Ultra-High-Bandwidth Power Amplifiers: A Technology Overview and Future Prospects
Testing of power electronic converters can advantageously be carried out in power-hardware-in-the-loop (P-HIL) environments that emulate the behavior of power grids, electric motors, etc. The interface between the model and the device under test requires a power amplifier whose bandwidth ultimately...
Ausführliche Beschreibung
Autor*in: |
Julian Bohler [verfasserIn] Jonas Huber [verfasserIn] Johann Wurz [verfasserIn] Martin Stransky [verfasserIn] Nissim Uvaidov [verfasserIn] Srdjan Srdic [verfasserIn] Johann W. Kolar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 10(2022), Seite 54613-54633 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; pages:54613-54633 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2022.3172291 |
---|
Katalog-ID: |
DOAJ022358552 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ022358552 | ||
003 | DE-627 | ||
005 | 20230307054859.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2022.3172291 |2 doi | |
035 | |a (DE-627)DOAJ022358552 | ||
035 | |a (DE-599)DOAJ4eb81c4434bd410a86f66c5b8cb1fd28 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Julian Bohler |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ultra-High-Bandwidth Power Amplifiers: A Technology Overview and Future Prospects |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Testing of power electronic converters can advantageously be carried out in power-hardware-in-the-loop (P-HIL) environments that emulate the behavior of power grids, electric motors, etc. The interface between the model and the device under test requires a power amplifier whose bandwidth ultimately limits the accuracy of the emulation. Hence, there is a need for general-purpose AC power amplifiers with ultra-high power bandwidth. This paper first provides a comprehensive review of amplifier concepts proposed over the past decades, i.e., linear power amplifiers, switch-mode amplifiers, including advanced variants such as multilevel (parallel-interleaving) and multicell (series-interleaving) topologies, as well as hybrid approaches that, e.g., combine analog and switch-mode stages. Based on this review, the two key concepts (parallel-interleaving of bridge-legs and cascading of converter cells) that facilitate high efficiency and ultra-high power bandwidth are identified and discussed, covering also suitable isolated mains interfaces and control considerations. Finally, we present a three-phase amplifier system that uses six cascaded converter cells per phase to realize an effective switching frequency of 3.6MHz. The prototype thus achieves a measured power bandwidth of 100kHz at the nominal phase output voltage of 230Vrms, and an output power of up to 10kW per phase. | ||
650 | 4 | |a Power-hardware-in-the-loop (P-HIL) | |
650 | 4 | |a grid emulation | |
650 | 4 | |a motor emulation | |
650 | 4 | |a power amplifier topologies | |
650 | 4 | |a switch-mode power amplifier | |
650 | 4 | |a ultra-high-bandwidth power amplifier | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Jonas Huber |e verfasserin |4 aut | |
700 | 0 | |a Johann Wurz |e verfasserin |4 aut | |
700 | 0 | |a Martin Stransky |e verfasserin |4 aut | |
700 | 0 | |a Nissim Uvaidov |e verfasserin |4 aut | |
700 | 0 | |a Srdjan Srdic |e verfasserin |4 aut | |
700 | 0 | |a Johann W. Kolar |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 10(2022), Seite 54613-54633 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g pages:54613-54633 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2022.3172291 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4eb81c4434bd410a86f66c5b8cb1fd28 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9766331/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |h 54613-54633 |
author_variant |
j b jb j h jh j w jw m s ms n u nu s s ss j w k jwk |
---|---|
matchkey_str |
article:21693536:2022----::lrhgbnwdhoeapiiraehooyvri |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.1109/ACCESS.2022.3172291 doi (DE-627)DOAJ022358552 (DE-599)DOAJ4eb81c4434bd410a86f66c5b8cb1fd28 DE-627 ger DE-627 rakwb eng TK1-9971 Julian Bohler verfasserin aut Ultra-High-Bandwidth Power Amplifiers: A Technology Overview and Future Prospects 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Testing of power electronic converters can advantageously be carried out in power-hardware-in-the-loop (P-HIL) environments that emulate the behavior of power grids, electric motors, etc. The interface between the model and the device under test requires a power amplifier whose bandwidth ultimately limits the accuracy of the emulation. Hence, there is a need for general-purpose AC power amplifiers with ultra-high power bandwidth. This paper first provides a comprehensive review of amplifier concepts proposed over the past decades, i.e., linear power amplifiers, switch-mode amplifiers, including advanced variants such as multilevel (parallel-interleaving) and multicell (series-interleaving) topologies, as well as hybrid approaches that, e.g., combine analog and switch-mode stages. Based on this review, the two key concepts (parallel-interleaving of bridge-legs and cascading of converter cells) that facilitate high efficiency and ultra-high power bandwidth are identified and discussed, covering also suitable isolated mains interfaces and control considerations. Finally, we present a three-phase amplifier system that uses six cascaded converter cells per phase to realize an effective switching frequency of 3.6MHz. The prototype thus achieves a measured power bandwidth of 100kHz at the nominal phase output voltage of 230Vrms, and an output power of up to 10kW per phase. Power-hardware-in-the-loop (P-HIL) grid emulation motor emulation power amplifier topologies switch-mode power amplifier ultra-high-bandwidth power amplifier Electrical engineering. Electronics. Nuclear engineering Jonas Huber verfasserin aut Johann Wurz verfasserin aut Martin Stransky verfasserin aut Nissim Uvaidov verfasserin aut Srdjan Srdic verfasserin aut Johann W. Kolar verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 54613-54633 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:54613-54633 https://doi.org/10.1109/ACCESS.2022.3172291 kostenfrei https://doaj.org/article/4eb81c4434bd410a86f66c5b8cb1fd28 kostenfrei https://ieeexplore.ieee.org/document/9766331/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 54613-54633 |
spelling |
10.1109/ACCESS.2022.3172291 doi (DE-627)DOAJ022358552 (DE-599)DOAJ4eb81c4434bd410a86f66c5b8cb1fd28 DE-627 ger DE-627 rakwb eng TK1-9971 Julian Bohler verfasserin aut Ultra-High-Bandwidth Power Amplifiers: A Technology Overview and Future Prospects 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Testing of power electronic converters can advantageously be carried out in power-hardware-in-the-loop (P-HIL) environments that emulate the behavior of power grids, electric motors, etc. The interface between the model and the device under test requires a power amplifier whose bandwidth ultimately limits the accuracy of the emulation. Hence, there is a need for general-purpose AC power amplifiers with ultra-high power bandwidth. This paper first provides a comprehensive review of amplifier concepts proposed over the past decades, i.e., linear power amplifiers, switch-mode amplifiers, including advanced variants such as multilevel (parallel-interleaving) and multicell (series-interleaving) topologies, as well as hybrid approaches that, e.g., combine analog and switch-mode stages. Based on this review, the two key concepts (parallel-interleaving of bridge-legs and cascading of converter cells) that facilitate high efficiency and ultra-high power bandwidth are identified and discussed, covering also suitable isolated mains interfaces and control considerations. Finally, we present a three-phase amplifier system that uses six cascaded converter cells per phase to realize an effective switching frequency of 3.6MHz. The prototype thus achieves a measured power bandwidth of 100kHz at the nominal phase output voltage of 230Vrms, and an output power of up to 10kW per phase. Power-hardware-in-the-loop (P-HIL) grid emulation motor emulation power amplifier topologies switch-mode power amplifier ultra-high-bandwidth power amplifier Electrical engineering. Electronics. Nuclear engineering Jonas Huber verfasserin aut Johann Wurz verfasserin aut Martin Stransky verfasserin aut Nissim Uvaidov verfasserin aut Srdjan Srdic verfasserin aut Johann W. Kolar verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 54613-54633 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:54613-54633 https://doi.org/10.1109/ACCESS.2022.3172291 kostenfrei https://doaj.org/article/4eb81c4434bd410a86f66c5b8cb1fd28 kostenfrei https://ieeexplore.ieee.org/document/9766331/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 54613-54633 |
allfields_unstemmed |
10.1109/ACCESS.2022.3172291 doi (DE-627)DOAJ022358552 (DE-599)DOAJ4eb81c4434bd410a86f66c5b8cb1fd28 DE-627 ger DE-627 rakwb eng TK1-9971 Julian Bohler verfasserin aut Ultra-High-Bandwidth Power Amplifiers: A Technology Overview and Future Prospects 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Testing of power electronic converters can advantageously be carried out in power-hardware-in-the-loop (P-HIL) environments that emulate the behavior of power grids, electric motors, etc. The interface between the model and the device under test requires a power amplifier whose bandwidth ultimately limits the accuracy of the emulation. Hence, there is a need for general-purpose AC power amplifiers with ultra-high power bandwidth. This paper first provides a comprehensive review of amplifier concepts proposed over the past decades, i.e., linear power amplifiers, switch-mode amplifiers, including advanced variants such as multilevel (parallel-interleaving) and multicell (series-interleaving) topologies, as well as hybrid approaches that, e.g., combine analog and switch-mode stages. Based on this review, the two key concepts (parallel-interleaving of bridge-legs and cascading of converter cells) that facilitate high efficiency and ultra-high power bandwidth are identified and discussed, covering also suitable isolated mains interfaces and control considerations. Finally, we present a three-phase amplifier system that uses six cascaded converter cells per phase to realize an effective switching frequency of 3.6MHz. The prototype thus achieves a measured power bandwidth of 100kHz at the nominal phase output voltage of 230Vrms, and an output power of up to 10kW per phase. Power-hardware-in-the-loop (P-HIL) grid emulation motor emulation power amplifier topologies switch-mode power amplifier ultra-high-bandwidth power amplifier Electrical engineering. Electronics. Nuclear engineering Jonas Huber verfasserin aut Johann Wurz verfasserin aut Martin Stransky verfasserin aut Nissim Uvaidov verfasserin aut Srdjan Srdic verfasserin aut Johann W. Kolar verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 54613-54633 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:54613-54633 https://doi.org/10.1109/ACCESS.2022.3172291 kostenfrei https://doaj.org/article/4eb81c4434bd410a86f66c5b8cb1fd28 kostenfrei https://ieeexplore.ieee.org/document/9766331/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 54613-54633 |
allfieldsGer |
10.1109/ACCESS.2022.3172291 doi (DE-627)DOAJ022358552 (DE-599)DOAJ4eb81c4434bd410a86f66c5b8cb1fd28 DE-627 ger DE-627 rakwb eng TK1-9971 Julian Bohler verfasserin aut Ultra-High-Bandwidth Power Amplifiers: A Technology Overview and Future Prospects 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Testing of power electronic converters can advantageously be carried out in power-hardware-in-the-loop (P-HIL) environments that emulate the behavior of power grids, electric motors, etc. The interface between the model and the device under test requires a power amplifier whose bandwidth ultimately limits the accuracy of the emulation. Hence, there is a need for general-purpose AC power amplifiers with ultra-high power bandwidth. This paper first provides a comprehensive review of amplifier concepts proposed over the past decades, i.e., linear power amplifiers, switch-mode amplifiers, including advanced variants such as multilevel (parallel-interleaving) and multicell (series-interleaving) topologies, as well as hybrid approaches that, e.g., combine analog and switch-mode stages. Based on this review, the two key concepts (parallel-interleaving of bridge-legs and cascading of converter cells) that facilitate high efficiency and ultra-high power bandwidth are identified and discussed, covering also suitable isolated mains interfaces and control considerations. Finally, we present a three-phase amplifier system that uses six cascaded converter cells per phase to realize an effective switching frequency of 3.6MHz. The prototype thus achieves a measured power bandwidth of 100kHz at the nominal phase output voltage of 230Vrms, and an output power of up to 10kW per phase. Power-hardware-in-the-loop (P-HIL) grid emulation motor emulation power amplifier topologies switch-mode power amplifier ultra-high-bandwidth power amplifier Electrical engineering. Electronics. Nuclear engineering Jonas Huber verfasserin aut Johann Wurz verfasserin aut Martin Stransky verfasserin aut Nissim Uvaidov verfasserin aut Srdjan Srdic verfasserin aut Johann W. Kolar verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 54613-54633 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:54613-54633 https://doi.org/10.1109/ACCESS.2022.3172291 kostenfrei https://doaj.org/article/4eb81c4434bd410a86f66c5b8cb1fd28 kostenfrei https://ieeexplore.ieee.org/document/9766331/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 54613-54633 |
allfieldsSound |
10.1109/ACCESS.2022.3172291 doi (DE-627)DOAJ022358552 (DE-599)DOAJ4eb81c4434bd410a86f66c5b8cb1fd28 DE-627 ger DE-627 rakwb eng TK1-9971 Julian Bohler verfasserin aut Ultra-High-Bandwidth Power Amplifiers: A Technology Overview and Future Prospects 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Testing of power electronic converters can advantageously be carried out in power-hardware-in-the-loop (P-HIL) environments that emulate the behavior of power grids, electric motors, etc. The interface between the model and the device under test requires a power amplifier whose bandwidth ultimately limits the accuracy of the emulation. Hence, there is a need for general-purpose AC power amplifiers with ultra-high power bandwidth. This paper first provides a comprehensive review of amplifier concepts proposed over the past decades, i.e., linear power amplifiers, switch-mode amplifiers, including advanced variants such as multilevel (parallel-interleaving) and multicell (series-interleaving) topologies, as well as hybrid approaches that, e.g., combine analog and switch-mode stages. Based on this review, the two key concepts (parallel-interleaving of bridge-legs and cascading of converter cells) that facilitate high efficiency and ultra-high power bandwidth are identified and discussed, covering also suitable isolated mains interfaces and control considerations. Finally, we present a three-phase amplifier system that uses six cascaded converter cells per phase to realize an effective switching frequency of 3.6MHz. The prototype thus achieves a measured power bandwidth of 100kHz at the nominal phase output voltage of 230Vrms, and an output power of up to 10kW per phase. Power-hardware-in-the-loop (P-HIL) grid emulation motor emulation power amplifier topologies switch-mode power amplifier ultra-high-bandwidth power amplifier Electrical engineering. Electronics. Nuclear engineering Jonas Huber verfasserin aut Johann Wurz verfasserin aut Martin Stransky verfasserin aut Nissim Uvaidov verfasserin aut Srdjan Srdic verfasserin aut Johann W. Kolar verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 54613-54633 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:54613-54633 https://doi.org/10.1109/ACCESS.2022.3172291 kostenfrei https://doaj.org/article/4eb81c4434bd410a86f66c5b8cb1fd28 kostenfrei https://ieeexplore.ieee.org/document/9766331/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 54613-54633 |
language |
English |
source |
In IEEE Access 10(2022), Seite 54613-54633 volume:10 year:2022 pages:54613-54633 |
sourceStr |
In IEEE Access 10(2022), Seite 54613-54633 volume:10 year:2022 pages:54613-54633 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Power-hardware-in-the-loop (P-HIL) grid emulation motor emulation power amplifier topologies switch-mode power amplifier ultra-high-bandwidth power amplifier Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Julian Bohler @@aut@@ Jonas Huber @@aut@@ Johann Wurz @@aut@@ Martin Stransky @@aut@@ Nissim Uvaidov @@aut@@ Srdjan Srdic @@aut@@ Johann W. Kolar @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ022358552 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ022358552</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307054859.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3172291</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ022358552</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4eb81c4434bd410a86f66c5b8cb1fd28</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Julian Bohler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ultra-High-Bandwidth Power Amplifiers: A Technology Overview and Future Prospects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Testing of power electronic converters can advantageously be carried out in power-hardware-in-the-loop (P-HIL) environments that emulate the behavior of power grids, electric motors, etc. The interface between the model and the device under test requires a power amplifier whose bandwidth ultimately limits the accuracy of the emulation. Hence, there is a need for general-purpose AC power amplifiers with ultra-high power bandwidth. This paper first provides a comprehensive review of amplifier concepts proposed over the past decades, i.e., linear power amplifiers, switch-mode amplifiers, including advanced variants such as multilevel (parallel-interleaving) and multicell (series-interleaving) topologies, as well as hybrid approaches that, e.g., combine analog and switch-mode stages. Based on this review, the two key concepts (parallel-interleaving of bridge-legs and cascading of converter cells) that facilitate high efficiency and ultra-high power bandwidth are identified and discussed, covering also suitable isolated mains interfaces and control considerations. Finally, we present a three-phase amplifier system that uses six cascaded converter cells per phase to realize an effective switching frequency of 3.6MHz. The prototype thus achieves a measured power bandwidth of 100kHz at the nominal phase output voltage of 230Vrms, and an output power of up to 10kW per phase.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power-hardware-in-the-loop (P-HIL)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">grid emulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">motor emulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power amplifier topologies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">switch-mode power amplifier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultra-high-bandwidth power amplifier</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jonas Huber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johann Wurz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Martin Stransky</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nissim Uvaidov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Srdjan Srdic</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johann W. Kolar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 54613-54633</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:54613-54633</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3172291</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4eb81c4434bd410a86f66c5b8cb1fd28</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9766331/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">54613-54633</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Julian Bohler |
spellingShingle |
Julian Bohler misc TK1-9971 misc Power-hardware-in-the-loop (P-HIL) misc grid emulation misc motor emulation misc power amplifier topologies misc switch-mode power amplifier misc ultra-high-bandwidth power amplifier misc Electrical engineering. Electronics. Nuclear engineering Ultra-High-Bandwidth Power Amplifiers: A Technology Overview and Future Prospects |
authorStr |
Julian Bohler |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Ultra-High-Bandwidth Power Amplifiers: A Technology Overview and Future Prospects Power-hardware-in-the-loop (P-HIL) grid emulation motor emulation power amplifier topologies switch-mode power amplifier ultra-high-bandwidth power amplifier |
topic |
misc TK1-9971 misc Power-hardware-in-the-loop (P-HIL) misc grid emulation misc motor emulation misc power amplifier topologies misc switch-mode power amplifier misc ultra-high-bandwidth power amplifier misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Power-hardware-in-the-loop (P-HIL) misc grid emulation misc motor emulation misc power amplifier topologies misc switch-mode power amplifier misc ultra-high-bandwidth power amplifier misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Power-hardware-in-the-loop (P-HIL) misc grid emulation misc motor emulation misc power amplifier topologies misc switch-mode power amplifier misc ultra-high-bandwidth power amplifier misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Ultra-High-Bandwidth Power Amplifiers: A Technology Overview and Future Prospects |
ctrlnum |
(DE-627)DOAJ022358552 (DE-599)DOAJ4eb81c4434bd410a86f66c5b8cb1fd28 |
title_full |
Ultra-High-Bandwidth Power Amplifiers: A Technology Overview and Future Prospects |
author_sort |
Julian Bohler |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
54613 |
author_browse |
Julian Bohler Jonas Huber Johann Wurz Martin Stransky Nissim Uvaidov Srdjan Srdic Johann W. Kolar |
container_volume |
10 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Julian Bohler |
doi_str_mv |
10.1109/ACCESS.2022.3172291 |
author2-role |
verfasserin |
title_sort |
ultra-high-bandwidth power amplifiers: a technology overview and future prospects |
callnumber |
TK1-9971 |
title_auth |
Ultra-High-Bandwidth Power Amplifiers: A Technology Overview and Future Prospects |
abstract |
Testing of power electronic converters can advantageously be carried out in power-hardware-in-the-loop (P-HIL) environments that emulate the behavior of power grids, electric motors, etc. The interface between the model and the device under test requires a power amplifier whose bandwidth ultimately limits the accuracy of the emulation. Hence, there is a need for general-purpose AC power amplifiers with ultra-high power bandwidth. This paper first provides a comprehensive review of amplifier concepts proposed over the past decades, i.e., linear power amplifiers, switch-mode amplifiers, including advanced variants such as multilevel (parallel-interleaving) and multicell (series-interleaving) topologies, as well as hybrid approaches that, e.g., combine analog and switch-mode stages. Based on this review, the two key concepts (parallel-interleaving of bridge-legs and cascading of converter cells) that facilitate high efficiency and ultra-high power bandwidth are identified and discussed, covering also suitable isolated mains interfaces and control considerations. Finally, we present a three-phase amplifier system that uses six cascaded converter cells per phase to realize an effective switching frequency of 3.6MHz. The prototype thus achieves a measured power bandwidth of 100kHz at the nominal phase output voltage of 230Vrms, and an output power of up to 10kW per phase. |
abstractGer |
Testing of power electronic converters can advantageously be carried out in power-hardware-in-the-loop (P-HIL) environments that emulate the behavior of power grids, electric motors, etc. The interface between the model and the device under test requires a power amplifier whose bandwidth ultimately limits the accuracy of the emulation. Hence, there is a need for general-purpose AC power amplifiers with ultra-high power bandwidth. This paper first provides a comprehensive review of amplifier concepts proposed over the past decades, i.e., linear power amplifiers, switch-mode amplifiers, including advanced variants such as multilevel (parallel-interleaving) and multicell (series-interleaving) topologies, as well as hybrid approaches that, e.g., combine analog and switch-mode stages. Based on this review, the two key concepts (parallel-interleaving of bridge-legs and cascading of converter cells) that facilitate high efficiency and ultra-high power bandwidth are identified and discussed, covering also suitable isolated mains interfaces and control considerations. Finally, we present a three-phase amplifier system that uses six cascaded converter cells per phase to realize an effective switching frequency of 3.6MHz. The prototype thus achieves a measured power bandwidth of 100kHz at the nominal phase output voltage of 230Vrms, and an output power of up to 10kW per phase. |
abstract_unstemmed |
Testing of power electronic converters can advantageously be carried out in power-hardware-in-the-loop (P-HIL) environments that emulate the behavior of power grids, electric motors, etc. The interface between the model and the device under test requires a power amplifier whose bandwidth ultimately limits the accuracy of the emulation. Hence, there is a need for general-purpose AC power amplifiers with ultra-high power bandwidth. This paper first provides a comprehensive review of amplifier concepts proposed over the past decades, i.e., linear power amplifiers, switch-mode amplifiers, including advanced variants such as multilevel (parallel-interleaving) and multicell (series-interleaving) topologies, as well as hybrid approaches that, e.g., combine analog and switch-mode stages. Based on this review, the two key concepts (parallel-interleaving of bridge-legs and cascading of converter cells) that facilitate high efficiency and ultra-high power bandwidth are identified and discussed, covering also suitable isolated mains interfaces and control considerations. Finally, we present a three-phase amplifier system that uses six cascaded converter cells per phase to realize an effective switching frequency of 3.6MHz. The prototype thus achieves a measured power bandwidth of 100kHz at the nominal phase output voltage of 230Vrms, and an output power of up to 10kW per phase. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Ultra-High-Bandwidth Power Amplifiers: A Technology Overview and Future Prospects |
url |
https://doi.org/10.1109/ACCESS.2022.3172291 https://doaj.org/article/4eb81c4434bd410a86f66c5b8cb1fd28 https://ieeexplore.ieee.org/document/9766331/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Jonas Huber Johann Wurz Martin Stransky Nissim Uvaidov Srdjan Srdic Johann W. Kolar |
author2Str |
Jonas Huber Johann Wurz Martin Stransky Nissim Uvaidov Srdjan Srdic Johann W. Kolar |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2022.3172291 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T01:13:12.446Z |
_version_ |
1803609012907802624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ022358552</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307054859.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3172291</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ022358552</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4eb81c4434bd410a86f66c5b8cb1fd28</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Julian Bohler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ultra-High-Bandwidth Power Amplifiers: A Technology Overview and Future Prospects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Testing of power electronic converters can advantageously be carried out in power-hardware-in-the-loop (P-HIL) environments that emulate the behavior of power grids, electric motors, etc. The interface between the model and the device under test requires a power amplifier whose bandwidth ultimately limits the accuracy of the emulation. Hence, there is a need for general-purpose AC power amplifiers with ultra-high power bandwidth. This paper first provides a comprehensive review of amplifier concepts proposed over the past decades, i.e., linear power amplifiers, switch-mode amplifiers, including advanced variants such as multilevel (parallel-interleaving) and multicell (series-interleaving) topologies, as well as hybrid approaches that, e.g., combine analog and switch-mode stages. Based on this review, the two key concepts (parallel-interleaving of bridge-legs and cascading of converter cells) that facilitate high efficiency and ultra-high power bandwidth are identified and discussed, covering also suitable isolated mains interfaces and control considerations. Finally, we present a three-phase amplifier system that uses six cascaded converter cells per phase to realize an effective switching frequency of 3.6MHz. The prototype thus achieves a measured power bandwidth of 100kHz at the nominal phase output voltage of 230Vrms, and an output power of up to 10kW per phase.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power-hardware-in-the-loop (P-HIL)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">grid emulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">motor emulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power amplifier topologies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">switch-mode power amplifier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultra-high-bandwidth power amplifier</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jonas Huber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johann Wurz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Martin Stransky</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nissim Uvaidov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Srdjan Srdic</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johann W. Kolar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 54613-54633</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:54613-54633</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3172291</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4eb81c4434bd410a86f66c5b8cb1fd28</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9766331/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">54613-54633</subfield></datafield></record></collection>
|
score |
7.401107 |