The Northernmost Volcanoes in South America (Colombia, 5–6°N): The Potentially Active Samaná Monogenetic Volcanic Field
The northernmost volcanism in South America (5–6°N) is defined by the presence of several monogenetic volcanic edifices in Colombia, which have been grouped within the Samaná monogenetic volcanic field. Few volcanoes have been studied so far, but they are recognized as a cluster of volcanoes of inte...
Ausführliche Beschreibung
Autor*in: |
Laura Sánchez-Torres [verfasserIn] Hugo Murcia [verfasserIn] Dayana Schonwalder-Ángel [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Earth Science - Frontiers Media S.A., 2014, 10(2022) |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 |
Links: |
---|
DOI / URN: |
10.3389/feart.2022.880003 |
---|
Katalog-ID: |
DOAJ021202001 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ021202001 | ||
003 | DE-627 | ||
005 | 20230307044416.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/feart.2022.880003 |2 doi | |
035 | |a (DE-627)DOAJ021202001 | ||
035 | |a (DE-599)DOAJ917c6ed5ec824201a001d21bbe505967 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Laura Sánchez-Torres |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Northernmost Volcanoes in South America (Colombia, 5–6°N): The Potentially Active Samaná Monogenetic Volcanic Field |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The northernmost volcanism in South America (5–6°N) is defined by the presence of several monogenetic volcanic edifices in Colombia, which have been grouped within the Samaná monogenetic volcanic field. Few volcanoes have been studied so far, but they are recognized as a cluster of volcanoes of intermediate-to-acid composition, formed by both explosive and effusive eruptions. This study aims to 1) characterize four more monogenetic volcanic edifices as part of the Samaná field, 2) highlight the potentially active volcanism in an area previously defined as non-volcanogenic, and 3) give insights into the magmatic evolution of the scarcely studied evolved monogenetic volcanism linked to subduction zones worldwide. To achieve these aims, this study uses petrography, mineral chemistry, whole-rock geochemistry, geochronological analyses, and geothermobarometric calculations. The analyses indicate that the field is formed by at least seven volcanoes with similar composition and that it is long-lived and potentially active. Mineralogically, the erupted products host plagioclase (An26–74) and amphibole (magnesio-hastingsite, tschermakite, and occasionally mangesio-hornblende) as the most abundant phases, although orthopyroxene (enstatite; Wo2–3, En70–76, Fs21–28) and clinopyroxene (diopside and augite; Wo44–45, En41–42, Fs13–15, and Wo42–44, En46–47, Fs10–11) also appear. Less abundant phases such as olivine (Fo81–88), biotite (magnesiobiotite), quartz, and Fe–Ti oxides (Usp4–89 Mag96–11, and Ilm61–92 Hem39–8) were also recognized. Chemically, the volcanoes are of andesitic-to-dacitic composition with calc-alkaline affinity and show similar behavior of LILE, HFSE, and REE, which is typical for magmatism in subduction environments. Ages yield a range between 1.32 ± 0.06 Ma (K/Ar) and 16,919 ± 220 years (14C). The results also indicate that the volcanoes share a common magmatic source that fed the individual eruptions and that the magma differentiation is mainly controlled by processes of fractional crystallization, although evidence of magma recharge processes or magma mixing and assimilation as a minor process are also recognized. Geothermobarometric calculations suggest that the different mineral phases are crystallized between 1,194 and 687 °C and a pressure between 0.88 and 0.19 GPa. This indicates that the aforementioned processes occurred not only at the main magmatic reservoir (∼33–21 km depth) but also at different stagnation zones at shallower levels of the crust (∼7–5 km). Taking this into account, it is shown that the magma evolution of this monogenetic field is more complex than individual batches of magma reaching the surface uninterrupted, as is normally described for monogenetic volcanic fields of more mafic compositions in other tectonic settings. | ||
650 | 4 | |a silicic monogenetic volcanism | |
650 | 4 | |a effusive monogenetic eruptions | |
650 | 4 | |a magma stagnation | |
650 | 4 | |a long-lived monogenetic fields | |
650 | 4 | |a complex magma evolution | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Laura Sánchez-Torres |e verfasserin |4 aut | |
700 | 0 | |a Hugo Murcia |e verfasserin |4 aut | |
700 | 0 | |a Hugo Murcia |e verfasserin |4 aut | |
700 | 0 | |a Dayana Schonwalder-Ángel |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Earth Science |d Frontiers Media S.A., 2014 |g 10(2022) |w (DE-627)771399731 |w (DE-600)2741235-0 |x 22966463 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.3389/feart.2022.880003 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/917c6ed5ec824201a001d21bbe505967 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/feart.2022.880003/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2296-6463 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |
author_variant |
l s t lst l s t lst h m hm h m hm d s á dsá |
---|---|
matchkey_str |
article:22966463:2022----::hnrhrmsvlaosnotaeiaooba6teoetalatvsm |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3389/feart.2022.880003 doi (DE-627)DOAJ021202001 (DE-599)DOAJ917c6ed5ec824201a001d21bbe505967 DE-627 ger DE-627 rakwb eng Laura Sánchez-Torres verfasserin aut The Northernmost Volcanoes in South America (Colombia, 5–6°N): The Potentially Active Samaná Monogenetic Volcanic Field 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The northernmost volcanism in South America (5–6°N) is defined by the presence of several monogenetic volcanic edifices in Colombia, which have been grouped within the Samaná monogenetic volcanic field. Few volcanoes have been studied so far, but they are recognized as a cluster of volcanoes of intermediate-to-acid composition, formed by both explosive and effusive eruptions. This study aims to 1) characterize four more monogenetic volcanic edifices as part of the Samaná field, 2) highlight the potentially active volcanism in an area previously defined as non-volcanogenic, and 3) give insights into the magmatic evolution of the scarcely studied evolved monogenetic volcanism linked to subduction zones worldwide. To achieve these aims, this study uses petrography, mineral chemistry, whole-rock geochemistry, geochronological analyses, and geothermobarometric calculations. The analyses indicate that the field is formed by at least seven volcanoes with similar composition and that it is long-lived and potentially active. Mineralogically, the erupted products host plagioclase (An26–74) and amphibole (magnesio-hastingsite, tschermakite, and occasionally mangesio-hornblende) as the most abundant phases, although orthopyroxene (enstatite; Wo2–3, En70–76, Fs21–28) and clinopyroxene (diopside and augite; Wo44–45, En41–42, Fs13–15, and Wo42–44, En46–47, Fs10–11) also appear. Less abundant phases such as olivine (Fo81–88), biotite (magnesiobiotite), quartz, and Fe–Ti oxides (Usp4–89 Mag96–11, and Ilm61–92 Hem39–8) were also recognized. Chemically, the volcanoes are of andesitic-to-dacitic composition with calc-alkaline affinity and show similar behavior of LILE, HFSE, and REE, which is typical for magmatism in subduction environments. Ages yield a range between 1.32 ± 0.06 Ma (K/Ar) and 16,919 ± 220 years (14C). The results also indicate that the volcanoes share a common magmatic source that fed the individual eruptions and that the magma differentiation is mainly controlled by processes of fractional crystallization, although evidence of magma recharge processes or magma mixing and assimilation as a minor process are also recognized. Geothermobarometric calculations suggest that the different mineral phases are crystallized between 1,194 and 687 °C and a pressure between 0.88 and 0.19 GPa. This indicates that the aforementioned processes occurred not only at the main magmatic reservoir (∼33–21 km depth) but also at different stagnation zones at shallower levels of the crust (∼7–5 km). Taking this into account, it is shown that the magma evolution of this monogenetic field is more complex than individual batches of magma reaching the surface uninterrupted, as is normally described for monogenetic volcanic fields of more mafic compositions in other tectonic settings. silicic monogenetic volcanism effusive monogenetic eruptions magma stagnation long-lived monogenetic fields complex magma evolution Science Q Laura Sánchez-Torres verfasserin aut Hugo Murcia verfasserin aut Hugo Murcia verfasserin aut Dayana Schonwalder-Ángel verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 10(2022) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:10 year:2022 https://doi.org/10.3389/feart.2022.880003 kostenfrei https://doaj.org/article/917c6ed5ec824201a001d21bbe505967 kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2022.880003/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
spelling |
10.3389/feart.2022.880003 doi (DE-627)DOAJ021202001 (DE-599)DOAJ917c6ed5ec824201a001d21bbe505967 DE-627 ger DE-627 rakwb eng Laura Sánchez-Torres verfasserin aut The Northernmost Volcanoes in South America (Colombia, 5–6°N): The Potentially Active Samaná Monogenetic Volcanic Field 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The northernmost volcanism in South America (5–6°N) is defined by the presence of several monogenetic volcanic edifices in Colombia, which have been grouped within the Samaná monogenetic volcanic field. Few volcanoes have been studied so far, but they are recognized as a cluster of volcanoes of intermediate-to-acid composition, formed by both explosive and effusive eruptions. This study aims to 1) characterize four more monogenetic volcanic edifices as part of the Samaná field, 2) highlight the potentially active volcanism in an area previously defined as non-volcanogenic, and 3) give insights into the magmatic evolution of the scarcely studied evolved monogenetic volcanism linked to subduction zones worldwide. To achieve these aims, this study uses petrography, mineral chemistry, whole-rock geochemistry, geochronological analyses, and geothermobarometric calculations. The analyses indicate that the field is formed by at least seven volcanoes with similar composition and that it is long-lived and potentially active. Mineralogically, the erupted products host plagioclase (An26–74) and amphibole (magnesio-hastingsite, tschermakite, and occasionally mangesio-hornblende) as the most abundant phases, although orthopyroxene (enstatite; Wo2–3, En70–76, Fs21–28) and clinopyroxene (diopside and augite; Wo44–45, En41–42, Fs13–15, and Wo42–44, En46–47, Fs10–11) also appear. Less abundant phases such as olivine (Fo81–88), biotite (magnesiobiotite), quartz, and Fe–Ti oxides (Usp4–89 Mag96–11, and Ilm61–92 Hem39–8) were also recognized. Chemically, the volcanoes are of andesitic-to-dacitic composition with calc-alkaline affinity and show similar behavior of LILE, HFSE, and REE, which is typical for magmatism in subduction environments. Ages yield a range between 1.32 ± 0.06 Ma (K/Ar) and 16,919 ± 220 years (14C). The results also indicate that the volcanoes share a common magmatic source that fed the individual eruptions and that the magma differentiation is mainly controlled by processes of fractional crystallization, although evidence of magma recharge processes or magma mixing and assimilation as a minor process are also recognized. Geothermobarometric calculations suggest that the different mineral phases are crystallized between 1,194 and 687 °C and a pressure between 0.88 and 0.19 GPa. This indicates that the aforementioned processes occurred not only at the main magmatic reservoir (∼33–21 km depth) but also at different stagnation zones at shallower levels of the crust (∼7–5 km). Taking this into account, it is shown that the magma evolution of this monogenetic field is more complex than individual batches of magma reaching the surface uninterrupted, as is normally described for monogenetic volcanic fields of more mafic compositions in other tectonic settings. silicic monogenetic volcanism effusive monogenetic eruptions magma stagnation long-lived monogenetic fields complex magma evolution Science Q Laura Sánchez-Torres verfasserin aut Hugo Murcia verfasserin aut Hugo Murcia verfasserin aut Dayana Schonwalder-Ángel verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 10(2022) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:10 year:2022 https://doi.org/10.3389/feart.2022.880003 kostenfrei https://doaj.org/article/917c6ed5ec824201a001d21bbe505967 kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2022.880003/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfields_unstemmed |
10.3389/feart.2022.880003 doi (DE-627)DOAJ021202001 (DE-599)DOAJ917c6ed5ec824201a001d21bbe505967 DE-627 ger DE-627 rakwb eng Laura Sánchez-Torres verfasserin aut The Northernmost Volcanoes in South America (Colombia, 5–6°N): The Potentially Active Samaná Monogenetic Volcanic Field 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The northernmost volcanism in South America (5–6°N) is defined by the presence of several monogenetic volcanic edifices in Colombia, which have been grouped within the Samaná monogenetic volcanic field. Few volcanoes have been studied so far, but they are recognized as a cluster of volcanoes of intermediate-to-acid composition, formed by both explosive and effusive eruptions. This study aims to 1) characterize four more monogenetic volcanic edifices as part of the Samaná field, 2) highlight the potentially active volcanism in an area previously defined as non-volcanogenic, and 3) give insights into the magmatic evolution of the scarcely studied evolved monogenetic volcanism linked to subduction zones worldwide. To achieve these aims, this study uses petrography, mineral chemistry, whole-rock geochemistry, geochronological analyses, and geothermobarometric calculations. The analyses indicate that the field is formed by at least seven volcanoes with similar composition and that it is long-lived and potentially active. Mineralogically, the erupted products host plagioclase (An26–74) and amphibole (magnesio-hastingsite, tschermakite, and occasionally mangesio-hornblende) as the most abundant phases, although orthopyroxene (enstatite; Wo2–3, En70–76, Fs21–28) and clinopyroxene (diopside and augite; Wo44–45, En41–42, Fs13–15, and Wo42–44, En46–47, Fs10–11) also appear. Less abundant phases such as olivine (Fo81–88), biotite (magnesiobiotite), quartz, and Fe–Ti oxides (Usp4–89 Mag96–11, and Ilm61–92 Hem39–8) were also recognized. Chemically, the volcanoes are of andesitic-to-dacitic composition with calc-alkaline affinity and show similar behavior of LILE, HFSE, and REE, which is typical for magmatism in subduction environments. Ages yield a range between 1.32 ± 0.06 Ma (K/Ar) and 16,919 ± 220 years (14C). The results also indicate that the volcanoes share a common magmatic source that fed the individual eruptions and that the magma differentiation is mainly controlled by processes of fractional crystallization, although evidence of magma recharge processes or magma mixing and assimilation as a minor process are also recognized. Geothermobarometric calculations suggest that the different mineral phases are crystallized between 1,194 and 687 °C and a pressure between 0.88 and 0.19 GPa. This indicates that the aforementioned processes occurred not only at the main magmatic reservoir (∼33–21 km depth) but also at different stagnation zones at shallower levels of the crust (∼7–5 km). Taking this into account, it is shown that the magma evolution of this monogenetic field is more complex than individual batches of magma reaching the surface uninterrupted, as is normally described for monogenetic volcanic fields of more mafic compositions in other tectonic settings. silicic monogenetic volcanism effusive monogenetic eruptions magma stagnation long-lived monogenetic fields complex magma evolution Science Q Laura Sánchez-Torres verfasserin aut Hugo Murcia verfasserin aut Hugo Murcia verfasserin aut Dayana Schonwalder-Ángel verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 10(2022) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:10 year:2022 https://doi.org/10.3389/feart.2022.880003 kostenfrei https://doaj.org/article/917c6ed5ec824201a001d21bbe505967 kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2022.880003/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfieldsGer |
10.3389/feart.2022.880003 doi (DE-627)DOAJ021202001 (DE-599)DOAJ917c6ed5ec824201a001d21bbe505967 DE-627 ger DE-627 rakwb eng Laura Sánchez-Torres verfasserin aut The Northernmost Volcanoes in South America (Colombia, 5–6°N): The Potentially Active Samaná Monogenetic Volcanic Field 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The northernmost volcanism in South America (5–6°N) is defined by the presence of several monogenetic volcanic edifices in Colombia, which have been grouped within the Samaná monogenetic volcanic field. Few volcanoes have been studied so far, but they are recognized as a cluster of volcanoes of intermediate-to-acid composition, formed by both explosive and effusive eruptions. This study aims to 1) characterize four more monogenetic volcanic edifices as part of the Samaná field, 2) highlight the potentially active volcanism in an area previously defined as non-volcanogenic, and 3) give insights into the magmatic evolution of the scarcely studied evolved monogenetic volcanism linked to subduction zones worldwide. To achieve these aims, this study uses petrography, mineral chemistry, whole-rock geochemistry, geochronological analyses, and geothermobarometric calculations. The analyses indicate that the field is formed by at least seven volcanoes with similar composition and that it is long-lived and potentially active. Mineralogically, the erupted products host plagioclase (An26–74) and amphibole (magnesio-hastingsite, tschermakite, and occasionally mangesio-hornblende) as the most abundant phases, although orthopyroxene (enstatite; Wo2–3, En70–76, Fs21–28) and clinopyroxene (diopside and augite; Wo44–45, En41–42, Fs13–15, and Wo42–44, En46–47, Fs10–11) also appear. Less abundant phases such as olivine (Fo81–88), biotite (magnesiobiotite), quartz, and Fe–Ti oxides (Usp4–89 Mag96–11, and Ilm61–92 Hem39–8) were also recognized. Chemically, the volcanoes are of andesitic-to-dacitic composition with calc-alkaline affinity and show similar behavior of LILE, HFSE, and REE, which is typical for magmatism in subduction environments. Ages yield a range between 1.32 ± 0.06 Ma (K/Ar) and 16,919 ± 220 years (14C). The results also indicate that the volcanoes share a common magmatic source that fed the individual eruptions and that the magma differentiation is mainly controlled by processes of fractional crystallization, although evidence of magma recharge processes or magma mixing and assimilation as a minor process are also recognized. Geothermobarometric calculations suggest that the different mineral phases are crystallized between 1,194 and 687 °C and a pressure between 0.88 and 0.19 GPa. This indicates that the aforementioned processes occurred not only at the main magmatic reservoir (∼33–21 km depth) but also at different stagnation zones at shallower levels of the crust (∼7–5 km). Taking this into account, it is shown that the magma evolution of this monogenetic field is more complex than individual batches of magma reaching the surface uninterrupted, as is normally described for monogenetic volcanic fields of more mafic compositions in other tectonic settings. silicic monogenetic volcanism effusive monogenetic eruptions magma stagnation long-lived monogenetic fields complex magma evolution Science Q Laura Sánchez-Torres verfasserin aut Hugo Murcia verfasserin aut Hugo Murcia verfasserin aut Dayana Schonwalder-Ángel verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 10(2022) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:10 year:2022 https://doi.org/10.3389/feart.2022.880003 kostenfrei https://doaj.org/article/917c6ed5ec824201a001d21bbe505967 kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2022.880003/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfieldsSound |
10.3389/feart.2022.880003 doi (DE-627)DOAJ021202001 (DE-599)DOAJ917c6ed5ec824201a001d21bbe505967 DE-627 ger DE-627 rakwb eng Laura Sánchez-Torres verfasserin aut The Northernmost Volcanoes in South America (Colombia, 5–6°N): The Potentially Active Samaná Monogenetic Volcanic Field 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The northernmost volcanism in South America (5–6°N) is defined by the presence of several monogenetic volcanic edifices in Colombia, which have been grouped within the Samaná monogenetic volcanic field. Few volcanoes have been studied so far, but they are recognized as a cluster of volcanoes of intermediate-to-acid composition, formed by both explosive and effusive eruptions. This study aims to 1) characterize four more monogenetic volcanic edifices as part of the Samaná field, 2) highlight the potentially active volcanism in an area previously defined as non-volcanogenic, and 3) give insights into the magmatic evolution of the scarcely studied evolved monogenetic volcanism linked to subduction zones worldwide. To achieve these aims, this study uses petrography, mineral chemistry, whole-rock geochemistry, geochronological analyses, and geothermobarometric calculations. The analyses indicate that the field is formed by at least seven volcanoes with similar composition and that it is long-lived and potentially active. Mineralogically, the erupted products host plagioclase (An26–74) and amphibole (magnesio-hastingsite, tschermakite, and occasionally mangesio-hornblende) as the most abundant phases, although orthopyroxene (enstatite; Wo2–3, En70–76, Fs21–28) and clinopyroxene (diopside and augite; Wo44–45, En41–42, Fs13–15, and Wo42–44, En46–47, Fs10–11) also appear. Less abundant phases such as olivine (Fo81–88), biotite (magnesiobiotite), quartz, and Fe–Ti oxides (Usp4–89 Mag96–11, and Ilm61–92 Hem39–8) were also recognized. Chemically, the volcanoes are of andesitic-to-dacitic composition with calc-alkaline affinity and show similar behavior of LILE, HFSE, and REE, which is typical for magmatism in subduction environments. Ages yield a range between 1.32 ± 0.06 Ma (K/Ar) and 16,919 ± 220 years (14C). The results also indicate that the volcanoes share a common magmatic source that fed the individual eruptions and that the magma differentiation is mainly controlled by processes of fractional crystallization, although evidence of magma recharge processes or magma mixing and assimilation as a minor process are also recognized. Geothermobarometric calculations suggest that the different mineral phases are crystallized between 1,194 and 687 °C and a pressure between 0.88 and 0.19 GPa. This indicates that the aforementioned processes occurred not only at the main magmatic reservoir (∼33–21 km depth) but also at different stagnation zones at shallower levels of the crust (∼7–5 km). Taking this into account, it is shown that the magma evolution of this monogenetic field is more complex than individual batches of magma reaching the surface uninterrupted, as is normally described for monogenetic volcanic fields of more mafic compositions in other tectonic settings. silicic monogenetic volcanism effusive monogenetic eruptions magma stagnation long-lived monogenetic fields complex magma evolution Science Q Laura Sánchez-Torres verfasserin aut Hugo Murcia verfasserin aut Hugo Murcia verfasserin aut Dayana Schonwalder-Ángel verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 10(2022) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:10 year:2022 https://doi.org/10.3389/feart.2022.880003 kostenfrei https://doaj.org/article/917c6ed5ec824201a001d21bbe505967 kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2022.880003/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
language |
English |
source |
In Frontiers in Earth Science 10(2022) volume:10 year:2022 |
sourceStr |
In Frontiers in Earth Science 10(2022) volume:10 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
silicic monogenetic volcanism effusive monogenetic eruptions magma stagnation long-lived monogenetic fields complex magma evolution Science Q |
isfreeaccess_bool |
true |
container_title |
Frontiers in Earth Science |
authorswithroles_txt_mv |
Laura Sánchez-Torres @@aut@@ Hugo Murcia @@aut@@ Dayana Schonwalder-Ángel @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
771399731 |
id |
DOAJ021202001 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ021202001</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307044416.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/feart.2022.880003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ021202001</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ917c6ed5ec824201a001d21bbe505967</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Laura Sánchez-Torres</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Northernmost Volcanoes in South America (Colombia, 5–6°N): The Potentially Active Samaná Monogenetic Volcanic Field</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The northernmost volcanism in South America (5–6°N) is defined by the presence of several monogenetic volcanic edifices in Colombia, which have been grouped within the Samaná monogenetic volcanic field. Few volcanoes have been studied so far, but they are recognized as a cluster of volcanoes of intermediate-to-acid composition, formed by both explosive and effusive eruptions. This study aims to 1) characterize four more monogenetic volcanic edifices as part of the Samaná field, 2) highlight the potentially active volcanism in an area previously defined as non-volcanogenic, and 3) give insights into the magmatic evolution of the scarcely studied evolved monogenetic volcanism linked to subduction zones worldwide. To achieve these aims, this study uses petrography, mineral chemistry, whole-rock geochemistry, geochronological analyses, and geothermobarometric calculations. The analyses indicate that the field is formed by at least seven volcanoes with similar composition and that it is long-lived and potentially active. Mineralogically, the erupted products host plagioclase (An26–74) and amphibole (magnesio-hastingsite, tschermakite, and occasionally mangesio-hornblende) as the most abundant phases, although orthopyroxene (enstatite; Wo2–3, En70–76, Fs21–28) and clinopyroxene (diopside and augite; Wo44–45, En41–42, Fs13–15, and Wo42–44, En46–47, Fs10–11) also appear. Less abundant phases such as olivine (Fo81–88), biotite (magnesiobiotite), quartz, and Fe–Ti oxides (Usp4–89 Mag96–11, and Ilm61–92 Hem39–8) were also recognized. Chemically, the volcanoes are of andesitic-to-dacitic composition with calc-alkaline affinity and show similar behavior of LILE, HFSE, and REE, which is typical for magmatism in subduction environments. Ages yield a range between 1.32 ± 0.06 Ma (K/Ar) and 16,919 ± 220 years (14C). The results also indicate that the volcanoes share a common magmatic source that fed the individual eruptions and that the magma differentiation is mainly controlled by processes of fractional crystallization, although evidence of magma recharge processes or magma mixing and assimilation as a minor process are also recognized. Geothermobarometric calculations suggest that the different mineral phases are crystallized between 1,194 and 687 °C and a pressure between 0.88 and 0.19 GPa. This indicates that the aforementioned processes occurred not only at the main magmatic reservoir (∼33–21 km depth) but also at different stagnation zones at shallower levels of the crust (∼7–5 km). Taking this into account, it is shown that the magma evolution of this monogenetic field is more complex than individual batches of magma reaching the surface uninterrupted, as is normally described for monogenetic volcanic fields of more mafic compositions in other tectonic settings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silicic monogenetic volcanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">effusive monogenetic eruptions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magma stagnation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long-lived monogenetic fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">complex magma evolution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Sánchez-Torres</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hugo Murcia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hugo Murcia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dayana Schonwalder-Ángel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Earth Science</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2022)</subfield><subfield code="w">(DE-627)771399731</subfield><subfield code="w">(DE-600)2741235-0</subfield><subfield code="x">22966463</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/feart.2022.880003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/917c6ed5ec824201a001d21bbe505967</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/feart.2022.880003/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-6463</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
author |
Laura Sánchez-Torres |
spellingShingle |
Laura Sánchez-Torres misc silicic monogenetic volcanism misc effusive monogenetic eruptions misc magma stagnation misc long-lived monogenetic fields misc complex magma evolution misc Science misc Q The Northernmost Volcanoes in South America (Colombia, 5–6°N): The Potentially Active Samaná Monogenetic Volcanic Field |
authorStr |
Laura Sánchez-Torres |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)771399731 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
22966463 |
topic_title |
The Northernmost Volcanoes in South America (Colombia, 5–6°N): The Potentially Active Samaná Monogenetic Volcanic Field silicic monogenetic volcanism effusive monogenetic eruptions magma stagnation long-lived monogenetic fields complex magma evolution |
topic |
misc silicic monogenetic volcanism misc effusive monogenetic eruptions misc magma stagnation misc long-lived monogenetic fields misc complex magma evolution misc Science misc Q |
topic_unstemmed |
misc silicic monogenetic volcanism misc effusive monogenetic eruptions misc magma stagnation misc long-lived monogenetic fields misc complex magma evolution misc Science misc Q |
topic_browse |
misc silicic monogenetic volcanism misc effusive monogenetic eruptions misc magma stagnation misc long-lived monogenetic fields misc complex magma evolution misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Earth Science |
hierarchy_parent_id |
771399731 |
hierarchy_top_title |
Frontiers in Earth Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)771399731 (DE-600)2741235-0 |
title |
The Northernmost Volcanoes in South America (Colombia, 5–6°N): The Potentially Active Samaná Monogenetic Volcanic Field |
ctrlnum |
(DE-627)DOAJ021202001 (DE-599)DOAJ917c6ed5ec824201a001d21bbe505967 |
title_full |
The Northernmost Volcanoes in South America (Colombia, 5–6°N): The Potentially Active Samaná Monogenetic Volcanic Field |
author_sort |
Laura Sánchez-Torres |
journal |
Frontiers in Earth Science |
journalStr |
Frontiers in Earth Science |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Laura Sánchez-Torres Hugo Murcia Dayana Schonwalder-Ángel |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Laura Sánchez-Torres |
doi_str_mv |
10.3389/feart.2022.880003 |
author2-role |
verfasserin |
title_sort |
northernmost volcanoes in south america (colombia, 5–6°n): the potentially active samaná monogenetic volcanic field |
title_auth |
The Northernmost Volcanoes in South America (Colombia, 5–6°N): The Potentially Active Samaná Monogenetic Volcanic Field |
abstract |
The northernmost volcanism in South America (5–6°N) is defined by the presence of several monogenetic volcanic edifices in Colombia, which have been grouped within the Samaná monogenetic volcanic field. Few volcanoes have been studied so far, but they are recognized as a cluster of volcanoes of intermediate-to-acid composition, formed by both explosive and effusive eruptions. This study aims to 1) characterize four more monogenetic volcanic edifices as part of the Samaná field, 2) highlight the potentially active volcanism in an area previously defined as non-volcanogenic, and 3) give insights into the magmatic evolution of the scarcely studied evolved monogenetic volcanism linked to subduction zones worldwide. To achieve these aims, this study uses petrography, mineral chemistry, whole-rock geochemistry, geochronological analyses, and geothermobarometric calculations. The analyses indicate that the field is formed by at least seven volcanoes with similar composition and that it is long-lived and potentially active. Mineralogically, the erupted products host plagioclase (An26–74) and amphibole (magnesio-hastingsite, tschermakite, and occasionally mangesio-hornblende) as the most abundant phases, although orthopyroxene (enstatite; Wo2–3, En70–76, Fs21–28) and clinopyroxene (diopside and augite; Wo44–45, En41–42, Fs13–15, and Wo42–44, En46–47, Fs10–11) also appear. Less abundant phases such as olivine (Fo81–88), biotite (magnesiobiotite), quartz, and Fe–Ti oxides (Usp4–89 Mag96–11, and Ilm61–92 Hem39–8) were also recognized. Chemically, the volcanoes are of andesitic-to-dacitic composition with calc-alkaline affinity and show similar behavior of LILE, HFSE, and REE, which is typical for magmatism in subduction environments. Ages yield a range between 1.32 ± 0.06 Ma (K/Ar) and 16,919 ± 220 years (14C). The results also indicate that the volcanoes share a common magmatic source that fed the individual eruptions and that the magma differentiation is mainly controlled by processes of fractional crystallization, although evidence of magma recharge processes or magma mixing and assimilation as a minor process are also recognized. Geothermobarometric calculations suggest that the different mineral phases are crystallized between 1,194 and 687 °C and a pressure between 0.88 and 0.19 GPa. This indicates that the aforementioned processes occurred not only at the main magmatic reservoir (∼33–21 km depth) but also at different stagnation zones at shallower levels of the crust (∼7–5 km). Taking this into account, it is shown that the magma evolution of this monogenetic field is more complex than individual batches of magma reaching the surface uninterrupted, as is normally described for monogenetic volcanic fields of more mafic compositions in other tectonic settings. |
abstractGer |
The northernmost volcanism in South America (5–6°N) is defined by the presence of several monogenetic volcanic edifices in Colombia, which have been grouped within the Samaná monogenetic volcanic field. Few volcanoes have been studied so far, but they are recognized as a cluster of volcanoes of intermediate-to-acid composition, formed by both explosive and effusive eruptions. This study aims to 1) characterize four more monogenetic volcanic edifices as part of the Samaná field, 2) highlight the potentially active volcanism in an area previously defined as non-volcanogenic, and 3) give insights into the magmatic evolution of the scarcely studied evolved monogenetic volcanism linked to subduction zones worldwide. To achieve these aims, this study uses petrography, mineral chemistry, whole-rock geochemistry, geochronological analyses, and geothermobarometric calculations. The analyses indicate that the field is formed by at least seven volcanoes with similar composition and that it is long-lived and potentially active. Mineralogically, the erupted products host plagioclase (An26–74) and amphibole (magnesio-hastingsite, tschermakite, and occasionally mangesio-hornblende) as the most abundant phases, although orthopyroxene (enstatite; Wo2–3, En70–76, Fs21–28) and clinopyroxene (diopside and augite; Wo44–45, En41–42, Fs13–15, and Wo42–44, En46–47, Fs10–11) also appear. Less abundant phases such as olivine (Fo81–88), biotite (magnesiobiotite), quartz, and Fe–Ti oxides (Usp4–89 Mag96–11, and Ilm61–92 Hem39–8) were also recognized. Chemically, the volcanoes are of andesitic-to-dacitic composition with calc-alkaline affinity and show similar behavior of LILE, HFSE, and REE, which is typical for magmatism in subduction environments. Ages yield a range between 1.32 ± 0.06 Ma (K/Ar) and 16,919 ± 220 years (14C). The results also indicate that the volcanoes share a common magmatic source that fed the individual eruptions and that the magma differentiation is mainly controlled by processes of fractional crystallization, although evidence of magma recharge processes or magma mixing and assimilation as a minor process are also recognized. Geothermobarometric calculations suggest that the different mineral phases are crystallized between 1,194 and 687 °C and a pressure between 0.88 and 0.19 GPa. This indicates that the aforementioned processes occurred not only at the main magmatic reservoir (∼33–21 km depth) but also at different stagnation zones at shallower levels of the crust (∼7–5 km). Taking this into account, it is shown that the magma evolution of this monogenetic field is more complex than individual batches of magma reaching the surface uninterrupted, as is normally described for monogenetic volcanic fields of more mafic compositions in other tectonic settings. |
abstract_unstemmed |
The northernmost volcanism in South America (5–6°N) is defined by the presence of several monogenetic volcanic edifices in Colombia, which have been grouped within the Samaná monogenetic volcanic field. Few volcanoes have been studied so far, but they are recognized as a cluster of volcanoes of intermediate-to-acid composition, formed by both explosive and effusive eruptions. This study aims to 1) characterize four more monogenetic volcanic edifices as part of the Samaná field, 2) highlight the potentially active volcanism in an area previously defined as non-volcanogenic, and 3) give insights into the magmatic evolution of the scarcely studied evolved monogenetic volcanism linked to subduction zones worldwide. To achieve these aims, this study uses petrography, mineral chemistry, whole-rock geochemistry, geochronological analyses, and geothermobarometric calculations. The analyses indicate that the field is formed by at least seven volcanoes with similar composition and that it is long-lived and potentially active. Mineralogically, the erupted products host plagioclase (An26–74) and amphibole (magnesio-hastingsite, tschermakite, and occasionally mangesio-hornblende) as the most abundant phases, although orthopyroxene (enstatite; Wo2–3, En70–76, Fs21–28) and clinopyroxene (diopside and augite; Wo44–45, En41–42, Fs13–15, and Wo42–44, En46–47, Fs10–11) also appear. Less abundant phases such as olivine (Fo81–88), biotite (magnesiobiotite), quartz, and Fe–Ti oxides (Usp4–89 Mag96–11, and Ilm61–92 Hem39–8) were also recognized. Chemically, the volcanoes are of andesitic-to-dacitic composition with calc-alkaline affinity and show similar behavior of LILE, HFSE, and REE, which is typical for magmatism in subduction environments. Ages yield a range between 1.32 ± 0.06 Ma (K/Ar) and 16,919 ± 220 years (14C). The results also indicate that the volcanoes share a common magmatic source that fed the individual eruptions and that the magma differentiation is mainly controlled by processes of fractional crystallization, although evidence of magma recharge processes or magma mixing and assimilation as a minor process are also recognized. Geothermobarometric calculations suggest that the different mineral phases are crystallized between 1,194 and 687 °C and a pressure between 0.88 and 0.19 GPa. This indicates that the aforementioned processes occurred not only at the main magmatic reservoir (∼33–21 km depth) but also at different stagnation zones at shallower levels of the crust (∼7–5 km). Taking this into account, it is shown that the magma evolution of this monogenetic field is more complex than individual batches of magma reaching the surface uninterrupted, as is normally described for monogenetic volcanic fields of more mafic compositions in other tectonic settings. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
The Northernmost Volcanoes in South America (Colombia, 5–6°N): The Potentially Active Samaná Monogenetic Volcanic Field |
url |
https://doi.org/10.3389/feart.2022.880003 https://doaj.org/article/917c6ed5ec824201a001d21bbe505967 https://www.frontiersin.org/articles/10.3389/feart.2022.880003/full https://doaj.org/toc/2296-6463 |
remote_bool |
true |
author2 |
Laura Sánchez-Torres Hugo Murcia Dayana Schonwalder-Ángel |
author2Str |
Laura Sánchez-Torres Hugo Murcia Dayana Schonwalder-Ángel |
ppnlink |
771399731 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/feart.2022.880003 |
up_date |
2024-07-03T19:30:22.422Z |
_version_ |
1803587443681656832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ021202001</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307044416.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/feart.2022.880003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ021202001</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ917c6ed5ec824201a001d21bbe505967</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Laura Sánchez-Torres</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Northernmost Volcanoes in South America (Colombia, 5–6°N): The Potentially Active Samaná Monogenetic Volcanic Field</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The northernmost volcanism in South America (5–6°N) is defined by the presence of several monogenetic volcanic edifices in Colombia, which have been grouped within the Samaná monogenetic volcanic field. Few volcanoes have been studied so far, but they are recognized as a cluster of volcanoes of intermediate-to-acid composition, formed by both explosive and effusive eruptions. This study aims to 1) characterize four more monogenetic volcanic edifices as part of the Samaná field, 2) highlight the potentially active volcanism in an area previously defined as non-volcanogenic, and 3) give insights into the magmatic evolution of the scarcely studied evolved monogenetic volcanism linked to subduction zones worldwide. To achieve these aims, this study uses petrography, mineral chemistry, whole-rock geochemistry, geochronological analyses, and geothermobarometric calculations. The analyses indicate that the field is formed by at least seven volcanoes with similar composition and that it is long-lived and potentially active. Mineralogically, the erupted products host plagioclase (An26–74) and amphibole (magnesio-hastingsite, tschermakite, and occasionally mangesio-hornblende) as the most abundant phases, although orthopyroxene (enstatite; Wo2–3, En70–76, Fs21–28) and clinopyroxene (diopside and augite; Wo44–45, En41–42, Fs13–15, and Wo42–44, En46–47, Fs10–11) also appear. Less abundant phases such as olivine (Fo81–88), biotite (magnesiobiotite), quartz, and Fe–Ti oxides (Usp4–89 Mag96–11, and Ilm61–92 Hem39–8) were also recognized. Chemically, the volcanoes are of andesitic-to-dacitic composition with calc-alkaline affinity and show similar behavior of LILE, HFSE, and REE, which is typical for magmatism in subduction environments. Ages yield a range between 1.32 ± 0.06 Ma (K/Ar) and 16,919 ± 220 years (14C). The results also indicate that the volcanoes share a common magmatic source that fed the individual eruptions and that the magma differentiation is mainly controlled by processes of fractional crystallization, although evidence of magma recharge processes or magma mixing and assimilation as a minor process are also recognized. Geothermobarometric calculations suggest that the different mineral phases are crystallized between 1,194 and 687 °C and a pressure between 0.88 and 0.19 GPa. This indicates that the aforementioned processes occurred not only at the main magmatic reservoir (∼33–21 km depth) but also at different stagnation zones at shallower levels of the crust (∼7–5 km). Taking this into account, it is shown that the magma evolution of this monogenetic field is more complex than individual batches of magma reaching the surface uninterrupted, as is normally described for monogenetic volcanic fields of more mafic compositions in other tectonic settings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silicic monogenetic volcanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">effusive monogenetic eruptions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magma stagnation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long-lived monogenetic fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">complex magma evolution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Sánchez-Torres</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hugo Murcia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hugo Murcia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dayana Schonwalder-Ángel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Earth Science</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2022)</subfield><subfield code="w">(DE-627)771399731</subfield><subfield code="w">(DE-600)2741235-0</subfield><subfield code="x">22966463</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/feart.2022.880003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/917c6ed5ec824201a001d21bbe505967</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/feart.2022.880003/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-6463</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.401019 |