Discrimination of Mineralization Types of Skarn Deposits by Magnetite Chemistry
There are different mineralization types for skarn deposits with various origins and ore-forming conditions. Magnetite is one of the main ore minerals in skarn deposits, but whether chemical compositions of magnetite can be used to discriminate different mineralization types remains unknown. This pa...
Ausführliche Beschreibung
Autor*in: |
Huan Xie [verfasserIn] Xiaowen Huang [verfasserIn] Yumiao Meng [verfasserIn] Houmingrui Tan [verfasserIn] Liang Qi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Minerals - MDPI AG, 2012, 12(2022), 5, p 608 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:5, p 608 |
Links: |
---|
DOI / URN: |
10.3390/min12050608 |
---|
Katalog-ID: |
DOAJ022179704 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ022179704 | ||
003 | DE-627 | ||
005 | 20240414215954.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/min12050608 |2 doi | |
035 | |a (DE-627)DOAJ022179704 | ||
035 | |a (DE-599)DOAJ50fe81c8a3c2446b889970d177ae3346 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QE351-399.2 | |
100 | 0 | |a Huan Xie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Discrimination of Mineralization Types of Skarn Deposits by Magnetite Chemistry |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a There are different mineralization types for skarn deposits with various origins and ore-forming conditions. Magnetite is one of the main ore minerals in skarn deposits, but whether chemical compositions of magnetite can be used to discriminate different mineralization types remains unknown. This paper collects the published magnetite electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data of skarn deposits and investigates the relationship between magnetite geochemistry and mineralization types of skarn deposits using the partial least squares-discriminant analysis (PLS-DA). For EPMA data, magnetite from Fe-Zn skarn deposits can be roughly separated from that of Cu-Fe-Pb-Zn, Fe, Fe-Co-Bi-Ag, Fe-Cu, and Fe-Zn-Pb skarn deposits due to the relative enrichment of Al and Mn for the former. For LA-ICP-MS data, magnetite from Fe-Sn, Fe-Zn, and W-Mo-Pb-Zn-Fe-Cu skarn deposits can be roughly separated from that of other skarn deposits due to positive correlation with Mn, Zn, and Sn and the negative correlation with V for the former. The relative depletion of V for these mineralization types likely reflects higher oxygen fugacity than the other types of skarn deposits. Magnetite from Fe-Au skarn deposits is separated due to the relatively high Cr and Ga contents, whereas magnetite from Fe-Cu skarn deposits can be discriminated because of the relative enrichment of Mg and Co. The discrimination between different types of skarn deposits in the plot of Mg + Mn vs. (Si + Al)/(Mg + Mn) indicates that the chemical composition of magnetite is significantly affected by the fluid–rock interaction, where magnetite from Fe-Au skarn deposit shows the lowest fluid–rock ratios. The PLS-DA discrimination based on LA-ICP-MS data is better than that of EPMA data, and the main discriminant elements for the different mineralization types are Mg, Al, Ti, V, Mn, Co, Zn, Ga, and Sn. Based on the discriminant elements, we propose a plot of Mg+Mn vs. Ga+Sn to discriminate different mineralization types of skarn deposits. | ||
650 | 4 | |a mineralization types | |
650 | 4 | |a skarn deposits | |
650 | 4 | |a magnetite | |
650 | 4 | |a discrimination | |
650 | 4 | |a PLS-DA | |
653 | 0 | |a Mineralogy | |
700 | 0 | |a Xiaowen Huang |e verfasserin |4 aut | |
700 | 0 | |a Yumiao Meng |e verfasserin |4 aut | |
700 | 0 | |a Houmingrui Tan |e verfasserin |4 aut | |
700 | 0 | |a Liang Qi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Minerals |d MDPI AG, 2012 |g 12(2022), 5, p 608 |w (DE-627)689132069 |w (DE-600)2655947-X |x 2075163X |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:5, p 608 |
856 | 4 | 0 | |u https://doi.org/10.3390/min12050608 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/50fe81c8a3c2446b889970d177ae3346 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-163X/12/5/608 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-163X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 5, p 608 |
author_variant |
h x hx x h xh y m ym h t ht l q lq |
---|---|
matchkey_str |
article:2075163X:2022----::iciiainfieaiainyeosaneois |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QE |
publishDate |
2022 |
allfields |
10.3390/min12050608 doi (DE-627)DOAJ022179704 (DE-599)DOAJ50fe81c8a3c2446b889970d177ae3346 DE-627 ger DE-627 rakwb eng QE351-399.2 Huan Xie verfasserin aut Discrimination of Mineralization Types of Skarn Deposits by Magnetite Chemistry 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There are different mineralization types for skarn deposits with various origins and ore-forming conditions. Magnetite is one of the main ore minerals in skarn deposits, but whether chemical compositions of magnetite can be used to discriminate different mineralization types remains unknown. This paper collects the published magnetite electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data of skarn deposits and investigates the relationship between magnetite geochemistry and mineralization types of skarn deposits using the partial least squares-discriminant analysis (PLS-DA). For EPMA data, magnetite from Fe-Zn skarn deposits can be roughly separated from that of Cu-Fe-Pb-Zn, Fe, Fe-Co-Bi-Ag, Fe-Cu, and Fe-Zn-Pb skarn deposits due to the relative enrichment of Al and Mn for the former. For LA-ICP-MS data, magnetite from Fe-Sn, Fe-Zn, and W-Mo-Pb-Zn-Fe-Cu skarn deposits can be roughly separated from that of other skarn deposits due to positive correlation with Mn, Zn, and Sn and the negative correlation with V for the former. The relative depletion of V for these mineralization types likely reflects higher oxygen fugacity than the other types of skarn deposits. Magnetite from Fe-Au skarn deposits is separated due to the relatively high Cr and Ga contents, whereas magnetite from Fe-Cu skarn deposits can be discriminated because of the relative enrichment of Mg and Co. The discrimination between different types of skarn deposits in the plot of Mg + Mn vs. (Si + Al)/(Mg + Mn) indicates that the chemical composition of magnetite is significantly affected by the fluid–rock interaction, where magnetite from Fe-Au skarn deposit shows the lowest fluid–rock ratios. The PLS-DA discrimination based on LA-ICP-MS data is better than that of EPMA data, and the main discriminant elements for the different mineralization types are Mg, Al, Ti, V, Mn, Co, Zn, Ga, and Sn. Based on the discriminant elements, we propose a plot of Mg+Mn vs. Ga+Sn to discriminate different mineralization types of skarn deposits. mineralization types skarn deposits magnetite discrimination PLS-DA Mineralogy Xiaowen Huang verfasserin aut Yumiao Meng verfasserin aut Houmingrui Tan verfasserin aut Liang Qi verfasserin aut In Minerals MDPI AG, 2012 12(2022), 5, p 608 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:12 year:2022 number:5, p 608 https://doi.org/10.3390/min12050608 kostenfrei https://doaj.org/article/50fe81c8a3c2446b889970d177ae3346 kostenfrei https://www.mdpi.com/2075-163X/12/5/608 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 5, p 608 |
spelling |
10.3390/min12050608 doi (DE-627)DOAJ022179704 (DE-599)DOAJ50fe81c8a3c2446b889970d177ae3346 DE-627 ger DE-627 rakwb eng QE351-399.2 Huan Xie verfasserin aut Discrimination of Mineralization Types of Skarn Deposits by Magnetite Chemistry 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There are different mineralization types for skarn deposits with various origins and ore-forming conditions. Magnetite is one of the main ore minerals in skarn deposits, but whether chemical compositions of magnetite can be used to discriminate different mineralization types remains unknown. This paper collects the published magnetite electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data of skarn deposits and investigates the relationship between magnetite geochemistry and mineralization types of skarn deposits using the partial least squares-discriminant analysis (PLS-DA). For EPMA data, magnetite from Fe-Zn skarn deposits can be roughly separated from that of Cu-Fe-Pb-Zn, Fe, Fe-Co-Bi-Ag, Fe-Cu, and Fe-Zn-Pb skarn deposits due to the relative enrichment of Al and Mn for the former. For LA-ICP-MS data, magnetite from Fe-Sn, Fe-Zn, and W-Mo-Pb-Zn-Fe-Cu skarn deposits can be roughly separated from that of other skarn deposits due to positive correlation with Mn, Zn, and Sn and the negative correlation with V for the former. The relative depletion of V for these mineralization types likely reflects higher oxygen fugacity than the other types of skarn deposits. Magnetite from Fe-Au skarn deposits is separated due to the relatively high Cr and Ga contents, whereas magnetite from Fe-Cu skarn deposits can be discriminated because of the relative enrichment of Mg and Co. The discrimination between different types of skarn deposits in the plot of Mg + Mn vs. (Si + Al)/(Mg + Mn) indicates that the chemical composition of magnetite is significantly affected by the fluid–rock interaction, where magnetite from Fe-Au skarn deposit shows the lowest fluid–rock ratios. The PLS-DA discrimination based on LA-ICP-MS data is better than that of EPMA data, and the main discriminant elements for the different mineralization types are Mg, Al, Ti, V, Mn, Co, Zn, Ga, and Sn. Based on the discriminant elements, we propose a plot of Mg+Mn vs. Ga+Sn to discriminate different mineralization types of skarn deposits. mineralization types skarn deposits magnetite discrimination PLS-DA Mineralogy Xiaowen Huang verfasserin aut Yumiao Meng verfasserin aut Houmingrui Tan verfasserin aut Liang Qi verfasserin aut In Minerals MDPI AG, 2012 12(2022), 5, p 608 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:12 year:2022 number:5, p 608 https://doi.org/10.3390/min12050608 kostenfrei https://doaj.org/article/50fe81c8a3c2446b889970d177ae3346 kostenfrei https://www.mdpi.com/2075-163X/12/5/608 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 5, p 608 |
allfields_unstemmed |
10.3390/min12050608 doi (DE-627)DOAJ022179704 (DE-599)DOAJ50fe81c8a3c2446b889970d177ae3346 DE-627 ger DE-627 rakwb eng QE351-399.2 Huan Xie verfasserin aut Discrimination of Mineralization Types of Skarn Deposits by Magnetite Chemistry 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There are different mineralization types for skarn deposits with various origins and ore-forming conditions. Magnetite is one of the main ore minerals in skarn deposits, but whether chemical compositions of magnetite can be used to discriminate different mineralization types remains unknown. This paper collects the published magnetite electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data of skarn deposits and investigates the relationship between magnetite geochemistry and mineralization types of skarn deposits using the partial least squares-discriminant analysis (PLS-DA). For EPMA data, magnetite from Fe-Zn skarn deposits can be roughly separated from that of Cu-Fe-Pb-Zn, Fe, Fe-Co-Bi-Ag, Fe-Cu, and Fe-Zn-Pb skarn deposits due to the relative enrichment of Al and Mn for the former. For LA-ICP-MS data, magnetite from Fe-Sn, Fe-Zn, and W-Mo-Pb-Zn-Fe-Cu skarn deposits can be roughly separated from that of other skarn deposits due to positive correlation with Mn, Zn, and Sn and the negative correlation with V for the former. The relative depletion of V for these mineralization types likely reflects higher oxygen fugacity than the other types of skarn deposits. Magnetite from Fe-Au skarn deposits is separated due to the relatively high Cr and Ga contents, whereas magnetite from Fe-Cu skarn deposits can be discriminated because of the relative enrichment of Mg and Co. The discrimination between different types of skarn deposits in the plot of Mg + Mn vs. (Si + Al)/(Mg + Mn) indicates that the chemical composition of magnetite is significantly affected by the fluid–rock interaction, where magnetite from Fe-Au skarn deposit shows the lowest fluid–rock ratios. The PLS-DA discrimination based on LA-ICP-MS data is better than that of EPMA data, and the main discriminant elements for the different mineralization types are Mg, Al, Ti, V, Mn, Co, Zn, Ga, and Sn. Based on the discriminant elements, we propose a plot of Mg+Mn vs. Ga+Sn to discriminate different mineralization types of skarn deposits. mineralization types skarn deposits magnetite discrimination PLS-DA Mineralogy Xiaowen Huang verfasserin aut Yumiao Meng verfasserin aut Houmingrui Tan verfasserin aut Liang Qi verfasserin aut In Minerals MDPI AG, 2012 12(2022), 5, p 608 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:12 year:2022 number:5, p 608 https://doi.org/10.3390/min12050608 kostenfrei https://doaj.org/article/50fe81c8a3c2446b889970d177ae3346 kostenfrei https://www.mdpi.com/2075-163X/12/5/608 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 5, p 608 |
allfieldsGer |
10.3390/min12050608 doi (DE-627)DOAJ022179704 (DE-599)DOAJ50fe81c8a3c2446b889970d177ae3346 DE-627 ger DE-627 rakwb eng QE351-399.2 Huan Xie verfasserin aut Discrimination of Mineralization Types of Skarn Deposits by Magnetite Chemistry 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There are different mineralization types for skarn deposits with various origins and ore-forming conditions. Magnetite is one of the main ore minerals in skarn deposits, but whether chemical compositions of magnetite can be used to discriminate different mineralization types remains unknown. This paper collects the published magnetite electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data of skarn deposits and investigates the relationship between magnetite geochemistry and mineralization types of skarn deposits using the partial least squares-discriminant analysis (PLS-DA). For EPMA data, magnetite from Fe-Zn skarn deposits can be roughly separated from that of Cu-Fe-Pb-Zn, Fe, Fe-Co-Bi-Ag, Fe-Cu, and Fe-Zn-Pb skarn deposits due to the relative enrichment of Al and Mn for the former. For LA-ICP-MS data, magnetite from Fe-Sn, Fe-Zn, and W-Mo-Pb-Zn-Fe-Cu skarn deposits can be roughly separated from that of other skarn deposits due to positive correlation with Mn, Zn, and Sn and the negative correlation with V for the former. The relative depletion of V for these mineralization types likely reflects higher oxygen fugacity than the other types of skarn deposits. Magnetite from Fe-Au skarn deposits is separated due to the relatively high Cr and Ga contents, whereas magnetite from Fe-Cu skarn deposits can be discriminated because of the relative enrichment of Mg and Co. The discrimination between different types of skarn deposits in the plot of Mg + Mn vs. (Si + Al)/(Mg + Mn) indicates that the chemical composition of magnetite is significantly affected by the fluid–rock interaction, where magnetite from Fe-Au skarn deposit shows the lowest fluid–rock ratios. The PLS-DA discrimination based on LA-ICP-MS data is better than that of EPMA data, and the main discriminant elements for the different mineralization types are Mg, Al, Ti, V, Mn, Co, Zn, Ga, and Sn. Based on the discriminant elements, we propose a plot of Mg+Mn vs. Ga+Sn to discriminate different mineralization types of skarn deposits. mineralization types skarn deposits magnetite discrimination PLS-DA Mineralogy Xiaowen Huang verfasserin aut Yumiao Meng verfasserin aut Houmingrui Tan verfasserin aut Liang Qi verfasserin aut In Minerals MDPI AG, 2012 12(2022), 5, p 608 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:12 year:2022 number:5, p 608 https://doi.org/10.3390/min12050608 kostenfrei https://doaj.org/article/50fe81c8a3c2446b889970d177ae3346 kostenfrei https://www.mdpi.com/2075-163X/12/5/608 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 5, p 608 |
allfieldsSound |
10.3390/min12050608 doi (DE-627)DOAJ022179704 (DE-599)DOAJ50fe81c8a3c2446b889970d177ae3346 DE-627 ger DE-627 rakwb eng QE351-399.2 Huan Xie verfasserin aut Discrimination of Mineralization Types of Skarn Deposits by Magnetite Chemistry 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier There are different mineralization types for skarn deposits with various origins and ore-forming conditions. Magnetite is one of the main ore minerals in skarn deposits, but whether chemical compositions of magnetite can be used to discriminate different mineralization types remains unknown. This paper collects the published magnetite electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data of skarn deposits and investigates the relationship between magnetite geochemistry and mineralization types of skarn deposits using the partial least squares-discriminant analysis (PLS-DA). For EPMA data, magnetite from Fe-Zn skarn deposits can be roughly separated from that of Cu-Fe-Pb-Zn, Fe, Fe-Co-Bi-Ag, Fe-Cu, and Fe-Zn-Pb skarn deposits due to the relative enrichment of Al and Mn for the former. For LA-ICP-MS data, magnetite from Fe-Sn, Fe-Zn, and W-Mo-Pb-Zn-Fe-Cu skarn deposits can be roughly separated from that of other skarn deposits due to positive correlation with Mn, Zn, and Sn and the negative correlation with V for the former. The relative depletion of V for these mineralization types likely reflects higher oxygen fugacity than the other types of skarn deposits. Magnetite from Fe-Au skarn deposits is separated due to the relatively high Cr and Ga contents, whereas magnetite from Fe-Cu skarn deposits can be discriminated because of the relative enrichment of Mg and Co. The discrimination between different types of skarn deposits in the plot of Mg + Mn vs. (Si + Al)/(Mg + Mn) indicates that the chemical composition of magnetite is significantly affected by the fluid–rock interaction, where magnetite from Fe-Au skarn deposit shows the lowest fluid–rock ratios. The PLS-DA discrimination based on LA-ICP-MS data is better than that of EPMA data, and the main discriminant elements for the different mineralization types are Mg, Al, Ti, V, Mn, Co, Zn, Ga, and Sn. Based on the discriminant elements, we propose a plot of Mg+Mn vs. Ga+Sn to discriminate different mineralization types of skarn deposits. mineralization types skarn deposits magnetite discrimination PLS-DA Mineralogy Xiaowen Huang verfasserin aut Yumiao Meng verfasserin aut Houmingrui Tan verfasserin aut Liang Qi verfasserin aut In Minerals MDPI AG, 2012 12(2022), 5, p 608 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:12 year:2022 number:5, p 608 https://doi.org/10.3390/min12050608 kostenfrei https://doaj.org/article/50fe81c8a3c2446b889970d177ae3346 kostenfrei https://www.mdpi.com/2075-163X/12/5/608 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 5, p 608 |
language |
English |
source |
In Minerals 12(2022), 5, p 608 volume:12 year:2022 number:5, p 608 |
sourceStr |
In Minerals 12(2022), 5, p 608 volume:12 year:2022 number:5, p 608 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
mineralization types skarn deposits magnetite discrimination PLS-DA Mineralogy |
isfreeaccess_bool |
true |
container_title |
Minerals |
authorswithroles_txt_mv |
Huan Xie @@aut@@ Xiaowen Huang @@aut@@ Yumiao Meng @@aut@@ Houmingrui Tan @@aut@@ Liang Qi @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
689132069 |
id |
DOAJ022179704 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ022179704</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414215954.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/min12050608</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ022179704</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ50fe81c8a3c2446b889970d177ae3346</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE351-399.2</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Huan Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrimination of Mineralization Types of Skarn Deposits by Magnetite Chemistry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There are different mineralization types for skarn deposits with various origins and ore-forming conditions. Magnetite is one of the main ore minerals in skarn deposits, but whether chemical compositions of magnetite can be used to discriminate different mineralization types remains unknown. This paper collects the published magnetite electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data of skarn deposits and investigates the relationship between magnetite geochemistry and mineralization types of skarn deposits using the partial least squares-discriminant analysis (PLS-DA). For EPMA data, magnetite from Fe-Zn skarn deposits can be roughly separated from that of Cu-Fe-Pb-Zn, Fe, Fe-Co-Bi-Ag, Fe-Cu, and Fe-Zn-Pb skarn deposits due to the relative enrichment of Al and Mn for the former. For LA-ICP-MS data, magnetite from Fe-Sn, Fe-Zn, and W-Mo-Pb-Zn-Fe-Cu skarn deposits can be roughly separated from that of other skarn deposits due to positive correlation with Mn, Zn, and Sn and the negative correlation with V for the former. The relative depletion of V for these mineralization types likely reflects higher oxygen fugacity than the other types of skarn deposits. Magnetite from Fe-Au skarn deposits is separated due to the relatively high Cr and Ga contents, whereas magnetite from Fe-Cu skarn deposits can be discriminated because of the relative enrichment of Mg and Co. The discrimination between different types of skarn deposits in the plot of Mg + Mn vs. (Si + Al)/(Mg + Mn) indicates that the chemical composition of magnetite is significantly affected by the fluid–rock interaction, where magnetite from Fe-Au skarn deposit shows the lowest fluid–rock ratios. The PLS-DA discrimination based on LA-ICP-MS data is better than that of EPMA data, and the main discriminant elements for the different mineralization types are Mg, Al, Ti, V, Mn, Co, Zn, Ga, and Sn. Based on the discriminant elements, we propose a plot of Mg+Mn vs. Ga+Sn to discriminate different mineralization types of skarn deposits.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mineralization types</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">skarn deposits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrimination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PLS-DA</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mineralogy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaowen Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yumiao Meng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Houmingrui Tan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liang Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Minerals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 5, p 608</subfield><subfield code="w">(DE-627)689132069</subfield><subfield code="w">(DE-600)2655947-X</subfield><subfield code="x">2075163X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5, p 608</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/min12050608</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/50fe81c8a3c2446b889970d177ae3346</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-163X/12/5/608</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-163X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">5, p 608</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Huan Xie |
spellingShingle |
Huan Xie misc QE351-399.2 misc mineralization types misc skarn deposits misc magnetite misc discrimination misc PLS-DA misc Mineralogy Discrimination of Mineralization Types of Skarn Deposits by Magnetite Chemistry |
authorStr |
Huan Xie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)689132069 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QE351-399 |
illustrated |
Not Illustrated |
issn |
2075163X |
topic_title |
QE351-399.2 Discrimination of Mineralization Types of Skarn Deposits by Magnetite Chemistry mineralization types skarn deposits magnetite discrimination PLS-DA |
topic |
misc QE351-399.2 misc mineralization types misc skarn deposits misc magnetite misc discrimination misc PLS-DA misc Mineralogy |
topic_unstemmed |
misc QE351-399.2 misc mineralization types misc skarn deposits misc magnetite misc discrimination misc PLS-DA misc Mineralogy |
topic_browse |
misc QE351-399.2 misc mineralization types misc skarn deposits misc magnetite misc discrimination misc PLS-DA misc Mineralogy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Minerals |
hierarchy_parent_id |
689132069 |
hierarchy_top_title |
Minerals |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)689132069 (DE-600)2655947-X |
title |
Discrimination of Mineralization Types of Skarn Deposits by Magnetite Chemistry |
ctrlnum |
(DE-627)DOAJ022179704 (DE-599)DOAJ50fe81c8a3c2446b889970d177ae3346 |
title_full |
Discrimination of Mineralization Types of Skarn Deposits by Magnetite Chemistry |
author_sort |
Huan Xie |
journal |
Minerals |
journalStr |
Minerals |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Huan Xie Xiaowen Huang Yumiao Meng Houmingrui Tan Liang Qi |
container_volume |
12 |
class |
QE351-399.2 |
format_se |
Elektronische Aufsätze |
author-letter |
Huan Xie |
doi_str_mv |
10.3390/min12050608 |
author2-role |
verfasserin |
title_sort |
discrimination of mineralization types of skarn deposits by magnetite chemistry |
callnumber |
QE351-399.2 |
title_auth |
Discrimination of Mineralization Types of Skarn Deposits by Magnetite Chemistry |
abstract |
There are different mineralization types for skarn deposits with various origins and ore-forming conditions. Magnetite is one of the main ore minerals in skarn deposits, but whether chemical compositions of magnetite can be used to discriminate different mineralization types remains unknown. This paper collects the published magnetite electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data of skarn deposits and investigates the relationship between magnetite geochemistry and mineralization types of skarn deposits using the partial least squares-discriminant analysis (PLS-DA). For EPMA data, magnetite from Fe-Zn skarn deposits can be roughly separated from that of Cu-Fe-Pb-Zn, Fe, Fe-Co-Bi-Ag, Fe-Cu, and Fe-Zn-Pb skarn deposits due to the relative enrichment of Al and Mn for the former. For LA-ICP-MS data, magnetite from Fe-Sn, Fe-Zn, and W-Mo-Pb-Zn-Fe-Cu skarn deposits can be roughly separated from that of other skarn deposits due to positive correlation with Mn, Zn, and Sn and the negative correlation with V for the former. The relative depletion of V for these mineralization types likely reflects higher oxygen fugacity than the other types of skarn deposits. Magnetite from Fe-Au skarn deposits is separated due to the relatively high Cr and Ga contents, whereas magnetite from Fe-Cu skarn deposits can be discriminated because of the relative enrichment of Mg and Co. The discrimination between different types of skarn deposits in the plot of Mg + Mn vs. (Si + Al)/(Mg + Mn) indicates that the chemical composition of magnetite is significantly affected by the fluid–rock interaction, where magnetite from Fe-Au skarn deposit shows the lowest fluid–rock ratios. The PLS-DA discrimination based on LA-ICP-MS data is better than that of EPMA data, and the main discriminant elements for the different mineralization types are Mg, Al, Ti, V, Mn, Co, Zn, Ga, and Sn. Based on the discriminant elements, we propose a plot of Mg+Mn vs. Ga+Sn to discriminate different mineralization types of skarn deposits. |
abstractGer |
There are different mineralization types for skarn deposits with various origins and ore-forming conditions. Magnetite is one of the main ore minerals in skarn deposits, but whether chemical compositions of magnetite can be used to discriminate different mineralization types remains unknown. This paper collects the published magnetite electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data of skarn deposits and investigates the relationship between magnetite geochemistry and mineralization types of skarn deposits using the partial least squares-discriminant analysis (PLS-DA). For EPMA data, magnetite from Fe-Zn skarn deposits can be roughly separated from that of Cu-Fe-Pb-Zn, Fe, Fe-Co-Bi-Ag, Fe-Cu, and Fe-Zn-Pb skarn deposits due to the relative enrichment of Al and Mn for the former. For LA-ICP-MS data, magnetite from Fe-Sn, Fe-Zn, and W-Mo-Pb-Zn-Fe-Cu skarn deposits can be roughly separated from that of other skarn deposits due to positive correlation with Mn, Zn, and Sn and the negative correlation with V for the former. The relative depletion of V for these mineralization types likely reflects higher oxygen fugacity than the other types of skarn deposits. Magnetite from Fe-Au skarn deposits is separated due to the relatively high Cr and Ga contents, whereas magnetite from Fe-Cu skarn deposits can be discriminated because of the relative enrichment of Mg and Co. The discrimination between different types of skarn deposits in the plot of Mg + Mn vs. (Si + Al)/(Mg + Mn) indicates that the chemical composition of magnetite is significantly affected by the fluid–rock interaction, where magnetite from Fe-Au skarn deposit shows the lowest fluid–rock ratios. The PLS-DA discrimination based on LA-ICP-MS data is better than that of EPMA data, and the main discriminant elements for the different mineralization types are Mg, Al, Ti, V, Mn, Co, Zn, Ga, and Sn. Based on the discriminant elements, we propose a plot of Mg+Mn vs. Ga+Sn to discriminate different mineralization types of skarn deposits. |
abstract_unstemmed |
There are different mineralization types for skarn deposits with various origins and ore-forming conditions. Magnetite is one of the main ore minerals in skarn deposits, but whether chemical compositions of magnetite can be used to discriminate different mineralization types remains unknown. This paper collects the published magnetite electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data of skarn deposits and investigates the relationship between magnetite geochemistry and mineralization types of skarn deposits using the partial least squares-discriminant analysis (PLS-DA). For EPMA data, magnetite from Fe-Zn skarn deposits can be roughly separated from that of Cu-Fe-Pb-Zn, Fe, Fe-Co-Bi-Ag, Fe-Cu, and Fe-Zn-Pb skarn deposits due to the relative enrichment of Al and Mn for the former. For LA-ICP-MS data, magnetite from Fe-Sn, Fe-Zn, and W-Mo-Pb-Zn-Fe-Cu skarn deposits can be roughly separated from that of other skarn deposits due to positive correlation with Mn, Zn, and Sn and the negative correlation with V for the former. The relative depletion of V for these mineralization types likely reflects higher oxygen fugacity than the other types of skarn deposits. Magnetite from Fe-Au skarn deposits is separated due to the relatively high Cr and Ga contents, whereas magnetite from Fe-Cu skarn deposits can be discriminated because of the relative enrichment of Mg and Co. The discrimination between different types of skarn deposits in the plot of Mg + Mn vs. (Si + Al)/(Mg + Mn) indicates that the chemical composition of magnetite is significantly affected by the fluid–rock interaction, where magnetite from Fe-Au skarn deposit shows the lowest fluid–rock ratios. The PLS-DA discrimination based on LA-ICP-MS data is better than that of EPMA data, and the main discriminant elements for the different mineralization types are Mg, Al, Ti, V, Mn, Co, Zn, Ga, and Sn. Based on the discriminant elements, we propose a plot of Mg+Mn vs. Ga+Sn to discriminate different mineralization types of skarn deposits. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 608 |
title_short |
Discrimination of Mineralization Types of Skarn Deposits by Magnetite Chemistry |
url |
https://doi.org/10.3390/min12050608 https://doaj.org/article/50fe81c8a3c2446b889970d177ae3346 https://www.mdpi.com/2075-163X/12/5/608 https://doaj.org/toc/2075-163X |
remote_bool |
true |
author2 |
Xiaowen Huang Yumiao Meng Houmingrui Tan Liang Qi |
author2Str |
Xiaowen Huang Yumiao Meng Houmingrui Tan Liang Qi |
ppnlink |
689132069 |
callnumber-subject |
QE - Geology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/min12050608 |
callnumber-a |
QE351-399.2 |
up_date |
2024-07-04T00:32:15.220Z |
_version_ |
1803606436319592448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ022179704</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414215954.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/min12050608</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ022179704</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ50fe81c8a3c2446b889970d177ae3346</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE351-399.2</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Huan Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrimination of Mineralization Types of Skarn Deposits by Magnetite Chemistry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There are different mineralization types for skarn deposits with various origins and ore-forming conditions. Magnetite is one of the main ore minerals in skarn deposits, but whether chemical compositions of magnetite can be used to discriminate different mineralization types remains unknown. This paper collects the published magnetite electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data of skarn deposits and investigates the relationship between magnetite geochemistry and mineralization types of skarn deposits using the partial least squares-discriminant analysis (PLS-DA). For EPMA data, magnetite from Fe-Zn skarn deposits can be roughly separated from that of Cu-Fe-Pb-Zn, Fe, Fe-Co-Bi-Ag, Fe-Cu, and Fe-Zn-Pb skarn deposits due to the relative enrichment of Al and Mn for the former. For LA-ICP-MS data, magnetite from Fe-Sn, Fe-Zn, and W-Mo-Pb-Zn-Fe-Cu skarn deposits can be roughly separated from that of other skarn deposits due to positive correlation with Mn, Zn, and Sn and the negative correlation with V for the former. The relative depletion of V for these mineralization types likely reflects higher oxygen fugacity than the other types of skarn deposits. Magnetite from Fe-Au skarn deposits is separated due to the relatively high Cr and Ga contents, whereas magnetite from Fe-Cu skarn deposits can be discriminated because of the relative enrichment of Mg and Co. The discrimination between different types of skarn deposits in the plot of Mg + Mn vs. (Si + Al)/(Mg + Mn) indicates that the chemical composition of magnetite is significantly affected by the fluid–rock interaction, where magnetite from Fe-Au skarn deposit shows the lowest fluid–rock ratios. The PLS-DA discrimination based on LA-ICP-MS data is better than that of EPMA data, and the main discriminant elements for the different mineralization types are Mg, Al, Ti, V, Mn, Co, Zn, Ga, and Sn. Based on the discriminant elements, we propose a plot of Mg+Mn vs. Ga+Sn to discriminate different mineralization types of skarn deposits.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mineralization types</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">skarn deposits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrimination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PLS-DA</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mineralogy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaowen Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yumiao Meng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Houmingrui Tan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liang Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Minerals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 5, p 608</subfield><subfield code="w">(DE-627)689132069</subfield><subfield code="w">(DE-600)2655947-X</subfield><subfield code="x">2075163X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5, p 608</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/min12050608</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/50fe81c8a3c2446b889970d177ae3346</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-163X/12/5/608</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-163X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">5, p 608</subfield></datafield></record></collection>
|
score |
7.4015245 |