Shortest Path Algorithms for Pedestrian Navigation Systems
Efficient shortest path algorithms are of key importance for routing and navigation systems. However, these applications are designed focusing on the requirements of motor vehicles, and therefore, finding paths in pedestrian sections of urban areas is not sufficiently supported. In addition, finding...
Ausführliche Beschreibung
Autor*in: |
Kyriakos Koritsoglou [verfasserIn] Georgios Tsoumanis [verfasserIn] Vaios Patras [verfasserIn] Ioannis Fudos [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Information - MDPI AG, 2010, 13(2022), 6, p 269 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2022 ; number:6, p 269 |
Links: |
---|
DOI / URN: |
10.3390/info13060269 |
---|
Katalog-ID: |
DOAJ021212791 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ021212791 | ||
003 | DE-627 | ||
005 | 20240414202700.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/info13060269 |2 doi | |
035 | |a (DE-627)DOAJ021212791 | ||
035 | |a (DE-599)DOAJbb5dd3dc533a419aac069a1f78f8fc1c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a T58.5-58.64 | |
100 | 0 | |a Kyriakos Koritsoglou |e verfasserin |4 aut | |
245 | 1 | 0 | |a Shortest Path Algorithms for Pedestrian Navigation Systems |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Efficient shortest path algorithms are of key importance for routing and navigation systems. However, these applications are designed focusing on the requirements of motor vehicles, and therefore, finding paths in pedestrian sections of urban areas is not sufficiently supported. In addition, finding the shortest path is often not adequate for urban sidewalk routes, as users of these applications may also be interested in alternative routes that, although slightly longer, possess other desirable features and properties. According to the literature, the search for alternative routes is carried out mainly using the k-shortest paths (KSP) algorithm which represents an ordered list of all available alternatives. Even though various KSP algorithms have been proposed, to the best of our knowledge, there is no research addressing all issues inherent in a pedestrian navigation system. The purpose of this paper is to present a heuristic algorithm for graph datasets that implements a penalty-based method which, by increasing certain edge weights, effectively searches for the most accessible alternative paths in multi-route cases. To demonstrate how the algorithm works, we present experimental results on finding the most accessible paths in pedestrian sections of the historical center of Thessaloniki city. | ||
650 | 4 | |a shortest path | |
650 | 4 | |a k-shortest paths | |
650 | 4 | |a navigation systems | |
650 | 4 | |a pedestrian navigation | |
650 | 4 | |a alternative routes | |
653 | 0 | |a Information technology | |
700 | 0 | |a Georgios Tsoumanis |e verfasserin |4 aut | |
700 | 0 | |a Vaios Patras |e verfasserin |4 aut | |
700 | 0 | |a Ioannis Fudos |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Information |d MDPI AG, 2010 |g 13(2022), 6, p 269 |w (DE-627)654746753 |w (DE-600)2599790-7 |x 20782489 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2022 |g number:6, p 269 |
856 | 4 | 0 | |u https://doi.org/10.3390/info13060269 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/bb5dd3dc533a419aac069a1f78f8fc1c |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2078-2489/13/6/269 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2078-2489 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2022 |e 6, p 269 |
author_variant |
k k kk g t gt v p vp i f if |
---|---|
matchkey_str |
article:20782489:2022----::hretahloihsopdsranv |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
T |
publishDate |
2022 |
allfields |
10.3390/info13060269 doi (DE-627)DOAJ021212791 (DE-599)DOAJbb5dd3dc533a419aac069a1f78f8fc1c DE-627 ger DE-627 rakwb eng T58.5-58.64 Kyriakos Koritsoglou verfasserin aut Shortest Path Algorithms for Pedestrian Navigation Systems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Efficient shortest path algorithms are of key importance for routing and navigation systems. However, these applications are designed focusing on the requirements of motor vehicles, and therefore, finding paths in pedestrian sections of urban areas is not sufficiently supported. In addition, finding the shortest path is often not adequate for urban sidewalk routes, as users of these applications may also be interested in alternative routes that, although slightly longer, possess other desirable features and properties. According to the literature, the search for alternative routes is carried out mainly using the k-shortest paths (KSP) algorithm which represents an ordered list of all available alternatives. Even though various KSP algorithms have been proposed, to the best of our knowledge, there is no research addressing all issues inherent in a pedestrian navigation system. The purpose of this paper is to present a heuristic algorithm for graph datasets that implements a penalty-based method which, by increasing certain edge weights, effectively searches for the most accessible alternative paths in multi-route cases. To demonstrate how the algorithm works, we present experimental results on finding the most accessible paths in pedestrian sections of the historical center of Thessaloniki city. shortest path k-shortest paths navigation systems pedestrian navigation alternative routes Information technology Georgios Tsoumanis verfasserin aut Vaios Patras verfasserin aut Ioannis Fudos verfasserin aut In Information MDPI AG, 2010 13(2022), 6, p 269 (DE-627)654746753 (DE-600)2599790-7 20782489 nnns volume:13 year:2022 number:6, p 269 https://doi.org/10.3390/info13060269 kostenfrei https://doaj.org/article/bb5dd3dc533a419aac069a1f78f8fc1c kostenfrei https://www.mdpi.com/2078-2489/13/6/269 kostenfrei https://doaj.org/toc/2078-2489 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 6, p 269 |
spelling |
10.3390/info13060269 doi (DE-627)DOAJ021212791 (DE-599)DOAJbb5dd3dc533a419aac069a1f78f8fc1c DE-627 ger DE-627 rakwb eng T58.5-58.64 Kyriakos Koritsoglou verfasserin aut Shortest Path Algorithms for Pedestrian Navigation Systems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Efficient shortest path algorithms are of key importance for routing and navigation systems. However, these applications are designed focusing on the requirements of motor vehicles, and therefore, finding paths in pedestrian sections of urban areas is not sufficiently supported. In addition, finding the shortest path is often not adequate for urban sidewalk routes, as users of these applications may also be interested in alternative routes that, although slightly longer, possess other desirable features and properties. According to the literature, the search for alternative routes is carried out mainly using the k-shortest paths (KSP) algorithm which represents an ordered list of all available alternatives. Even though various KSP algorithms have been proposed, to the best of our knowledge, there is no research addressing all issues inherent in a pedestrian navigation system. The purpose of this paper is to present a heuristic algorithm for graph datasets that implements a penalty-based method which, by increasing certain edge weights, effectively searches for the most accessible alternative paths in multi-route cases. To demonstrate how the algorithm works, we present experimental results on finding the most accessible paths in pedestrian sections of the historical center of Thessaloniki city. shortest path k-shortest paths navigation systems pedestrian navigation alternative routes Information technology Georgios Tsoumanis verfasserin aut Vaios Patras verfasserin aut Ioannis Fudos verfasserin aut In Information MDPI AG, 2010 13(2022), 6, p 269 (DE-627)654746753 (DE-600)2599790-7 20782489 nnns volume:13 year:2022 number:6, p 269 https://doi.org/10.3390/info13060269 kostenfrei https://doaj.org/article/bb5dd3dc533a419aac069a1f78f8fc1c kostenfrei https://www.mdpi.com/2078-2489/13/6/269 kostenfrei https://doaj.org/toc/2078-2489 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 6, p 269 |
allfields_unstemmed |
10.3390/info13060269 doi (DE-627)DOAJ021212791 (DE-599)DOAJbb5dd3dc533a419aac069a1f78f8fc1c DE-627 ger DE-627 rakwb eng T58.5-58.64 Kyriakos Koritsoglou verfasserin aut Shortest Path Algorithms for Pedestrian Navigation Systems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Efficient shortest path algorithms are of key importance for routing and navigation systems. However, these applications are designed focusing on the requirements of motor vehicles, and therefore, finding paths in pedestrian sections of urban areas is not sufficiently supported. In addition, finding the shortest path is often not adequate for urban sidewalk routes, as users of these applications may also be interested in alternative routes that, although slightly longer, possess other desirable features and properties. According to the literature, the search for alternative routes is carried out mainly using the k-shortest paths (KSP) algorithm which represents an ordered list of all available alternatives. Even though various KSP algorithms have been proposed, to the best of our knowledge, there is no research addressing all issues inherent in a pedestrian navigation system. The purpose of this paper is to present a heuristic algorithm for graph datasets that implements a penalty-based method which, by increasing certain edge weights, effectively searches for the most accessible alternative paths in multi-route cases. To demonstrate how the algorithm works, we present experimental results on finding the most accessible paths in pedestrian sections of the historical center of Thessaloniki city. shortest path k-shortest paths navigation systems pedestrian navigation alternative routes Information technology Georgios Tsoumanis verfasserin aut Vaios Patras verfasserin aut Ioannis Fudos verfasserin aut In Information MDPI AG, 2010 13(2022), 6, p 269 (DE-627)654746753 (DE-600)2599790-7 20782489 nnns volume:13 year:2022 number:6, p 269 https://doi.org/10.3390/info13060269 kostenfrei https://doaj.org/article/bb5dd3dc533a419aac069a1f78f8fc1c kostenfrei https://www.mdpi.com/2078-2489/13/6/269 kostenfrei https://doaj.org/toc/2078-2489 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 6, p 269 |
allfieldsGer |
10.3390/info13060269 doi (DE-627)DOAJ021212791 (DE-599)DOAJbb5dd3dc533a419aac069a1f78f8fc1c DE-627 ger DE-627 rakwb eng T58.5-58.64 Kyriakos Koritsoglou verfasserin aut Shortest Path Algorithms for Pedestrian Navigation Systems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Efficient shortest path algorithms are of key importance for routing and navigation systems. However, these applications are designed focusing on the requirements of motor vehicles, and therefore, finding paths in pedestrian sections of urban areas is not sufficiently supported. In addition, finding the shortest path is often not adequate for urban sidewalk routes, as users of these applications may also be interested in alternative routes that, although slightly longer, possess other desirable features and properties. According to the literature, the search for alternative routes is carried out mainly using the k-shortest paths (KSP) algorithm which represents an ordered list of all available alternatives. Even though various KSP algorithms have been proposed, to the best of our knowledge, there is no research addressing all issues inherent in a pedestrian navigation system. The purpose of this paper is to present a heuristic algorithm for graph datasets that implements a penalty-based method which, by increasing certain edge weights, effectively searches for the most accessible alternative paths in multi-route cases. To demonstrate how the algorithm works, we present experimental results on finding the most accessible paths in pedestrian sections of the historical center of Thessaloniki city. shortest path k-shortest paths navigation systems pedestrian navigation alternative routes Information technology Georgios Tsoumanis verfasserin aut Vaios Patras verfasserin aut Ioannis Fudos verfasserin aut In Information MDPI AG, 2010 13(2022), 6, p 269 (DE-627)654746753 (DE-600)2599790-7 20782489 nnns volume:13 year:2022 number:6, p 269 https://doi.org/10.3390/info13060269 kostenfrei https://doaj.org/article/bb5dd3dc533a419aac069a1f78f8fc1c kostenfrei https://www.mdpi.com/2078-2489/13/6/269 kostenfrei https://doaj.org/toc/2078-2489 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 6, p 269 |
allfieldsSound |
10.3390/info13060269 doi (DE-627)DOAJ021212791 (DE-599)DOAJbb5dd3dc533a419aac069a1f78f8fc1c DE-627 ger DE-627 rakwb eng T58.5-58.64 Kyriakos Koritsoglou verfasserin aut Shortest Path Algorithms for Pedestrian Navigation Systems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Efficient shortest path algorithms are of key importance for routing and navigation systems. However, these applications are designed focusing on the requirements of motor vehicles, and therefore, finding paths in pedestrian sections of urban areas is not sufficiently supported. In addition, finding the shortest path is often not adequate for urban sidewalk routes, as users of these applications may also be interested in alternative routes that, although slightly longer, possess other desirable features and properties. According to the literature, the search for alternative routes is carried out mainly using the k-shortest paths (KSP) algorithm which represents an ordered list of all available alternatives. Even though various KSP algorithms have been proposed, to the best of our knowledge, there is no research addressing all issues inherent in a pedestrian navigation system. The purpose of this paper is to present a heuristic algorithm for graph datasets that implements a penalty-based method which, by increasing certain edge weights, effectively searches for the most accessible alternative paths in multi-route cases. To demonstrate how the algorithm works, we present experimental results on finding the most accessible paths in pedestrian sections of the historical center of Thessaloniki city. shortest path k-shortest paths navigation systems pedestrian navigation alternative routes Information technology Georgios Tsoumanis verfasserin aut Vaios Patras verfasserin aut Ioannis Fudos verfasserin aut In Information MDPI AG, 2010 13(2022), 6, p 269 (DE-627)654746753 (DE-600)2599790-7 20782489 nnns volume:13 year:2022 number:6, p 269 https://doi.org/10.3390/info13060269 kostenfrei https://doaj.org/article/bb5dd3dc533a419aac069a1f78f8fc1c kostenfrei https://www.mdpi.com/2078-2489/13/6/269 kostenfrei https://doaj.org/toc/2078-2489 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 6, p 269 |
language |
English |
source |
In Information 13(2022), 6, p 269 volume:13 year:2022 number:6, p 269 |
sourceStr |
In Information 13(2022), 6, p 269 volume:13 year:2022 number:6, p 269 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
shortest path k-shortest paths navigation systems pedestrian navigation alternative routes Information technology |
isfreeaccess_bool |
true |
container_title |
Information |
authorswithroles_txt_mv |
Kyriakos Koritsoglou @@aut@@ Georgios Tsoumanis @@aut@@ Vaios Patras @@aut@@ Ioannis Fudos @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
654746753 |
id |
DOAJ021212791 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ021212791</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414202700.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/info13060269</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ021212791</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbb5dd3dc533a419aac069a1f78f8fc1c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T58.5-58.64</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kyriakos Koritsoglou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shortest Path Algorithms for Pedestrian Navigation Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Efficient shortest path algorithms are of key importance for routing and navigation systems. However, these applications are designed focusing on the requirements of motor vehicles, and therefore, finding paths in pedestrian sections of urban areas is not sufficiently supported. In addition, finding the shortest path is often not adequate for urban sidewalk routes, as users of these applications may also be interested in alternative routes that, although slightly longer, possess other desirable features and properties. According to the literature, the search for alternative routes is carried out mainly using the k-shortest paths (KSP) algorithm which represents an ordered list of all available alternatives. Even though various KSP algorithms have been proposed, to the best of our knowledge, there is no research addressing all issues inherent in a pedestrian navigation system. The purpose of this paper is to present a heuristic algorithm for graph datasets that implements a penalty-based method which, by increasing certain edge weights, effectively searches for the most accessible alternative paths in multi-route cases. To demonstrate how the algorithm works, we present experimental results on finding the most accessible paths in pedestrian sections of the historical center of Thessaloniki city.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shortest path</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">k-shortest paths</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">navigation systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pedestrian navigation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">alternative routes</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Information technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georgios Tsoumanis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vaios Patras</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ioannis Fudos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Information</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">13(2022), 6, p 269</subfield><subfield code="w">(DE-627)654746753</subfield><subfield code="w">(DE-600)2599790-7</subfield><subfield code="x">20782489</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6, p 269</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/info13060269</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bb5dd3dc533a419aac069a1f78f8fc1c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2078-2489/13/6/269</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2078-2489</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield><subfield code="e">6, p 269</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Kyriakos Koritsoglou |
spellingShingle |
Kyriakos Koritsoglou misc T58.5-58.64 misc shortest path misc k-shortest paths misc navigation systems misc pedestrian navigation misc alternative routes misc Information technology Shortest Path Algorithms for Pedestrian Navigation Systems |
authorStr |
Kyriakos Koritsoglou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)654746753 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
T58 |
illustrated |
Not Illustrated |
issn |
20782489 |
topic_title |
T58.5-58.64 Shortest Path Algorithms for Pedestrian Navigation Systems shortest path k-shortest paths navigation systems pedestrian navigation alternative routes |
topic |
misc T58.5-58.64 misc shortest path misc k-shortest paths misc navigation systems misc pedestrian navigation misc alternative routes misc Information technology |
topic_unstemmed |
misc T58.5-58.64 misc shortest path misc k-shortest paths misc navigation systems misc pedestrian navigation misc alternative routes misc Information technology |
topic_browse |
misc T58.5-58.64 misc shortest path misc k-shortest paths misc navigation systems misc pedestrian navigation misc alternative routes misc Information technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Information |
hierarchy_parent_id |
654746753 |
hierarchy_top_title |
Information |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)654746753 (DE-600)2599790-7 |
title |
Shortest Path Algorithms for Pedestrian Navigation Systems |
ctrlnum |
(DE-627)DOAJ021212791 (DE-599)DOAJbb5dd3dc533a419aac069a1f78f8fc1c |
title_full |
Shortest Path Algorithms for Pedestrian Navigation Systems |
author_sort |
Kyriakos Koritsoglou |
journal |
Information |
journalStr |
Information |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Kyriakos Koritsoglou Georgios Tsoumanis Vaios Patras Ioannis Fudos |
container_volume |
13 |
class |
T58.5-58.64 |
format_se |
Elektronische Aufsätze |
author-letter |
Kyriakos Koritsoglou |
doi_str_mv |
10.3390/info13060269 |
author2-role |
verfasserin |
title_sort |
shortest path algorithms for pedestrian navigation systems |
callnumber |
T58.5-58.64 |
title_auth |
Shortest Path Algorithms for Pedestrian Navigation Systems |
abstract |
Efficient shortest path algorithms are of key importance for routing and navigation systems. However, these applications are designed focusing on the requirements of motor vehicles, and therefore, finding paths in pedestrian sections of urban areas is not sufficiently supported. In addition, finding the shortest path is often not adequate for urban sidewalk routes, as users of these applications may also be interested in alternative routes that, although slightly longer, possess other desirable features and properties. According to the literature, the search for alternative routes is carried out mainly using the k-shortest paths (KSP) algorithm which represents an ordered list of all available alternatives. Even though various KSP algorithms have been proposed, to the best of our knowledge, there is no research addressing all issues inherent in a pedestrian navigation system. The purpose of this paper is to present a heuristic algorithm for graph datasets that implements a penalty-based method which, by increasing certain edge weights, effectively searches for the most accessible alternative paths in multi-route cases. To demonstrate how the algorithm works, we present experimental results on finding the most accessible paths in pedestrian sections of the historical center of Thessaloniki city. |
abstractGer |
Efficient shortest path algorithms are of key importance for routing and navigation systems. However, these applications are designed focusing on the requirements of motor vehicles, and therefore, finding paths in pedestrian sections of urban areas is not sufficiently supported. In addition, finding the shortest path is often not adequate for urban sidewalk routes, as users of these applications may also be interested in alternative routes that, although slightly longer, possess other desirable features and properties. According to the literature, the search for alternative routes is carried out mainly using the k-shortest paths (KSP) algorithm which represents an ordered list of all available alternatives. Even though various KSP algorithms have been proposed, to the best of our knowledge, there is no research addressing all issues inherent in a pedestrian navigation system. The purpose of this paper is to present a heuristic algorithm for graph datasets that implements a penalty-based method which, by increasing certain edge weights, effectively searches for the most accessible alternative paths in multi-route cases. To demonstrate how the algorithm works, we present experimental results on finding the most accessible paths in pedestrian sections of the historical center of Thessaloniki city. |
abstract_unstemmed |
Efficient shortest path algorithms are of key importance for routing and navigation systems. However, these applications are designed focusing on the requirements of motor vehicles, and therefore, finding paths in pedestrian sections of urban areas is not sufficiently supported. In addition, finding the shortest path is often not adequate for urban sidewalk routes, as users of these applications may also be interested in alternative routes that, although slightly longer, possess other desirable features and properties. According to the literature, the search for alternative routes is carried out mainly using the k-shortest paths (KSP) algorithm which represents an ordered list of all available alternatives. Even though various KSP algorithms have been proposed, to the best of our knowledge, there is no research addressing all issues inherent in a pedestrian navigation system. The purpose of this paper is to present a heuristic algorithm for graph datasets that implements a penalty-based method which, by increasing certain edge weights, effectively searches for the most accessible alternative paths in multi-route cases. To demonstrate how the algorithm works, we present experimental results on finding the most accessible paths in pedestrian sections of the historical center of Thessaloniki city. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 269 |
title_short |
Shortest Path Algorithms for Pedestrian Navigation Systems |
url |
https://doi.org/10.3390/info13060269 https://doaj.org/article/bb5dd3dc533a419aac069a1f78f8fc1c https://www.mdpi.com/2078-2489/13/6/269 https://doaj.org/toc/2078-2489 |
remote_bool |
true |
author2 |
Georgios Tsoumanis Vaios Patras Ioannis Fudos |
author2Str |
Georgios Tsoumanis Vaios Patras Ioannis Fudos |
ppnlink |
654746753 |
callnumber-subject |
T - General Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/info13060269 |
callnumber-a |
T58.5-58.64 |
up_date |
2024-07-03T19:34:26.663Z |
_version_ |
1803587699778519040 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ021212791</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414202700.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/info13060269</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ021212791</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbb5dd3dc533a419aac069a1f78f8fc1c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T58.5-58.64</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kyriakos Koritsoglou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shortest Path Algorithms for Pedestrian Navigation Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Efficient shortest path algorithms are of key importance for routing and navigation systems. However, these applications are designed focusing on the requirements of motor vehicles, and therefore, finding paths in pedestrian sections of urban areas is not sufficiently supported. In addition, finding the shortest path is often not adequate for urban sidewalk routes, as users of these applications may also be interested in alternative routes that, although slightly longer, possess other desirable features and properties. According to the literature, the search for alternative routes is carried out mainly using the k-shortest paths (KSP) algorithm which represents an ordered list of all available alternatives. Even though various KSP algorithms have been proposed, to the best of our knowledge, there is no research addressing all issues inherent in a pedestrian navigation system. The purpose of this paper is to present a heuristic algorithm for graph datasets that implements a penalty-based method which, by increasing certain edge weights, effectively searches for the most accessible alternative paths in multi-route cases. To demonstrate how the algorithm works, we present experimental results on finding the most accessible paths in pedestrian sections of the historical center of Thessaloniki city.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shortest path</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">k-shortest paths</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">navigation systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pedestrian navigation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">alternative routes</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Information technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georgios Tsoumanis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vaios Patras</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ioannis Fudos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Information</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">13(2022), 6, p 269</subfield><subfield code="w">(DE-627)654746753</subfield><subfield code="w">(DE-600)2599790-7</subfield><subfield code="x">20782489</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6, p 269</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/info13060269</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bb5dd3dc533a419aac069a1f78f8fc1c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2078-2489/13/6/269</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2078-2489</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield><subfield code="e">6, p 269</subfield></datafield></record></collection>
|
score |
7.4008236 |