: sable antelope, roan antelope, tsessebe, eland)] and (3) developing a process model where the expected effects of plant metabolic responses to climate on key forage resources were made explicit. According to the climate–vegetation response model both shorter-term transient temperature acclimation pulses and longer-term shifts in plant metabolic functionality settings were predicted to have occurred in response to temperature trends over the past century. These temperature acclimation responses were expected to have resulted in transient pulses of increased forage availability (increased nitrogen- and carbon-nutrient quality), as well as the progressive long-term decline of the carbon-nutrient quality of forage. Conservation implications: The climate–vegetation response model represents a research framework for further studies contributing towards the enhanced understanding of landscape-scale functioning of savanna systems with reference to the interplay between climate, vegetation and herbivore population dynamics. Gains in such understanding can support sound conservation management. Climate effects climate–vegetation response model Kruger National Park large herbivores savanna system General. Including nature conservation, geographical distribution Cornelia C. Grant verfasserin aut Izak P. Smit verfasserin aut Wessel J. Vermeulen verfasserin aut Johan Baard verfasserin aut Nick Zambatis verfasserin aut In Koedoe: African Protected Area Conservation and Science AOSIS, 2008 54(2012), 1, Seite e1-e12 (DE-627)559431880 (DE-600)2413347-4 20710771 nnns volume:54 year:2012 number:1 pages:e1-e12 https://doi.org/10.4102/koedoe.v54i1.1046 kostenfrei https://doaj.org/article/49a77c1d70184a9b8a4580c10787a8de kostenfrei https://koedoe.co.za/index.php/koedoe/article/view/1046 kostenfrei https://doaj.org/toc/0075-6458 Journal toc kostenfrei https://doaj.org/toc/2071-0771 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 54 2012 1 e1-e12 |
language |
English |
source |
In Koedoe: African Protected Area Conservation and Science 54(2012), 1, Seite e1-e12 volume:54 year:2012 number:1 pages:e1-e12 |
sourceStr |
In Koedoe: African Protected Area Conservation and Science 54(2012), 1, Seite e1-e12 volume:54 year:2012 number:1 pages:e1-e12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Climate effects climate–vegetation response model Kruger National Park large herbivores savanna system General. Including nature conservation, geographical distribution |
isfreeaccess_bool |
true |
container_title |
Koedoe: African Protected Area Conservation and Science |
authorswithroles_txt_mv |
Armin H. Seydack @@aut@@ Cornelia C. Grant @@aut@@ Izak P. Smit @@aut@@ Wessel J. Vermeulen @@aut@@ Johan Baard @@aut@@ Nick Zambatis @@aut@@ |
publishDateDaySort_date |
2012-01-01T00:00:00Z |
hierarchy_top_id |
559431880 |
id |
DOAJ02118965X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02118965X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307044334.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4102/koedoe.v54i1.1046</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02118965X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ49a77c1d70184a9b8a4580c10787a8de</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH1-199.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Armin H. Seydack</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Climate and vegetation in a semi-arid savanna: Development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A framework to establish the expected effects of climate on forage quantity and quality in a local savanna system was developed to interpret large herbivore population performance patterns in the Kruger National Park. We developed a climate–vegetation response model based on interpretation and synthesis of existing knowledge (literature review) and supported by investigation and analyses of local patterns of climate effects on forage plant performance and chemical composition. Developing the climate–vegetation response model involved three main components, namely (1) defining indicators of forage availability to herbivores (nitrogen productivity, nitrogen quality, carbon-nutrient quality), (2) identifying herbivore species guilds of similar nutritional requirements with respect to these indicators [bulk feeders with tolerance to fibrous herbage (buffalo, waterbuck), bulk feeders with preference for high nitrogen quality forage (short grass preference grazers: blue wildebeest and zebra) and selective feeders where dietary items of relatively high carbon-nutrient quality represented key forage resources (selective grazers: sable antelope, roan antelope, tsessebe, eland)] and (3) developing a process model where the expected effects of plant metabolic responses to climate on key forage resources were made explicit. According to the climate–vegetation response model both shorter-term transient temperature acclimation pulses and longer-term shifts in plant metabolic functionality settings were predicted to have occurred in response to temperature trends over the past century. These temperature acclimation responses were expected to have resulted in transient pulses of increased forage availability (increased nitrogen- and carbon-nutrient quality), as well as the progressive long-term decline of the carbon-nutrient quality of forage. Conservation implications: The climate–vegetation response model represents a research framework for further studies contributing towards the enhanced understanding of landscape-scale functioning of savanna systems with reference to the interplay between climate, vegetation and herbivore population dynamics. Gains in such understanding can support sound conservation management.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate–vegetation response model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kruger National Park</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">large herbivores</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">savanna system</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General. Including nature conservation, geographical distribution</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cornelia C. Grant</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Izak P. Smit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wessel J. Vermeulen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johan Baard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nick Zambatis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Koedoe: African Protected Area Conservation and Science</subfield><subfield code="d">AOSIS, 2008</subfield><subfield code="g">54(2012), 1, Seite e1-e12</subfield><subfield code="w">(DE-627)559431880</subfield><subfield code="w">(DE-600)2413347-4</subfield><subfield code="x">20710771</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:e1-e12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.4102/koedoe.v54i1.1046</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/49a77c1d70184a9b8a4580c10787a8de</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://koedoe.co.za/index.php/koedoe/article/view/1046</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0075-6458</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-0771</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="h">e1-e12</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Armin H. Seydack |
spellingShingle |
Armin H. Seydack misc QH1-199.5 misc Climate effects misc climate–vegetation response model misc Kruger National Park misc large herbivores misc savanna system misc General. Including nature conservation, geographical distribution Climate and vegetation in a semi-arid savanna: Development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores |
authorStr |
Armin H. Seydack |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)559431880 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH1-199 |
illustrated |
Not Illustrated |
issn |
20710771 |
topic_title |
QH1-199.5 Climate and vegetation in a semi-arid savanna: Development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores Climate effects climate–vegetation response model Kruger National Park large herbivores savanna system |
topic |
misc QH1-199.5 misc Climate effects misc climate–vegetation response model misc Kruger National Park misc large herbivores misc savanna system misc General. Including nature conservation, geographical distribution |
topic_unstemmed |
misc QH1-199.5 misc Climate effects misc climate–vegetation response model misc Kruger National Park misc large herbivores misc savanna system misc General. Including nature conservation, geographical distribution |
topic_browse |
misc QH1-199.5 misc Climate effects misc climate–vegetation response model misc Kruger National Park misc large herbivores misc savanna system misc General. Including nature conservation, geographical distribution |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Koedoe: African Protected Area Conservation and Science |
hierarchy_parent_id |
559431880 |
hierarchy_top_title |
Koedoe: African Protected Area Conservation and Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)559431880 (DE-600)2413347-4 |
title |
Climate and vegetation in a semi-arid savanna: Development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores |
ctrlnum |
(DE-627)DOAJ02118965X (DE-599)DOAJ49a77c1d70184a9b8a4580c10787a8de |
title_full |
Climate and vegetation in a semi-arid savanna: Development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores |
author_sort |
Armin H. Seydack |
journal |
Koedoe: African Protected Area Conservation and Science |
journalStr |
Koedoe: African Protected Area Conservation and Science |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
author_browse |
Armin H. Seydack Cornelia C. Grant Izak P. Smit Wessel J. Vermeulen Johan Baard Nick Zambatis |
container_volume |
54 |
class |
QH1-199.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Armin H. Seydack |
doi_str_mv |
10.4102/koedoe.v54i1.1046 |
author2-role |
verfasserin |
title_sort |
climate and vegetation in a semi-arid savanna: development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores |
callnumber |
QH1-199.5 |
title_auth |
Climate and vegetation in a semi-arid savanna: Development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores |
abstract |
A framework to establish the expected effects of climate on forage quantity and quality in a local savanna system was developed to interpret large herbivore population performance patterns in the Kruger National Park. We developed a climate–vegetation response model based on interpretation and synthesis of existing knowledge (literature review) and supported by investigation and analyses of local patterns of climate effects on forage plant performance and chemical composition. Developing the climate–vegetation response model involved three main components, namely (1) defining indicators of forage availability to herbivores (nitrogen productivity, nitrogen quality, carbon-nutrient quality), (2) identifying herbivore species guilds of similar nutritional requirements with respect to these indicators [bulk feeders with tolerance to fibrous herbage (buffalo, waterbuck), bulk feeders with preference for high nitrogen quality forage (short grass preference grazers: blue wildebeest and zebra) and selective feeders where dietary items of relatively high carbon-nutrient quality represented key forage resources (selective grazers: sable antelope, roan antelope, tsessebe, eland)] and (3) developing a process model where the expected effects of plant metabolic responses to climate on key forage resources were made explicit. According to the climate–vegetation response model both shorter-term transient temperature acclimation pulses and longer-term shifts in plant metabolic functionality settings were predicted to have occurred in response to temperature trends over the past century. These temperature acclimation responses were expected to have resulted in transient pulses of increased forage availability (increased nitrogen- and carbon-nutrient quality), as well as the progressive long-term decline of the carbon-nutrient quality of forage. Conservation implications: The climate–vegetation response model represents a research framework for further studies contributing towards the enhanced understanding of landscape-scale functioning of savanna systems with reference to the interplay between climate, vegetation and herbivore population dynamics. Gains in such understanding can support sound conservation management. |
abstractGer |
A framework to establish the expected effects of climate on forage quantity and quality in a local savanna system was developed to interpret large herbivore population performance patterns in the Kruger National Park. We developed a climate–vegetation response model based on interpretation and synthesis of existing knowledge (literature review) and supported by investigation and analyses of local patterns of climate effects on forage plant performance and chemical composition. Developing the climate–vegetation response model involved three main components, namely (1) defining indicators of forage availability to herbivores (nitrogen productivity, nitrogen quality, carbon-nutrient quality), (2) identifying herbivore species guilds of similar nutritional requirements with respect to these indicators [bulk feeders with tolerance to fibrous herbage (buffalo, waterbuck), bulk feeders with preference for high nitrogen quality forage (short grass preference grazers: blue wildebeest and zebra) and selective feeders where dietary items of relatively high carbon-nutrient quality represented key forage resources (selective grazers: sable antelope, roan antelope, tsessebe, eland)] and (3) developing a process model where the expected effects of plant metabolic responses to climate on key forage resources were made explicit. According to the climate–vegetation response model both shorter-term transient temperature acclimation pulses and longer-term shifts in plant metabolic functionality settings were predicted to have occurred in response to temperature trends over the past century. These temperature acclimation responses were expected to have resulted in transient pulses of increased forage availability (increased nitrogen- and carbon-nutrient quality), as well as the progressive long-term decline of the carbon-nutrient quality of forage. Conservation implications: The climate–vegetation response model represents a research framework for further studies contributing towards the enhanced understanding of landscape-scale functioning of savanna systems with reference to the interplay between climate, vegetation and herbivore population dynamics. Gains in such understanding can support sound conservation management. |
abstract_unstemmed |
A framework to establish the expected effects of climate on forage quantity and quality in a local savanna system was developed to interpret large herbivore population performance patterns in the Kruger National Park. We developed a climate–vegetation response model based on interpretation and synthesis of existing knowledge (literature review) and supported by investigation and analyses of local patterns of climate effects on forage plant performance and chemical composition. Developing the climate–vegetation response model involved three main components, namely (1) defining indicators of forage availability to herbivores (nitrogen productivity, nitrogen quality, carbon-nutrient quality), (2) identifying herbivore species guilds of similar nutritional requirements with respect to these indicators [bulk feeders with tolerance to fibrous herbage (buffalo, waterbuck), bulk feeders with preference for high nitrogen quality forage (short grass preference grazers: blue wildebeest and zebra) and selective feeders where dietary items of relatively high carbon-nutrient quality represented key forage resources (selective grazers: sable antelope, roan antelope, tsessebe, eland)] and (3) developing a process model where the expected effects of plant metabolic responses to climate on key forage resources were made explicit. According to the climate–vegetation response model both shorter-term transient temperature acclimation pulses and longer-term shifts in plant metabolic functionality settings were predicted to have occurred in response to temperature trends over the past century. These temperature acclimation responses were expected to have resulted in transient pulses of increased forage availability (increased nitrogen- and carbon-nutrient quality), as well as the progressive long-term decline of the carbon-nutrient quality of forage. Conservation implications: The climate–vegetation response model represents a research framework for further studies contributing towards the enhanced understanding of landscape-scale functioning of savanna systems with reference to the interplay between climate, vegetation and herbivore population dynamics. Gains in such understanding can support sound conservation management. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Climate and vegetation in a semi-arid savanna: Development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores |
url |
https://doi.org/10.4102/koedoe.v54i1.1046 https://doaj.org/article/49a77c1d70184a9b8a4580c10787a8de https://koedoe.co.za/index.php/koedoe/article/view/1046 https://doaj.org/toc/0075-6458 https://doaj.org/toc/2071-0771 |
remote_bool |
true |
author2 |
Cornelia C. Grant Izak P. Smit Wessel J. Vermeulen Johan Baard Nick Zambatis |
author2Str |
Cornelia C. Grant Izak P. Smit Wessel J. Vermeulen Johan Baard Nick Zambatis |
ppnlink |
559431880 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.4102/koedoe.v54i1.1046 |
callnumber-a |
QH1-199.5 |
up_date |
2024-07-03T19:25:56.931Z |
_version_ |
1803587165288923136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02118965X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307044334.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4102/koedoe.v54i1.1046</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02118965X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ49a77c1d70184a9b8a4580c10787a8de</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH1-199.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Armin H. Seydack</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Climate and vegetation in a semi-arid savanna: Development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A framework to establish the expected effects of climate on forage quantity and quality in a local savanna system was developed to interpret large herbivore population performance patterns in the Kruger National Park. We developed a climate–vegetation response model based on interpretation and synthesis of existing knowledge (literature review) and supported by investigation and analyses of local patterns of climate effects on forage plant performance and chemical composition. Developing the climate–vegetation response model involved three main components, namely (1) defining indicators of forage availability to herbivores (nitrogen productivity, nitrogen quality, carbon-nutrient quality), (2) identifying herbivore species guilds of similar nutritional requirements with respect to these indicators [bulk feeders with tolerance to fibrous herbage (buffalo, waterbuck), bulk feeders with preference for high nitrogen quality forage (short grass preference grazers: blue wildebeest and zebra) and selective feeders where dietary items of relatively high carbon-nutrient quality represented key forage resources (selective grazers: sable antelope, roan antelope, tsessebe, eland)] and (3) developing a process model where the expected effects of plant metabolic responses to climate on key forage resources were made explicit. According to the climate–vegetation response model both shorter-term transient temperature acclimation pulses and longer-term shifts in plant metabolic functionality settings were predicted to have occurred in response to temperature trends over the past century. These temperature acclimation responses were expected to have resulted in transient pulses of increased forage availability (increased nitrogen- and carbon-nutrient quality), as well as the progressive long-term decline of the carbon-nutrient quality of forage. Conservation implications: The climate–vegetation response model represents a research framework for further studies contributing towards the enhanced understanding of landscape-scale functioning of savanna systems with reference to the interplay between climate, vegetation and herbivore population dynamics. Gains in such understanding can support sound conservation management.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate–vegetation response model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kruger National Park</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">large herbivores</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">savanna system</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General. Including nature conservation, geographical distribution</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cornelia C. Grant</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Izak P. Smit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wessel J. Vermeulen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johan Baard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nick Zambatis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Koedoe: African Protected Area Conservation and Science</subfield><subfield code="d">AOSIS, 2008</subfield><subfield code="g">54(2012), 1, Seite e1-e12</subfield><subfield code="w">(DE-627)559431880</subfield><subfield code="w">(DE-600)2413347-4</subfield><subfield code="x">20710771</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:e1-e12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.4102/koedoe.v54i1.1046</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/49a77c1d70184a9b8a4580c10787a8de</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://koedoe.co.za/index.php/koedoe/article/view/1046</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0075-6458</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-0771</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="h">e1-e12</subfield></datafield></record></collection>
|
score |
7.4014273 |