Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary
ABSTRACT Water hypoxia (DO < 2 mg/L) is a growing global environmental concern that has the potential to significantly influence not only the aquatic ecosystem but also the benthic sedimentary ecosystem. The Changjiang River Estuary hypoxia, classified as one of the world's largest seasonal...
Ausführliche Beschreibung
Autor*in: |
Dayu Zou [verfasserIn] Hongliang Li [verfasserIn] Ping Du [verfasserIn] Bin Wang [verfasserIn] Hua Lin [verfasserIn] Hongbin Liu [verfasserIn] Jianfang Chen [verfasserIn] Meng Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Microbiology Spectrum - American Society for Microbiology, 2022, 10(2022), 5 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:5 |
Links: |
---|
DOI / URN: |
10.1128/spectrum.01947-22 |
---|
Katalog-ID: |
DOAJ022441913 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ022441913 | ||
003 | DE-627 | ||
005 | 20230307055306.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1128/spectrum.01947-22 |2 doi | |
035 | |a (DE-627)DOAJ022441913 | ||
035 | |a (DE-599)DOAJd8fed652533742e5ad45223ac7d415b1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QR1-502 | |
100 | 0 | |a Dayu Zou |e verfasserin |4 aut | |
245 | 1 | 0 | |a Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a ABSTRACT Water hypoxia (DO < 2 mg/L) is a growing global environmental concern that has the potential to significantly influence not only the aquatic ecosystem but also the benthic sedimentary ecosystem. The Changjiang River Estuary hypoxia, classified as one of the world's largest seasonal hypoxic water basins, has been reported to be expanding rapidly in recent decades. However, the microbial community dynamics and responses to this water hypoxia are still unclear. In this study, we examined the abundance, community composition, and distribution of sedimentary archaea, one important component of microbial communities in the Changjiang River Estuary and the East China Sea (ECS). Our results indicated that Thaumarchaeota and Bathyarchaeota were predominant archaeal groups in these research areas, with their 16S rRNA gene abundance ranged from 8.55 × 106 to 7.51 × 108 and 3.18 × 105 to 1.11 × 108 copies/g, respectively. The sedimentary archaeal community was mainly influenced by DO, together with the concentration of ammonium, nitrate, and sulfide. In addition, distinct differences in the archaeal community's composition, abundance, and driving factors were discovered between samples from hypoxia and non-hypoxia stations. Furtherly, microbial networks suggest various microbes leading the different activities in hypoxic and normoxic environments. Bathyarchaeota and Thermoprofundales were “key stone” archaeal members of the low-DO network, whereas Thaumarchaeota constituted a significant component of the high-DO network. Our results provide a clear picture of the sedimentary archaeal community in coastal hypoxia zones and indicates potential distinctions of archaea in hypoxia and non-hypoxia environments, including ecological niches and metabolic functions. IMPORTANCE In this study, the sedimentary archaeal community composition and abundance were detailed revealed and quantified based on 16S rRNA genes off the Changjiang River Estuary. We found that the community composition was distinct between hypoxia and non-hypoxia regions, while Thaumarchaeota and Bathyarchaeota dominated in non-hypoxia and hypoxia samples, respectively. In hypoxia regions, the sedimentary archaea were mainly affected by salinity, ammonium, and nitrate, whereas total organic carbon, total nitrogen, and sulfide were major influencing factors in non-hypoxia regions. The distinct microbial network may suggest the niche difference of archaeal community under various oxygen level. | ||
650 | 4 | |a Thaumarchaeota | |
650 | 4 | |a Bathyarchaeota | |
650 | 4 | |a hypoxia | |
650 | 4 | |a distribution | |
653 | 0 | |a Microbiology | |
700 | 0 | |a Hongliang Li |e verfasserin |4 aut | |
700 | 0 | |a Ping Du |e verfasserin |4 aut | |
700 | 0 | |a Bin Wang |e verfasserin |4 aut | |
700 | 0 | |a Hua Lin |e verfasserin |4 aut | |
700 | 0 | |a Hongbin Liu |e verfasserin |4 aut | |
700 | 0 | |a Jianfang Chen |e verfasserin |4 aut | |
700 | 0 | |a Meng Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Microbiology Spectrum |d American Society for Microbiology, 2022 |g 10(2022), 5 |w (DE-627)816693293 |w (DE-600)2807133-5 |x 21650497 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:5 |
856 | 4 | 0 | |u https://doi.org/10.1128/spectrum.01947-22 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d8fed652533742e5ad45223ac7d415b1 |z kostenfrei |
856 | 4 | 0 | |u https://journals.asm.org/doi/10.1128/spectrum.01947-22 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2165-0497 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 5 |
author_variant |
d z dz h l hl p d pd b w bw h l hl h l hl j c jc m l ml |
---|---|
matchkey_str |
article:21650497:2022----::itntetrsfeietracaacmuiisnyoiadohpxaeino |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QR |
publishDate |
2022 |
allfields |
10.1128/spectrum.01947-22 doi (DE-627)DOAJ022441913 (DE-599)DOAJd8fed652533742e5ad45223ac7d415b1 DE-627 ger DE-627 rakwb eng QR1-502 Dayu Zou verfasserin aut Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT Water hypoxia (DO < 2 mg/L) is a growing global environmental concern that has the potential to significantly influence not only the aquatic ecosystem but also the benthic sedimentary ecosystem. The Changjiang River Estuary hypoxia, classified as one of the world's largest seasonal hypoxic water basins, has been reported to be expanding rapidly in recent decades. However, the microbial community dynamics and responses to this water hypoxia are still unclear. In this study, we examined the abundance, community composition, and distribution of sedimentary archaea, one important component of microbial communities in the Changjiang River Estuary and the East China Sea (ECS). Our results indicated that Thaumarchaeota and Bathyarchaeota were predominant archaeal groups in these research areas, with their 16S rRNA gene abundance ranged from 8.55 × 106 to 7.51 × 108 and 3.18 × 105 to 1.11 × 108 copies/g, respectively. The sedimentary archaeal community was mainly influenced by DO, together with the concentration of ammonium, nitrate, and sulfide. In addition, distinct differences in the archaeal community's composition, abundance, and driving factors were discovered between samples from hypoxia and non-hypoxia stations. Furtherly, microbial networks suggest various microbes leading the different activities in hypoxic and normoxic environments. Bathyarchaeota and Thermoprofundales were “key stone” archaeal members of the low-DO network, whereas Thaumarchaeota constituted a significant component of the high-DO network. Our results provide a clear picture of the sedimentary archaeal community in coastal hypoxia zones and indicates potential distinctions of archaea in hypoxia and non-hypoxia environments, including ecological niches and metabolic functions. IMPORTANCE In this study, the sedimentary archaeal community composition and abundance were detailed revealed and quantified based on 16S rRNA genes off the Changjiang River Estuary. We found that the community composition was distinct between hypoxia and non-hypoxia regions, while Thaumarchaeota and Bathyarchaeota dominated in non-hypoxia and hypoxia samples, respectively. In hypoxia regions, the sedimentary archaea were mainly affected by salinity, ammonium, and nitrate, whereas total organic carbon, total nitrogen, and sulfide were major influencing factors in non-hypoxia regions. The distinct microbial network may suggest the niche difference of archaeal community under various oxygen level. Thaumarchaeota Bathyarchaeota hypoxia distribution Microbiology Hongliang Li verfasserin aut Ping Du verfasserin aut Bin Wang verfasserin aut Hua Lin verfasserin aut Hongbin Liu verfasserin aut Jianfang Chen verfasserin aut Meng Li verfasserin aut In Microbiology Spectrum American Society for Microbiology, 2022 10(2022), 5 (DE-627)816693293 (DE-600)2807133-5 21650497 nnns volume:10 year:2022 number:5 https://doi.org/10.1128/spectrum.01947-22 kostenfrei https://doaj.org/article/d8fed652533742e5ad45223ac7d415b1 kostenfrei https://journals.asm.org/doi/10.1128/spectrum.01947-22 kostenfrei https://doaj.org/toc/2165-0497 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 5 |
spelling |
10.1128/spectrum.01947-22 doi (DE-627)DOAJ022441913 (DE-599)DOAJd8fed652533742e5ad45223ac7d415b1 DE-627 ger DE-627 rakwb eng QR1-502 Dayu Zou verfasserin aut Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT Water hypoxia (DO < 2 mg/L) is a growing global environmental concern that has the potential to significantly influence not only the aquatic ecosystem but also the benthic sedimentary ecosystem. The Changjiang River Estuary hypoxia, classified as one of the world's largest seasonal hypoxic water basins, has been reported to be expanding rapidly in recent decades. However, the microbial community dynamics and responses to this water hypoxia are still unclear. In this study, we examined the abundance, community composition, and distribution of sedimentary archaea, one important component of microbial communities in the Changjiang River Estuary and the East China Sea (ECS). Our results indicated that Thaumarchaeota and Bathyarchaeota were predominant archaeal groups in these research areas, with their 16S rRNA gene abundance ranged from 8.55 × 106 to 7.51 × 108 and 3.18 × 105 to 1.11 × 108 copies/g, respectively. The sedimentary archaeal community was mainly influenced by DO, together with the concentration of ammonium, nitrate, and sulfide. In addition, distinct differences in the archaeal community's composition, abundance, and driving factors were discovered between samples from hypoxia and non-hypoxia stations. Furtherly, microbial networks suggest various microbes leading the different activities in hypoxic and normoxic environments. Bathyarchaeota and Thermoprofundales were “key stone” archaeal members of the low-DO network, whereas Thaumarchaeota constituted a significant component of the high-DO network. Our results provide a clear picture of the sedimentary archaeal community in coastal hypoxia zones and indicates potential distinctions of archaea in hypoxia and non-hypoxia environments, including ecological niches and metabolic functions. IMPORTANCE In this study, the sedimentary archaeal community composition and abundance were detailed revealed and quantified based on 16S rRNA genes off the Changjiang River Estuary. We found that the community composition was distinct between hypoxia and non-hypoxia regions, while Thaumarchaeota and Bathyarchaeota dominated in non-hypoxia and hypoxia samples, respectively. In hypoxia regions, the sedimentary archaea were mainly affected by salinity, ammonium, and nitrate, whereas total organic carbon, total nitrogen, and sulfide were major influencing factors in non-hypoxia regions. The distinct microbial network may suggest the niche difference of archaeal community under various oxygen level. Thaumarchaeota Bathyarchaeota hypoxia distribution Microbiology Hongliang Li verfasserin aut Ping Du verfasserin aut Bin Wang verfasserin aut Hua Lin verfasserin aut Hongbin Liu verfasserin aut Jianfang Chen verfasserin aut Meng Li verfasserin aut In Microbiology Spectrum American Society for Microbiology, 2022 10(2022), 5 (DE-627)816693293 (DE-600)2807133-5 21650497 nnns volume:10 year:2022 number:5 https://doi.org/10.1128/spectrum.01947-22 kostenfrei https://doaj.org/article/d8fed652533742e5ad45223ac7d415b1 kostenfrei https://journals.asm.org/doi/10.1128/spectrum.01947-22 kostenfrei https://doaj.org/toc/2165-0497 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 5 |
allfields_unstemmed |
10.1128/spectrum.01947-22 doi (DE-627)DOAJ022441913 (DE-599)DOAJd8fed652533742e5ad45223ac7d415b1 DE-627 ger DE-627 rakwb eng QR1-502 Dayu Zou verfasserin aut Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT Water hypoxia (DO < 2 mg/L) is a growing global environmental concern that has the potential to significantly influence not only the aquatic ecosystem but also the benthic sedimentary ecosystem. The Changjiang River Estuary hypoxia, classified as one of the world's largest seasonal hypoxic water basins, has been reported to be expanding rapidly in recent decades. However, the microbial community dynamics and responses to this water hypoxia are still unclear. In this study, we examined the abundance, community composition, and distribution of sedimentary archaea, one important component of microbial communities in the Changjiang River Estuary and the East China Sea (ECS). Our results indicated that Thaumarchaeota and Bathyarchaeota were predominant archaeal groups in these research areas, with their 16S rRNA gene abundance ranged from 8.55 × 106 to 7.51 × 108 and 3.18 × 105 to 1.11 × 108 copies/g, respectively. The sedimentary archaeal community was mainly influenced by DO, together with the concentration of ammonium, nitrate, and sulfide. In addition, distinct differences in the archaeal community's composition, abundance, and driving factors were discovered between samples from hypoxia and non-hypoxia stations. Furtherly, microbial networks suggest various microbes leading the different activities in hypoxic and normoxic environments. Bathyarchaeota and Thermoprofundales were “key stone” archaeal members of the low-DO network, whereas Thaumarchaeota constituted a significant component of the high-DO network. Our results provide a clear picture of the sedimentary archaeal community in coastal hypoxia zones and indicates potential distinctions of archaea in hypoxia and non-hypoxia environments, including ecological niches and metabolic functions. IMPORTANCE In this study, the sedimentary archaeal community composition and abundance were detailed revealed and quantified based on 16S rRNA genes off the Changjiang River Estuary. We found that the community composition was distinct between hypoxia and non-hypoxia regions, while Thaumarchaeota and Bathyarchaeota dominated in non-hypoxia and hypoxia samples, respectively. In hypoxia regions, the sedimentary archaea were mainly affected by salinity, ammonium, and nitrate, whereas total organic carbon, total nitrogen, and sulfide were major influencing factors in non-hypoxia regions. The distinct microbial network may suggest the niche difference of archaeal community under various oxygen level. Thaumarchaeota Bathyarchaeota hypoxia distribution Microbiology Hongliang Li verfasserin aut Ping Du verfasserin aut Bin Wang verfasserin aut Hua Lin verfasserin aut Hongbin Liu verfasserin aut Jianfang Chen verfasserin aut Meng Li verfasserin aut In Microbiology Spectrum American Society for Microbiology, 2022 10(2022), 5 (DE-627)816693293 (DE-600)2807133-5 21650497 nnns volume:10 year:2022 number:5 https://doi.org/10.1128/spectrum.01947-22 kostenfrei https://doaj.org/article/d8fed652533742e5ad45223ac7d415b1 kostenfrei https://journals.asm.org/doi/10.1128/spectrum.01947-22 kostenfrei https://doaj.org/toc/2165-0497 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 5 |
allfieldsGer |
10.1128/spectrum.01947-22 doi (DE-627)DOAJ022441913 (DE-599)DOAJd8fed652533742e5ad45223ac7d415b1 DE-627 ger DE-627 rakwb eng QR1-502 Dayu Zou verfasserin aut Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT Water hypoxia (DO < 2 mg/L) is a growing global environmental concern that has the potential to significantly influence not only the aquatic ecosystem but also the benthic sedimentary ecosystem. The Changjiang River Estuary hypoxia, classified as one of the world's largest seasonal hypoxic water basins, has been reported to be expanding rapidly in recent decades. However, the microbial community dynamics and responses to this water hypoxia are still unclear. In this study, we examined the abundance, community composition, and distribution of sedimentary archaea, one important component of microbial communities in the Changjiang River Estuary and the East China Sea (ECS). Our results indicated that Thaumarchaeota and Bathyarchaeota were predominant archaeal groups in these research areas, with their 16S rRNA gene abundance ranged from 8.55 × 106 to 7.51 × 108 and 3.18 × 105 to 1.11 × 108 copies/g, respectively. The sedimentary archaeal community was mainly influenced by DO, together with the concentration of ammonium, nitrate, and sulfide. In addition, distinct differences in the archaeal community's composition, abundance, and driving factors were discovered between samples from hypoxia and non-hypoxia stations. Furtherly, microbial networks suggest various microbes leading the different activities in hypoxic and normoxic environments. Bathyarchaeota and Thermoprofundales were “key stone” archaeal members of the low-DO network, whereas Thaumarchaeota constituted a significant component of the high-DO network. Our results provide a clear picture of the sedimentary archaeal community in coastal hypoxia zones and indicates potential distinctions of archaea in hypoxia and non-hypoxia environments, including ecological niches and metabolic functions. IMPORTANCE In this study, the sedimentary archaeal community composition and abundance were detailed revealed and quantified based on 16S rRNA genes off the Changjiang River Estuary. We found that the community composition was distinct between hypoxia and non-hypoxia regions, while Thaumarchaeota and Bathyarchaeota dominated in non-hypoxia and hypoxia samples, respectively. In hypoxia regions, the sedimentary archaea were mainly affected by salinity, ammonium, and nitrate, whereas total organic carbon, total nitrogen, and sulfide were major influencing factors in non-hypoxia regions. The distinct microbial network may suggest the niche difference of archaeal community under various oxygen level. Thaumarchaeota Bathyarchaeota hypoxia distribution Microbiology Hongliang Li verfasserin aut Ping Du verfasserin aut Bin Wang verfasserin aut Hua Lin verfasserin aut Hongbin Liu verfasserin aut Jianfang Chen verfasserin aut Meng Li verfasserin aut In Microbiology Spectrum American Society for Microbiology, 2022 10(2022), 5 (DE-627)816693293 (DE-600)2807133-5 21650497 nnns volume:10 year:2022 number:5 https://doi.org/10.1128/spectrum.01947-22 kostenfrei https://doaj.org/article/d8fed652533742e5ad45223ac7d415b1 kostenfrei https://journals.asm.org/doi/10.1128/spectrum.01947-22 kostenfrei https://doaj.org/toc/2165-0497 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 5 |
allfieldsSound |
10.1128/spectrum.01947-22 doi (DE-627)DOAJ022441913 (DE-599)DOAJd8fed652533742e5ad45223ac7d415b1 DE-627 ger DE-627 rakwb eng QR1-502 Dayu Zou verfasserin aut Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT Water hypoxia (DO < 2 mg/L) is a growing global environmental concern that has the potential to significantly influence not only the aquatic ecosystem but also the benthic sedimentary ecosystem. The Changjiang River Estuary hypoxia, classified as one of the world's largest seasonal hypoxic water basins, has been reported to be expanding rapidly in recent decades. However, the microbial community dynamics and responses to this water hypoxia are still unclear. In this study, we examined the abundance, community composition, and distribution of sedimentary archaea, one important component of microbial communities in the Changjiang River Estuary and the East China Sea (ECS). Our results indicated that Thaumarchaeota and Bathyarchaeota were predominant archaeal groups in these research areas, with their 16S rRNA gene abundance ranged from 8.55 × 106 to 7.51 × 108 and 3.18 × 105 to 1.11 × 108 copies/g, respectively. The sedimentary archaeal community was mainly influenced by DO, together with the concentration of ammonium, nitrate, and sulfide. In addition, distinct differences in the archaeal community's composition, abundance, and driving factors were discovered between samples from hypoxia and non-hypoxia stations. Furtherly, microbial networks suggest various microbes leading the different activities in hypoxic and normoxic environments. Bathyarchaeota and Thermoprofundales were “key stone” archaeal members of the low-DO network, whereas Thaumarchaeota constituted a significant component of the high-DO network. Our results provide a clear picture of the sedimentary archaeal community in coastal hypoxia zones and indicates potential distinctions of archaea in hypoxia and non-hypoxia environments, including ecological niches and metabolic functions. IMPORTANCE In this study, the sedimentary archaeal community composition and abundance were detailed revealed and quantified based on 16S rRNA genes off the Changjiang River Estuary. We found that the community composition was distinct between hypoxia and non-hypoxia regions, while Thaumarchaeota and Bathyarchaeota dominated in non-hypoxia and hypoxia samples, respectively. In hypoxia regions, the sedimentary archaea were mainly affected by salinity, ammonium, and nitrate, whereas total organic carbon, total nitrogen, and sulfide were major influencing factors in non-hypoxia regions. The distinct microbial network may suggest the niche difference of archaeal community under various oxygen level. Thaumarchaeota Bathyarchaeota hypoxia distribution Microbiology Hongliang Li verfasserin aut Ping Du verfasserin aut Bin Wang verfasserin aut Hua Lin verfasserin aut Hongbin Liu verfasserin aut Jianfang Chen verfasserin aut Meng Li verfasserin aut In Microbiology Spectrum American Society for Microbiology, 2022 10(2022), 5 (DE-627)816693293 (DE-600)2807133-5 21650497 nnns volume:10 year:2022 number:5 https://doi.org/10.1128/spectrum.01947-22 kostenfrei https://doaj.org/article/d8fed652533742e5ad45223ac7d415b1 kostenfrei https://journals.asm.org/doi/10.1128/spectrum.01947-22 kostenfrei https://doaj.org/toc/2165-0497 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 5 |
language |
English |
source |
In Microbiology Spectrum 10(2022), 5 volume:10 year:2022 number:5 |
sourceStr |
In Microbiology Spectrum 10(2022), 5 volume:10 year:2022 number:5 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Thaumarchaeota Bathyarchaeota hypoxia distribution Microbiology |
isfreeaccess_bool |
true |
container_title |
Microbiology Spectrum |
authorswithroles_txt_mv |
Dayu Zou @@aut@@ Hongliang Li @@aut@@ Ping Du @@aut@@ Bin Wang @@aut@@ Hua Lin @@aut@@ Hongbin Liu @@aut@@ Jianfang Chen @@aut@@ Meng Li @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
816693293 |
id |
DOAJ022441913 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ022441913</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307055306.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1128/spectrum.01947-22</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ022441913</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd8fed652533742e5ad45223ac7d415b1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dayu Zou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">ABSTRACT Water hypoxia (DO < 2 mg/L) is a growing global environmental concern that has the potential to significantly influence not only the aquatic ecosystem but also the benthic sedimentary ecosystem. The Changjiang River Estuary hypoxia, classified as one of the world's largest seasonal hypoxic water basins, has been reported to be expanding rapidly in recent decades. However, the microbial community dynamics and responses to this water hypoxia are still unclear. In this study, we examined the abundance, community composition, and distribution of sedimentary archaea, one important component of microbial communities in the Changjiang River Estuary and the East China Sea (ECS). Our results indicated that Thaumarchaeota and Bathyarchaeota were predominant archaeal groups in these research areas, with their 16S rRNA gene abundance ranged from 8.55 × 106 to 7.51 × 108 and 3.18 × 105 to 1.11 × 108 copies/g, respectively. The sedimentary archaeal community was mainly influenced by DO, together with the concentration of ammonium, nitrate, and sulfide. In addition, distinct differences in the archaeal community's composition, abundance, and driving factors were discovered between samples from hypoxia and non-hypoxia stations. Furtherly, microbial networks suggest various microbes leading the different activities in hypoxic and normoxic environments. Bathyarchaeota and Thermoprofundales were “key stone” archaeal members of the low-DO network, whereas Thaumarchaeota constituted a significant component of the high-DO network. Our results provide a clear picture of the sedimentary archaeal community in coastal hypoxia zones and indicates potential distinctions of archaea in hypoxia and non-hypoxia environments, including ecological niches and metabolic functions. IMPORTANCE In this study, the sedimentary archaeal community composition and abundance were detailed revealed and quantified based on 16S rRNA genes off the Changjiang River Estuary. We found that the community composition was distinct between hypoxia and non-hypoxia regions, while Thaumarchaeota and Bathyarchaeota dominated in non-hypoxia and hypoxia samples, respectively. In hypoxia regions, the sedimentary archaea were mainly affected by salinity, ammonium, and nitrate, whereas total organic carbon, total nitrogen, and sulfide were major influencing factors in non-hypoxia regions. The distinct microbial network may suggest the niche difference of archaeal community under various oxygen level.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thaumarchaeota</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bathyarchaeota</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hypoxia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distribution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongliang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hua Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongbin Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianfang Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Microbiology Spectrum</subfield><subfield code="d">American Society for Microbiology, 2022</subfield><subfield code="g">10(2022), 5</subfield><subfield code="w">(DE-627)816693293</subfield><subfield code="w">(DE-600)2807133-5</subfield><subfield code="x">21650497</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1128/spectrum.01947-22</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d8fed652533742e5ad45223ac7d415b1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.asm.org/doi/10.1128/spectrum.01947-22</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2165-0497</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Dayu Zou |
spellingShingle |
Dayu Zou misc QR1-502 misc Thaumarchaeota misc Bathyarchaeota misc hypoxia misc distribution misc Microbiology Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary |
authorStr |
Dayu Zou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)816693293 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QR1-502 |
illustrated |
Not Illustrated |
issn |
21650497 |
topic_title |
QR1-502 Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary Thaumarchaeota Bathyarchaeota hypoxia distribution |
topic |
misc QR1-502 misc Thaumarchaeota misc Bathyarchaeota misc hypoxia misc distribution misc Microbiology |
topic_unstemmed |
misc QR1-502 misc Thaumarchaeota misc Bathyarchaeota misc hypoxia misc distribution misc Microbiology |
topic_browse |
misc QR1-502 misc Thaumarchaeota misc Bathyarchaeota misc hypoxia misc distribution misc Microbiology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Microbiology Spectrum |
hierarchy_parent_id |
816693293 |
hierarchy_top_title |
Microbiology Spectrum |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)816693293 (DE-600)2807133-5 |
title |
Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary |
ctrlnum |
(DE-627)DOAJ022441913 (DE-599)DOAJd8fed652533742e5ad45223ac7d415b1 |
title_full |
Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary |
author_sort |
Dayu Zou |
journal |
Microbiology Spectrum |
journalStr |
Microbiology Spectrum |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Dayu Zou Hongliang Li Ping Du Bin Wang Hua Lin Hongbin Liu Jianfang Chen Meng Li |
container_volume |
10 |
class |
QR1-502 |
format_se |
Elektronische Aufsätze |
author-letter |
Dayu Zou |
doi_str_mv |
10.1128/spectrum.01947-22 |
author2-role |
verfasserin |
title_sort |
distinct features of sedimentary archaeal communities in hypoxia and non-hypoxia regions off the changjiang river estuary |
callnumber |
QR1-502 |
title_auth |
Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary |
abstract |
ABSTRACT Water hypoxia (DO < 2 mg/L) is a growing global environmental concern that has the potential to significantly influence not only the aquatic ecosystem but also the benthic sedimentary ecosystem. The Changjiang River Estuary hypoxia, classified as one of the world's largest seasonal hypoxic water basins, has been reported to be expanding rapidly in recent decades. However, the microbial community dynamics and responses to this water hypoxia are still unclear. In this study, we examined the abundance, community composition, and distribution of sedimentary archaea, one important component of microbial communities in the Changjiang River Estuary and the East China Sea (ECS). Our results indicated that Thaumarchaeota and Bathyarchaeota were predominant archaeal groups in these research areas, with their 16S rRNA gene abundance ranged from 8.55 × 106 to 7.51 × 108 and 3.18 × 105 to 1.11 × 108 copies/g, respectively. The sedimentary archaeal community was mainly influenced by DO, together with the concentration of ammonium, nitrate, and sulfide. In addition, distinct differences in the archaeal community's composition, abundance, and driving factors were discovered between samples from hypoxia and non-hypoxia stations. Furtherly, microbial networks suggest various microbes leading the different activities in hypoxic and normoxic environments. Bathyarchaeota and Thermoprofundales were “key stone” archaeal members of the low-DO network, whereas Thaumarchaeota constituted a significant component of the high-DO network. Our results provide a clear picture of the sedimentary archaeal community in coastal hypoxia zones and indicates potential distinctions of archaea in hypoxia and non-hypoxia environments, including ecological niches and metabolic functions. IMPORTANCE In this study, the sedimentary archaeal community composition and abundance were detailed revealed and quantified based on 16S rRNA genes off the Changjiang River Estuary. We found that the community composition was distinct between hypoxia and non-hypoxia regions, while Thaumarchaeota and Bathyarchaeota dominated in non-hypoxia and hypoxia samples, respectively. In hypoxia regions, the sedimentary archaea were mainly affected by salinity, ammonium, and nitrate, whereas total organic carbon, total nitrogen, and sulfide were major influencing factors in non-hypoxia regions. The distinct microbial network may suggest the niche difference of archaeal community under various oxygen level. |
abstractGer |
ABSTRACT Water hypoxia (DO < 2 mg/L) is a growing global environmental concern that has the potential to significantly influence not only the aquatic ecosystem but also the benthic sedimentary ecosystem. The Changjiang River Estuary hypoxia, classified as one of the world's largest seasonal hypoxic water basins, has been reported to be expanding rapidly in recent decades. However, the microbial community dynamics and responses to this water hypoxia are still unclear. In this study, we examined the abundance, community composition, and distribution of sedimentary archaea, one important component of microbial communities in the Changjiang River Estuary and the East China Sea (ECS). Our results indicated that Thaumarchaeota and Bathyarchaeota were predominant archaeal groups in these research areas, with their 16S rRNA gene abundance ranged from 8.55 × 106 to 7.51 × 108 and 3.18 × 105 to 1.11 × 108 copies/g, respectively. The sedimentary archaeal community was mainly influenced by DO, together with the concentration of ammonium, nitrate, and sulfide. In addition, distinct differences in the archaeal community's composition, abundance, and driving factors were discovered between samples from hypoxia and non-hypoxia stations. Furtherly, microbial networks suggest various microbes leading the different activities in hypoxic and normoxic environments. Bathyarchaeota and Thermoprofundales were “key stone” archaeal members of the low-DO network, whereas Thaumarchaeota constituted a significant component of the high-DO network. Our results provide a clear picture of the sedimentary archaeal community in coastal hypoxia zones and indicates potential distinctions of archaea in hypoxia and non-hypoxia environments, including ecological niches and metabolic functions. IMPORTANCE In this study, the sedimentary archaeal community composition and abundance were detailed revealed and quantified based on 16S rRNA genes off the Changjiang River Estuary. We found that the community composition was distinct between hypoxia and non-hypoxia regions, while Thaumarchaeota and Bathyarchaeota dominated in non-hypoxia and hypoxia samples, respectively. In hypoxia regions, the sedimentary archaea were mainly affected by salinity, ammonium, and nitrate, whereas total organic carbon, total nitrogen, and sulfide were major influencing factors in non-hypoxia regions. The distinct microbial network may suggest the niche difference of archaeal community under various oxygen level. |
abstract_unstemmed |
ABSTRACT Water hypoxia (DO < 2 mg/L) is a growing global environmental concern that has the potential to significantly influence not only the aquatic ecosystem but also the benthic sedimentary ecosystem. The Changjiang River Estuary hypoxia, classified as one of the world's largest seasonal hypoxic water basins, has been reported to be expanding rapidly in recent decades. However, the microbial community dynamics and responses to this water hypoxia are still unclear. In this study, we examined the abundance, community composition, and distribution of sedimentary archaea, one important component of microbial communities in the Changjiang River Estuary and the East China Sea (ECS). Our results indicated that Thaumarchaeota and Bathyarchaeota were predominant archaeal groups in these research areas, with their 16S rRNA gene abundance ranged from 8.55 × 106 to 7.51 × 108 and 3.18 × 105 to 1.11 × 108 copies/g, respectively. The sedimentary archaeal community was mainly influenced by DO, together with the concentration of ammonium, nitrate, and sulfide. In addition, distinct differences in the archaeal community's composition, abundance, and driving factors were discovered between samples from hypoxia and non-hypoxia stations. Furtherly, microbial networks suggest various microbes leading the different activities in hypoxic and normoxic environments. Bathyarchaeota and Thermoprofundales were “key stone” archaeal members of the low-DO network, whereas Thaumarchaeota constituted a significant component of the high-DO network. Our results provide a clear picture of the sedimentary archaeal community in coastal hypoxia zones and indicates potential distinctions of archaea in hypoxia and non-hypoxia environments, including ecological niches and metabolic functions. IMPORTANCE In this study, the sedimentary archaeal community composition and abundance were detailed revealed and quantified based on 16S rRNA genes off the Changjiang River Estuary. We found that the community composition was distinct between hypoxia and non-hypoxia regions, while Thaumarchaeota and Bathyarchaeota dominated in non-hypoxia and hypoxia samples, respectively. In hypoxia regions, the sedimentary archaea were mainly affected by salinity, ammonium, and nitrate, whereas total organic carbon, total nitrogen, and sulfide were major influencing factors in non-hypoxia regions. The distinct microbial network may suggest the niche difference of archaeal community under various oxygen level. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary |
url |
https://doi.org/10.1128/spectrum.01947-22 https://doaj.org/article/d8fed652533742e5ad45223ac7d415b1 https://journals.asm.org/doi/10.1128/spectrum.01947-22 https://doaj.org/toc/2165-0497 |
remote_bool |
true |
author2 |
Hongliang Li Ping Du Bin Wang Hua Lin Hongbin Liu Jianfang Chen Meng Li |
author2Str |
Hongliang Li Ping Du Bin Wang Hua Lin Hongbin Liu Jianfang Chen Meng Li |
ppnlink |
816693293 |
callnumber-subject |
QR - Microbiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1128/spectrum.01947-22 |
callnumber-a |
QR1-502 |
up_date |
2024-07-04T01:32:55.907Z |
_version_ |
1803610253857652736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ022441913</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307055306.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1128/spectrum.01947-22</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ022441913</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd8fed652533742e5ad45223ac7d415b1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dayu Zou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">ABSTRACT Water hypoxia (DO < 2 mg/L) is a growing global environmental concern that has the potential to significantly influence not only the aquatic ecosystem but also the benthic sedimentary ecosystem. The Changjiang River Estuary hypoxia, classified as one of the world's largest seasonal hypoxic water basins, has been reported to be expanding rapidly in recent decades. However, the microbial community dynamics and responses to this water hypoxia are still unclear. In this study, we examined the abundance, community composition, and distribution of sedimentary archaea, one important component of microbial communities in the Changjiang River Estuary and the East China Sea (ECS). Our results indicated that Thaumarchaeota and Bathyarchaeota were predominant archaeal groups in these research areas, with their 16S rRNA gene abundance ranged from 8.55 × 106 to 7.51 × 108 and 3.18 × 105 to 1.11 × 108 copies/g, respectively. The sedimentary archaeal community was mainly influenced by DO, together with the concentration of ammonium, nitrate, and sulfide. In addition, distinct differences in the archaeal community's composition, abundance, and driving factors were discovered between samples from hypoxia and non-hypoxia stations. Furtherly, microbial networks suggest various microbes leading the different activities in hypoxic and normoxic environments. Bathyarchaeota and Thermoprofundales were “key stone” archaeal members of the low-DO network, whereas Thaumarchaeota constituted a significant component of the high-DO network. Our results provide a clear picture of the sedimentary archaeal community in coastal hypoxia zones and indicates potential distinctions of archaea in hypoxia and non-hypoxia environments, including ecological niches and metabolic functions. IMPORTANCE In this study, the sedimentary archaeal community composition and abundance were detailed revealed and quantified based on 16S rRNA genes off the Changjiang River Estuary. We found that the community composition was distinct between hypoxia and non-hypoxia regions, while Thaumarchaeota and Bathyarchaeota dominated in non-hypoxia and hypoxia samples, respectively. In hypoxia regions, the sedimentary archaea were mainly affected by salinity, ammonium, and nitrate, whereas total organic carbon, total nitrogen, and sulfide were major influencing factors in non-hypoxia regions. The distinct microbial network may suggest the niche difference of archaeal community under various oxygen level.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thaumarchaeota</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bathyarchaeota</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hypoxia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distribution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongliang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hua Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongbin Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianfang Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Microbiology Spectrum</subfield><subfield code="d">American Society for Microbiology, 2022</subfield><subfield code="g">10(2022), 5</subfield><subfield code="w">(DE-627)816693293</subfield><subfield code="w">(DE-600)2807133-5</subfield><subfield code="x">21650497</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1128/spectrum.01947-22</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d8fed652533742e5ad45223ac7d415b1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.asm.org/doi/10.1128/spectrum.01947-22</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2165-0497</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield></datafield></record></collection>
|
score |
7.4011183 |