An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements
Highlights Carbon-based gradient resistance element structure is proposed for the construction of multifunctional touch sensor, which will promote wide detection and recognition range of multiple mechanical stimulations. Multifunctional touch sensor with gradient resistance element and two electrode...
Ausführliche Beschreibung
Autor*in: |
Chao Wei [verfasserIn] Wansheng Lin [verfasserIn] Shaofeng Liang [verfasserIn] Mengjiao Chen [verfasserIn] Yuanjin Zheng [verfasserIn] Xinqin Liao [verfasserIn] Zhong Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nano-Micro Letters - SpringerOpen, 2009, 14(2022), 1, Seite 18 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; number:1 ; pages:18 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1007/s40820-022-00875-9 |
---|
Katalog-ID: |
DOAJ021546851 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ021546851 | ||
003 | DE-627 | ||
005 | 20230307050724.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40820-022-00875-9 |2 doi | |
035 | |a (DE-627)DOAJ021546851 | ||
035 | |a (DE-599)DOAJ37524f8012c84a08bb493cbeb94617cd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Chao Wei |e verfasserin |4 aut | |
245 | 1 | 3 | |a An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Highlights Carbon-based gradient resistance element structure is proposed for the construction of multifunctional touch sensor, which will promote wide detection and recognition range of multiple mechanical stimulations. Multifunctional touch sensor with gradient resistance element and two electrodes is demonstrated to eliminate signals crosstalk and prevent interference during position sensing for human–machine interactions. Biological sensing interface based on a deep-learning-assisted all-in-one multipoint touch sensor enables users to efficiently interact with virtual world. Abstract Human–machine interactions using deep-learning methods are important in the research of virtual reality, augmented reality, and metaverse. Such research remains challenging as current interactive sensing interfaces for single-point or multipoint touch input are trapped by massive crossover electrodes, signal crosstalk, propagation delay, and demanding configuration requirements. Here, an all-in-one multipoint touch sensor (AIOM touch sensor) with only two electrodes is reported. The AIOM touch sensor is efficiently constructed by gradient resistance elements, which can highly adapt to diverse application-dependent configurations. Combined with deep learning method, the AIOM touch sensor can be utilized to recognize, learn, and memorize human–machine interactions. A biometric verification system is built based on the AIOM touch sensor, which achieves a high identification accuracy of over 98% and offers a promising hybrid cyber security against password leaking. Diversiform human–machine interactions, including freely playing piano music and programmatically controlling a drone, demonstrate the high stability, rapid response time, and excellent spatiotemporally dynamic resolution of the AIOM touch sensor, which will promote significant development of interactive sensing interfaces between fingertips and virtual objects. | ||
650 | 4 | |a Multifunctional touch sensor | |
650 | 4 | |a Carbon functional material | |
650 | 4 | |a Paper-based device | |
650 | 4 | |a Gradient resistance element | |
650 | 4 | |a Human–machine interaction | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Wansheng Lin |e verfasserin |4 aut | |
700 | 0 | |a Shaofeng Liang |e verfasserin |4 aut | |
700 | 0 | |a Mengjiao Chen |e verfasserin |4 aut | |
700 | 0 | |a Yuanjin Zheng |e verfasserin |4 aut | |
700 | 0 | |a Xinqin Liao |e verfasserin |4 aut | |
700 | 0 | |a Zhong Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nano-Micro Letters |d SpringerOpen, 2009 |g 14(2022), 1, Seite 18 |w (DE-627)680319581 |w (DE-600)2642093-4 |x 21505551 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g number:1 |g pages:18 |
856 | 4 | 0 | |u https://doi.org/10.1007/s40820-022-00875-9 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/37524f8012c84a08bb493cbeb94617cd |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1007/s40820-022-00875-9 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2311-6706 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2150-5551 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |e 1 |h 18 |
author_variant |
c w cw w l wl s l sl m c mc y z yz x l xl z c zc |
---|---|
matchkey_str |
article:21505551:2022----::nlioeutfntoatuhesrihabnaegai |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s40820-022-00875-9 doi (DE-627)DOAJ021546851 (DE-599)DOAJ37524f8012c84a08bb493cbeb94617cd DE-627 ger DE-627 rakwb eng Chao Wei verfasserin aut An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Highlights Carbon-based gradient resistance element structure is proposed for the construction of multifunctional touch sensor, which will promote wide detection and recognition range of multiple mechanical stimulations. Multifunctional touch sensor with gradient resistance element and two electrodes is demonstrated to eliminate signals crosstalk and prevent interference during position sensing for human–machine interactions. Biological sensing interface based on a deep-learning-assisted all-in-one multipoint touch sensor enables users to efficiently interact with virtual world. Abstract Human–machine interactions using deep-learning methods are important in the research of virtual reality, augmented reality, and metaverse. Such research remains challenging as current interactive sensing interfaces for single-point or multipoint touch input are trapped by massive crossover electrodes, signal crosstalk, propagation delay, and demanding configuration requirements. Here, an all-in-one multipoint touch sensor (AIOM touch sensor) with only two electrodes is reported. The AIOM touch sensor is efficiently constructed by gradient resistance elements, which can highly adapt to diverse application-dependent configurations. Combined with deep learning method, the AIOM touch sensor can be utilized to recognize, learn, and memorize human–machine interactions. A biometric verification system is built based on the AIOM touch sensor, which achieves a high identification accuracy of over 98% and offers a promising hybrid cyber security against password leaking. Diversiform human–machine interactions, including freely playing piano music and programmatically controlling a drone, demonstrate the high stability, rapid response time, and excellent spatiotemporally dynamic resolution of the AIOM touch sensor, which will promote significant development of interactive sensing interfaces between fingertips and virtual objects. Multifunctional touch sensor Carbon functional material Paper-based device Gradient resistance element Human–machine interaction Technology T Wansheng Lin verfasserin aut Shaofeng Liang verfasserin aut Mengjiao Chen verfasserin aut Yuanjin Zheng verfasserin aut Xinqin Liao verfasserin aut Zhong Chen verfasserin aut In Nano-Micro Letters SpringerOpen, 2009 14(2022), 1, Seite 18 (DE-627)680319581 (DE-600)2642093-4 21505551 nnns volume:14 year:2022 number:1 pages:18 https://doi.org/10.1007/s40820-022-00875-9 kostenfrei https://doaj.org/article/37524f8012c84a08bb493cbeb94617cd kostenfrei https://doi.org/10.1007/s40820-022-00875-9 kostenfrei https://doaj.org/toc/2311-6706 Journal toc kostenfrei https://doaj.org/toc/2150-5551 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1 18 |
spelling |
10.1007/s40820-022-00875-9 doi (DE-627)DOAJ021546851 (DE-599)DOAJ37524f8012c84a08bb493cbeb94617cd DE-627 ger DE-627 rakwb eng Chao Wei verfasserin aut An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Highlights Carbon-based gradient resistance element structure is proposed for the construction of multifunctional touch sensor, which will promote wide detection and recognition range of multiple mechanical stimulations. Multifunctional touch sensor with gradient resistance element and two electrodes is demonstrated to eliminate signals crosstalk and prevent interference during position sensing for human–machine interactions. Biological sensing interface based on a deep-learning-assisted all-in-one multipoint touch sensor enables users to efficiently interact with virtual world. Abstract Human–machine interactions using deep-learning methods are important in the research of virtual reality, augmented reality, and metaverse. Such research remains challenging as current interactive sensing interfaces for single-point or multipoint touch input are trapped by massive crossover electrodes, signal crosstalk, propagation delay, and demanding configuration requirements. Here, an all-in-one multipoint touch sensor (AIOM touch sensor) with only two electrodes is reported. The AIOM touch sensor is efficiently constructed by gradient resistance elements, which can highly adapt to diverse application-dependent configurations. Combined with deep learning method, the AIOM touch sensor can be utilized to recognize, learn, and memorize human–machine interactions. A biometric verification system is built based on the AIOM touch sensor, which achieves a high identification accuracy of over 98% and offers a promising hybrid cyber security against password leaking. Diversiform human–machine interactions, including freely playing piano music and programmatically controlling a drone, demonstrate the high stability, rapid response time, and excellent spatiotemporally dynamic resolution of the AIOM touch sensor, which will promote significant development of interactive sensing interfaces between fingertips and virtual objects. Multifunctional touch sensor Carbon functional material Paper-based device Gradient resistance element Human–machine interaction Technology T Wansheng Lin verfasserin aut Shaofeng Liang verfasserin aut Mengjiao Chen verfasserin aut Yuanjin Zheng verfasserin aut Xinqin Liao verfasserin aut Zhong Chen verfasserin aut In Nano-Micro Letters SpringerOpen, 2009 14(2022), 1, Seite 18 (DE-627)680319581 (DE-600)2642093-4 21505551 nnns volume:14 year:2022 number:1 pages:18 https://doi.org/10.1007/s40820-022-00875-9 kostenfrei https://doaj.org/article/37524f8012c84a08bb493cbeb94617cd kostenfrei https://doi.org/10.1007/s40820-022-00875-9 kostenfrei https://doaj.org/toc/2311-6706 Journal toc kostenfrei https://doaj.org/toc/2150-5551 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1 18 |
allfields_unstemmed |
10.1007/s40820-022-00875-9 doi (DE-627)DOAJ021546851 (DE-599)DOAJ37524f8012c84a08bb493cbeb94617cd DE-627 ger DE-627 rakwb eng Chao Wei verfasserin aut An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Highlights Carbon-based gradient resistance element structure is proposed for the construction of multifunctional touch sensor, which will promote wide detection and recognition range of multiple mechanical stimulations. Multifunctional touch sensor with gradient resistance element and two electrodes is demonstrated to eliminate signals crosstalk and prevent interference during position sensing for human–machine interactions. Biological sensing interface based on a deep-learning-assisted all-in-one multipoint touch sensor enables users to efficiently interact with virtual world. Abstract Human–machine interactions using deep-learning methods are important in the research of virtual reality, augmented reality, and metaverse. Such research remains challenging as current interactive sensing interfaces for single-point or multipoint touch input are trapped by massive crossover electrodes, signal crosstalk, propagation delay, and demanding configuration requirements. Here, an all-in-one multipoint touch sensor (AIOM touch sensor) with only two electrodes is reported. The AIOM touch sensor is efficiently constructed by gradient resistance elements, which can highly adapt to diverse application-dependent configurations. Combined with deep learning method, the AIOM touch sensor can be utilized to recognize, learn, and memorize human–machine interactions. A biometric verification system is built based on the AIOM touch sensor, which achieves a high identification accuracy of over 98% and offers a promising hybrid cyber security against password leaking. Diversiform human–machine interactions, including freely playing piano music and programmatically controlling a drone, demonstrate the high stability, rapid response time, and excellent spatiotemporally dynamic resolution of the AIOM touch sensor, which will promote significant development of interactive sensing interfaces between fingertips and virtual objects. Multifunctional touch sensor Carbon functional material Paper-based device Gradient resistance element Human–machine interaction Technology T Wansheng Lin verfasserin aut Shaofeng Liang verfasserin aut Mengjiao Chen verfasserin aut Yuanjin Zheng verfasserin aut Xinqin Liao verfasserin aut Zhong Chen verfasserin aut In Nano-Micro Letters SpringerOpen, 2009 14(2022), 1, Seite 18 (DE-627)680319581 (DE-600)2642093-4 21505551 nnns volume:14 year:2022 number:1 pages:18 https://doi.org/10.1007/s40820-022-00875-9 kostenfrei https://doaj.org/article/37524f8012c84a08bb493cbeb94617cd kostenfrei https://doi.org/10.1007/s40820-022-00875-9 kostenfrei https://doaj.org/toc/2311-6706 Journal toc kostenfrei https://doaj.org/toc/2150-5551 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1 18 |
allfieldsGer |
10.1007/s40820-022-00875-9 doi (DE-627)DOAJ021546851 (DE-599)DOAJ37524f8012c84a08bb493cbeb94617cd DE-627 ger DE-627 rakwb eng Chao Wei verfasserin aut An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Highlights Carbon-based gradient resistance element structure is proposed for the construction of multifunctional touch sensor, which will promote wide detection and recognition range of multiple mechanical stimulations. Multifunctional touch sensor with gradient resistance element and two electrodes is demonstrated to eliminate signals crosstalk and prevent interference during position sensing for human–machine interactions. Biological sensing interface based on a deep-learning-assisted all-in-one multipoint touch sensor enables users to efficiently interact with virtual world. Abstract Human–machine interactions using deep-learning methods are important in the research of virtual reality, augmented reality, and metaverse. Such research remains challenging as current interactive sensing interfaces for single-point or multipoint touch input are trapped by massive crossover electrodes, signal crosstalk, propagation delay, and demanding configuration requirements. Here, an all-in-one multipoint touch sensor (AIOM touch sensor) with only two electrodes is reported. The AIOM touch sensor is efficiently constructed by gradient resistance elements, which can highly adapt to diverse application-dependent configurations. Combined with deep learning method, the AIOM touch sensor can be utilized to recognize, learn, and memorize human–machine interactions. A biometric verification system is built based on the AIOM touch sensor, which achieves a high identification accuracy of over 98% and offers a promising hybrid cyber security against password leaking. Diversiform human–machine interactions, including freely playing piano music and programmatically controlling a drone, demonstrate the high stability, rapid response time, and excellent spatiotemporally dynamic resolution of the AIOM touch sensor, which will promote significant development of interactive sensing interfaces between fingertips and virtual objects. Multifunctional touch sensor Carbon functional material Paper-based device Gradient resistance element Human–machine interaction Technology T Wansheng Lin verfasserin aut Shaofeng Liang verfasserin aut Mengjiao Chen verfasserin aut Yuanjin Zheng verfasserin aut Xinqin Liao verfasserin aut Zhong Chen verfasserin aut In Nano-Micro Letters SpringerOpen, 2009 14(2022), 1, Seite 18 (DE-627)680319581 (DE-600)2642093-4 21505551 nnns volume:14 year:2022 number:1 pages:18 https://doi.org/10.1007/s40820-022-00875-9 kostenfrei https://doaj.org/article/37524f8012c84a08bb493cbeb94617cd kostenfrei https://doi.org/10.1007/s40820-022-00875-9 kostenfrei https://doaj.org/toc/2311-6706 Journal toc kostenfrei https://doaj.org/toc/2150-5551 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1 18 |
allfieldsSound |
10.1007/s40820-022-00875-9 doi (DE-627)DOAJ021546851 (DE-599)DOAJ37524f8012c84a08bb493cbeb94617cd DE-627 ger DE-627 rakwb eng Chao Wei verfasserin aut An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Highlights Carbon-based gradient resistance element structure is proposed for the construction of multifunctional touch sensor, which will promote wide detection and recognition range of multiple mechanical stimulations. Multifunctional touch sensor with gradient resistance element and two electrodes is demonstrated to eliminate signals crosstalk and prevent interference during position sensing for human–machine interactions. Biological sensing interface based on a deep-learning-assisted all-in-one multipoint touch sensor enables users to efficiently interact with virtual world. Abstract Human–machine interactions using deep-learning methods are important in the research of virtual reality, augmented reality, and metaverse. Such research remains challenging as current interactive sensing interfaces for single-point or multipoint touch input are trapped by massive crossover electrodes, signal crosstalk, propagation delay, and demanding configuration requirements. Here, an all-in-one multipoint touch sensor (AIOM touch sensor) with only two electrodes is reported. The AIOM touch sensor is efficiently constructed by gradient resistance elements, which can highly adapt to diverse application-dependent configurations. Combined with deep learning method, the AIOM touch sensor can be utilized to recognize, learn, and memorize human–machine interactions. A biometric verification system is built based on the AIOM touch sensor, which achieves a high identification accuracy of over 98% and offers a promising hybrid cyber security against password leaking. Diversiform human–machine interactions, including freely playing piano music and programmatically controlling a drone, demonstrate the high stability, rapid response time, and excellent spatiotemporally dynamic resolution of the AIOM touch sensor, which will promote significant development of interactive sensing interfaces between fingertips and virtual objects. Multifunctional touch sensor Carbon functional material Paper-based device Gradient resistance element Human–machine interaction Technology T Wansheng Lin verfasserin aut Shaofeng Liang verfasserin aut Mengjiao Chen verfasserin aut Yuanjin Zheng verfasserin aut Xinqin Liao verfasserin aut Zhong Chen verfasserin aut In Nano-Micro Letters SpringerOpen, 2009 14(2022), 1, Seite 18 (DE-627)680319581 (DE-600)2642093-4 21505551 nnns volume:14 year:2022 number:1 pages:18 https://doi.org/10.1007/s40820-022-00875-9 kostenfrei https://doaj.org/article/37524f8012c84a08bb493cbeb94617cd kostenfrei https://doi.org/10.1007/s40820-022-00875-9 kostenfrei https://doaj.org/toc/2311-6706 Journal toc kostenfrei https://doaj.org/toc/2150-5551 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1 18 |
language |
English |
source |
In Nano-Micro Letters 14(2022), 1, Seite 18 volume:14 year:2022 number:1 pages:18 |
sourceStr |
In Nano-Micro Letters 14(2022), 1, Seite 18 volume:14 year:2022 number:1 pages:18 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Multifunctional touch sensor Carbon functional material Paper-based device Gradient resistance element Human–machine interaction Technology T |
isfreeaccess_bool |
true |
container_title |
Nano-Micro Letters |
authorswithroles_txt_mv |
Chao Wei @@aut@@ Wansheng Lin @@aut@@ Shaofeng Liang @@aut@@ Mengjiao Chen @@aut@@ Yuanjin Zheng @@aut@@ Xinqin Liao @@aut@@ Zhong Chen @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
680319581 |
id |
DOAJ021546851 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ021546851</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307050724.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40820-022-00875-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ021546851</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ37524f8012c84a08bb493cbeb94617cd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chao Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights Carbon-based gradient resistance element structure is proposed for the construction of multifunctional touch sensor, which will promote wide detection and recognition range of multiple mechanical stimulations. Multifunctional touch sensor with gradient resistance element and two electrodes is demonstrated to eliminate signals crosstalk and prevent interference during position sensing for human–machine interactions. Biological sensing interface based on a deep-learning-assisted all-in-one multipoint touch sensor enables users to efficiently interact with virtual world. Abstract Human–machine interactions using deep-learning methods are important in the research of virtual reality, augmented reality, and metaverse. Such research remains challenging as current interactive sensing interfaces for single-point or multipoint touch input are trapped by massive crossover electrodes, signal crosstalk, propagation delay, and demanding configuration requirements. Here, an all-in-one multipoint touch sensor (AIOM touch sensor) with only two electrodes is reported. The AIOM touch sensor is efficiently constructed by gradient resistance elements, which can highly adapt to diverse application-dependent configurations. Combined with deep learning method, the AIOM touch sensor can be utilized to recognize, learn, and memorize human–machine interactions. A biometric verification system is built based on the AIOM touch sensor, which achieves a high identification accuracy of over 98% and offers a promising hybrid cyber security against password leaking. Diversiform human–machine interactions, including freely playing piano music and programmatically controlling a drone, demonstrate the high stability, rapid response time, and excellent spatiotemporally dynamic resolution of the AIOM touch sensor, which will promote significant development of interactive sensing interfaces between fingertips and virtual objects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multifunctional touch sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon functional material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Paper-based device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gradient resistance element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Human–machine interaction</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wansheng Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shaofeng Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mengjiao Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuanjin Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinqin Liao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhong Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nano-Micro Letters</subfield><subfield code="d">SpringerOpen, 2009</subfield><subfield code="g">14(2022), 1, Seite 18</subfield><subfield code="w">(DE-627)680319581</subfield><subfield code="w">(DE-600)2642093-4</subfield><subfield code="x">21505551</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s40820-022-00875-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/37524f8012c84a08bb493cbeb94617cd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s40820-022-00875-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2311-6706</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2150-5551</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">18</subfield></datafield></record></collection>
|
author |
Chao Wei |
spellingShingle |
Chao Wei misc Multifunctional touch sensor misc Carbon functional material misc Paper-based device misc Gradient resistance element misc Human–machine interaction misc Technology misc T An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements |
authorStr |
Chao Wei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)680319581 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
21505551 |
topic_title |
An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements Multifunctional touch sensor Carbon functional material Paper-based device Gradient resistance element Human–machine interaction |
topic |
misc Multifunctional touch sensor misc Carbon functional material misc Paper-based device misc Gradient resistance element misc Human–machine interaction misc Technology misc T |
topic_unstemmed |
misc Multifunctional touch sensor misc Carbon functional material misc Paper-based device misc Gradient resistance element misc Human–machine interaction misc Technology misc T |
topic_browse |
misc Multifunctional touch sensor misc Carbon functional material misc Paper-based device misc Gradient resistance element misc Human–machine interaction misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nano-Micro Letters |
hierarchy_parent_id |
680319581 |
hierarchy_top_title |
Nano-Micro Letters |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)680319581 (DE-600)2642093-4 |
title |
An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements |
ctrlnum |
(DE-627)DOAJ021546851 (DE-599)DOAJ37524f8012c84a08bb493cbeb94617cd |
title_full |
An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements |
author_sort |
Chao Wei |
journal |
Nano-Micro Letters |
journalStr |
Nano-Micro Letters |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
18 |
author_browse |
Chao Wei Wansheng Lin Shaofeng Liang Mengjiao Chen Yuanjin Zheng Xinqin Liao Zhong Chen |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Chao Wei |
doi_str_mv |
10.1007/s40820-022-00875-9 |
author2-role |
verfasserin |
title_sort |
all-in-one multifunctional touch sensor with carbon-based gradient resistance elements |
title_auth |
An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements |
abstract |
Highlights Carbon-based gradient resistance element structure is proposed for the construction of multifunctional touch sensor, which will promote wide detection and recognition range of multiple mechanical stimulations. Multifunctional touch sensor with gradient resistance element and two electrodes is demonstrated to eliminate signals crosstalk and prevent interference during position sensing for human–machine interactions. Biological sensing interface based on a deep-learning-assisted all-in-one multipoint touch sensor enables users to efficiently interact with virtual world. Abstract Human–machine interactions using deep-learning methods are important in the research of virtual reality, augmented reality, and metaverse. Such research remains challenging as current interactive sensing interfaces for single-point or multipoint touch input are trapped by massive crossover electrodes, signal crosstalk, propagation delay, and demanding configuration requirements. Here, an all-in-one multipoint touch sensor (AIOM touch sensor) with only two electrodes is reported. The AIOM touch sensor is efficiently constructed by gradient resistance elements, which can highly adapt to diverse application-dependent configurations. Combined with deep learning method, the AIOM touch sensor can be utilized to recognize, learn, and memorize human–machine interactions. A biometric verification system is built based on the AIOM touch sensor, which achieves a high identification accuracy of over 98% and offers a promising hybrid cyber security against password leaking. Diversiform human–machine interactions, including freely playing piano music and programmatically controlling a drone, demonstrate the high stability, rapid response time, and excellent spatiotemporally dynamic resolution of the AIOM touch sensor, which will promote significant development of interactive sensing interfaces between fingertips and virtual objects. |
abstractGer |
Highlights Carbon-based gradient resistance element structure is proposed for the construction of multifunctional touch sensor, which will promote wide detection and recognition range of multiple mechanical stimulations. Multifunctional touch sensor with gradient resistance element and two electrodes is demonstrated to eliminate signals crosstalk and prevent interference during position sensing for human–machine interactions. Biological sensing interface based on a deep-learning-assisted all-in-one multipoint touch sensor enables users to efficiently interact with virtual world. Abstract Human–machine interactions using deep-learning methods are important in the research of virtual reality, augmented reality, and metaverse. Such research remains challenging as current interactive sensing interfaces for single-point or multipoint touch input are trapped by massive crossover electrodes, signal crosstalk, propagation delay, and demanding configuration requirements. Here, an all-in-one multipoint touch sensor (AIOM touch sensor) with only two electrodes is reported. The AIOM touch sensor is efficiently constructed by gradient resistance elements, which can highly adapt to diverse application-dependent configurations. Combined with deep learning method, the AIOM touch sensor can be utilized to recognize, learn, and memorize human–machine interactions. A biometric verification system is built based on the AIOM touch sensor, which achieves a high identification accuracy of over 98% and offers a promising hybrid cyber security against password leaking. Diversiform human–machine interactions, including freely playing piano music and programmatically controlling a drone, demonstrate the high stability, rapid response time, and excellent spatiotemporally dynamic resolution of the AIOM touch sensor, which will promote significant development of interactive sensing interfaces between fingertips and virtual objects. |
abstract_unstemmed |
Highlights Carbon-based gradient resistance element structure is proposed for the construction of multifunctional touch sensor, which will promote wide detection and recognition range of multiple mechanical stimulations. Multifunctional touch sensor with gradient resistance element and two electrodes is demonstrated to eliminate signals crosstalk and prevent interference during position sensing for human–machine interactions. Biological sensing interface based on a deep-learning-assisted all-in-one multipoint touch sensor enables users to efficiently interact with virtual world. Abstract Human–machine interactions using deep-learning methods are important in the research of virtual reality, augmented reality, and metaverse. Such research remains challenging as current interactive sensing interfaces for single-point or multipoint touch input are trapped by massive crossover electrodes, signal crosstalk, propagation delay, and demanding configuration requirements. Here, an all-in-one multipoint touch sensor (AIOM touch sensor) with only two electrodes is reported. The AIOM touch sensor is efficiently constructed by gradient resistance elements, which can highly adapt to diverse application-dependent configurations. Combined with deep learning method, the AIOM touch sensor can be utilized to recognize, learn, and memorize human–machine interactions. A biometric verification system is built based on the AIOM touch sensor, which achieves a high identification accuracy of over 98% and offers a promising hybrid cyber security against password leaking. Diversiform human–machine interactions, including freely playing piano music and programmatically controlling a drone, demonstrate the high stability, rapid response time, and excellent spatiotemporally dynamic resolution of the AIOM touch sensor, which will promote significant development of interactive sensing interfaces between fingertips and virtual objects. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements |
url |
https://doi.org/10.1007/s40820-022-00875-9 https://doaj.org/article/37524f8012c84a08bb493cbeb94617cd https://doaj.org/toc/2311-6706 https://doaj.org/toc/2150-5551 |
remote_bool |
true |
author2 |
Wansheng Lin Shaofeng Liang Mengjiao Chen Yuanjin Zheng Xinqin Liao Zhong Chen |
author2Str |
Wansheng Lin Shaofeng Liang Mengjiao Chen Yuanjin Zheng Xinqin Liao Zhong Chen |
ppnlink |
680319581 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40820-022-00875-9 |
up_date |
2024-07-03T21:30:46.134Z |
_version_ |
1803595018283253760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ021546851</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307050724.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40820-022-00875-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ021546851</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ37524f8012c84a08bb493cbeb94617cd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chao Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights Carbon-based gradient resistance element structure is proposed for the construction of multifunctional touch sensor, which will promote wide detection and recognition range of multiple mechanical stimulations. Multifunctional touch sensor with gradient resistance element and two electrodes is demonstrated to eliminate signals crosstalk and prevent interference during position sensing for human–machine interactions. Biological sensing interface based on a deep-learning-assisted all-in-one multipoint touch sensor enables users to efficiently interact with virtual world. Abstract Human–machine interactions using deep-learning methods are important in the research of virtual reality, augmented reality, and metaverse. Such research remains challenging as current interactive sensing interfaces for single-point or multipoint touch input are trapped by massive crossover electrodes, signal crosstalk, propagation delay, and demanding configuration requirements. Here, an all-in-one multipoint touch sensor (AIOM touch sensor) with only two electrodes is reported. The AIOM touch sensor is efficiently constructed by gradient resistance elements, which can highly adapt to diverse application-dependent configurations. Combined with deep learning method, the AIOM touch sensor can be utilized to recognize, learn, and memorize human–machine interactions. A biometric verification system is built based on the AIOM touch sensor, which achieves a high identification accuracy of over 98% and offers a promising hybrid cyber security against password leaking. Diversiform human–machine interactions, including freely playing piano music and programmatically controlling a drone, demonstrate the high stability, rapid response time, and excellent spatiotemporally dynamic resolution of the AIOM touch sensor, which will promote significant development of interactive sensing interfaces between fingertips and virtual objects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multifunctional touch sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon functional material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Paper-based device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gradient resistance element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Human–machine interaction</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wansheng Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shaofeng Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mengjiao Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuanjin Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinqin Liao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhong Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nano-Micro Letters</subfield><subfield code="d">SpringerOpen, 2009</subfield><subfield code="g">14(2022), 1, Seite 18</subfield><subfield code="w">(DE-627)680319581</subfield><subfield code="w">(DE-600)2642093-4</subfield><subfield code="x">21505551</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s40820-022-00875-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/37524f8012c84a08bb493cbeb94617cd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s40820-022-00875-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2311-6706</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2150-5551</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">18</subfield></datafield></record></collection>
|
score |
7.399806 |