Increasing the rate of recycled asphalt: an experimental study
Asphalt is material that can be recycled. In particular reclaimed asphalt (RA) contains aged binder, which limits the reuse of RA. In this study the rate of recycled asphalt was increased by adding a rejuvenator containing paraffin. The authors investigated the effect of the rejuvenator in laborator...
Ausführliche Beschreibung
Autor*in: |
Marjan TUŠAR [verfasserIn] Lidija AVSENIK [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Transport Problems - Silesian University of Technology, 2017, 9(2014), 3, Seite 32-42 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2014 ; number:3 ; pages:32-42 |
Links: |
---|
Katalog-ID: |
DOAJ022492348 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ022492348 | ||
003 | DE-627 | ||
005 | 20230501185923.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2014 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ022492348 | ||
035 | |a (DE-599)DOAJ2aac5b793a444337ae7200e97a7f8232 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1001-1280 | |
100 | 0 | |a Marjan TUŠAR |e verfasserin |4 aut | |
245 | 1 | 0 | |a Increasing the rate of recycled asphalt: an experimental study |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Asphalt is material that can be recycled. In particular reclaimed asphalt (RA) contains aged binder, which limits the reuse of RA. In this study the rate of recycled asphalt was increased by adding a rejuvenator containing paraffin. The authors investigated the effect of the rejuvenator in laboratory and in plant prepared samples of asphalt mixture. In laboratory samples with different percentage of RA (0%, 10%, 30%, 50%) and rejuvenator were prepared. In asphalt plant only asphalt mixture with highest amount of RA and rejuvenator and control mixture without RA were prepared. On samples were conducted different tests, e.g. determining softening point, Fraass breaking point, penetration, indirect tensile strength. Results on extracted bitumen showed increase in softening point and decrease in Fraass breaking point with increasing percentage of RA and rejuvenator, meaning that service temperature of binders increased. Asphalt samples prepared in asphalt plant were laid on test field. Asphalt with RA and rejuvenator was built in at lower temperature (round 100 °C). Mixtures with RA and rejuvenator have better low temperature properties confirmed with Thermal Stress Restrained Specimen Test (TSRST) method, but are less resistant to compaction and less sensitive to water than control mixture. For comparison of long term behaviour wheel tracking test was performed on mixtures built in test field. A week after paving, the control mixture showed better properties, but one year later the results were opposite, asphalt containing RA and rejuvenator was more resistant to rutting. From the results of this experimental study the following was concluded: the amount of RA can be increased by using rejuvenator and the quality of such asphalt mixture is in most cases equal or even better than asphalt mixture made of virgin materials. By using RA we preserve nature, reduce usage of virgin raw materials, but it is cost effective only if recycling degree is high enough and is a daily practice. | ||
650 | 4 | |a reclaimed asphalt | |
650 | 4 | |a recycling; rejuvenator | |
650 | 4 | |a asphalt plant | |
653 | 0 | |a Transportation engineering | |
700 | 0 | |a Lidija AVSENIK |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Transport Problems |d Silesian University of Technology, 2017 |g 9(2014), 3, Seite 32-42 |w (DE-627)581037294 |w (DE-600)2455243-4 |x 2300861X |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2014 |g number:3 |g pages:32-42 |
856 | 4 | 0 | |u https://doaj.org/article/2aac5b793a444337ae7200e97a7f8232 |z kostenfrei |
856 | 4 | 0 | |u http://transportproblems.polsl.pl/pl/Archiwum/2014/zeszyt3/2014t9z3_04.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1896-0596 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2300-861X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4305 | ||
951 | |a AR | ||
952 | |d 9 |j 2014 |e 3 |h 32-42 |
author_variant |
m t mt l a la |
---|---|
matchkey_str |
article:2300861X:2014----::nraighrtorcceapatnx |
hierarchy_sort_str |
2014 |
callnumber-subject-code |
TA |
publishDate |
2014 |
allfields |
(DE-627)DOAJ022492348 (DE-599)DOAJ2aac5b793a444337ae7200e97a7f8232 DE-627 ger DE-627 rakwb eng TA1001-1280 Marjan TUŠAR verfasserin aut Increasing the rate of recycled asphalt: an experimental study 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Asphalt is material that can be recycled. In particular reclaimed asphalt (RA) contains aged binder, which limits the reuse of RA. In this study the rate of recycled asphalt was increased by adding a rejuvenator containing paraffin. The authors investigated the effect of the rejuvenator in laboratory and in plant prepared samples of asphalt mixture. In laboratory samples with different percentage of RA (0%, 10%, 30%, 50%) and rejuvenator were prepared. In asphalt plant only asphalt mixture with highest amount of RA and rejuvenator and control mixture without RA were prepared. On samples were conducted different tests, e.g. determining softening point, Fraass breaking point, penetration, indirect tensile strength. Results on extracted bitumen showed increase in softening point and decrease in Fraass breaking point with increasing percentage of RA and rejuvenator, meaning that service temperature of binders increased. Asphalt samples prepared in asphalt plant were laid on test field. Asphalt with RA and rejuvenator was built in at lower temperature (round 100 °C). Mixtures with RA and rejuvenator have better low temperature properties confirmed with Thermal Stress Restrained Specimen Test (TSRST) method, but are less resistant to compaction and less sensitive to water than control mixture. For comparison of long term behaviour wheel tracking test was performed on mixtures built in test field. A week after paving, the control mixture showed better properties, but one year later the results were opposite, asphalt containing RA and rejuvenator was more resistant to rutting. From the results of this experimental study the following was concluded: the amount of RA can be increased by using rejuvenator and the quality of such asphalt mixture is in most cases equal or even better than asphalt mixture made of virgin materials. By using RA we preserve nature, reduce usage of virgin raw materials, but it is cost effective only if recycling degree is high enough and is a daily practice. reclaimed asphalt recycling; rejuvenator asphalt plant Transportation engineering Lidija AVSENIK verfasserin aut In Transport Problems Silesian University of Technology, 2017 9(2014), 3, Seite 32-42 (DE-627)581037294 (DE-600)2455243-4 2300861X nnns volume:9 year:2014 number:3 pages:32-42 https://doaj.org/article/2aac5b793a444337ae7200e97a7f8232 kostenfrei http://transportproblems.polsl.pl/pl/Archiwum/2014/zeszyt3/2014t9z3_04.pdf kostenfrei https://doaj.org/toc/1896-0596 Journal toc kostenfrei https://doaj.org/toc/2300-861X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_206 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4305 AR 9 2014 3 32-42 |
spelling |
(DE-627)DOAJ022492348 (DE-599)DOAJ2aac5b793a444337ae7200e97a7f8232 DE-627 ger DE-627 rakwb eng TA1001-1280 Marjan TUŠAR verfasserin aut Increasing the rate of recycled asphalt: an experimental study 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Asphalt is material that can be recycled. In particular reclaimed asphalt (RA) contains aged binder, which limits the reuse of RA. In this study the rate of recycled asphalt was increased by adding a rejuvenator containing paraffin. The authors investigated the effect of the rejuvenator in laboratory and in plant prepared samples of asphalt mixture. In laboratory samples with different percentage of RA (0%, 10%, 30%, 50%) and rejuvenator were prepared. In asphalt plant only asphalt mixture with highest amount of RA and rejuvenator and control mixture without RA were prepared. On samples were conducted different tests, e.g. determining softening point, Fraass breaking point, penetration, indirect tensile strength. Results on extracted bitumen showed increase in softening point and decrease in Fraass breaking point with increasing percentage of RA and rejuvenator, meaning that service temperature of binders increased. Asphalt samples prepared in asphalt plant were laid on test field. Asphalt with RA and rejuvenator was built in at lower temperature (round 100 °C). Mixtures with RA and rejuvenator have better low temperature properties confirmed with Thermal Stress Restrained Specimen Test (TSRST) method, but are less resistant to compaction and less sensitive to water than control mixture. For comparison of long term behaviour wheel tracking test was performed on mixtures built in test field. A week after paving, the control mixture showed better properties, but one year later the results were opposite, asphalt containing RA and rejuvenator was more resistant to rutting. From the results of this experimental study the following was concluded: the amount of RA can be increased by using rejuvenator and the quality of such asphalt mixture is in most cases equal or even better than asphalt mixture made of virgin materials. By using RA we preserve nature, reduce usage of virgin raw materials, but it is cost effective only if recycling degree is high enough and is a daily practice. reclaimed asphalt recycling; rejuvenator asphalt plant Transportation engineering Lidija AVSENIK verfasserin aut In Transport Problems Silesian University of Technology, 2017 9(2014), 3, Seite 32-42 (DE-627)581037294 (DE-600)2455243-4 2300861X nnns volume:9 year:2014 number:3 pages:32-42 https://doaj.org/article/2aac5b793a444337ae7200e97a7f8232 kostenfrei http://transportproblems.polsl.pl/pl/Archiwum/2014/zeszyt3/2014t9z3_04.pdf kostenfrei https://doaj.org/toc/1896-0596 Journal toc kostenfrei https://doaj.org/toc/2300-861X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_206 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4305 AR 9 2014 3 32-42 |
allfields_unstemmed |
(DE-627)DOAJ022492348 (DE-599)DOAJ2aac5b793a444337ae7200e97a7f8232 DE-627 ger DE-627 rakwb eng TA1001-1280 Marjan TUŠAR verfasserin aut Increasing the rate of recycled asphalt: an experimental study 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Asphalt is material that can be recycled. In particular reclaimed asphalt (RA) contains aged binder, which limits the reuse of RA. In this study the rate of recycled asphalt was increased by adding a rejuvenator containing paraffin. The authors investigated the effect of the rejuvenator in laboratory and in plant prepared samples of asphalt mixture. In laboratory samples with different percentage of RA (0%, 10%, 30%, 50%) and rejuvenator were prepared. In asphalt plant only asphalt mixture with highest amount of RA and rejuvenator and control mixture without RA were prepared. On samples were conducted different tests, e.g. determining softening point, Fraass breaking point, penetration, indirect tensile strength. Results on extracted bitumen showed increase in softening point and decrease in Fraass breaking point with increasing percentage of RA and rejuvenator, meaning that service temperature of binders increased. Asphalt samples prepared in asphalt plant were laid on test field. Asphalt with RA and rejuvenator was built in at lower temperature (round 100 °C). Mixtures with RA and rejuvenator have better low temperature properties confirmed with Thermal Stress Restrained Specimen Test (TSRST) method, but are less resistant to compaction and less sensitive to water than control mixture. For comparison of long term behaviour wheel tracking test was performed on mixtures built in test field. A week after paving, the control mixture showed better properties, but one year later the results were opposite, asphalt containing RA and rejuvenator was more resistant to rutting. From the results of this experimental study the following was concluded: the amount of RA can be increased by using rejuvenator and the quality of such asphalt mixture is in most cases equal or even better than asphalt mixture made of virgin materials. By using RA we preserve nature, reduce usage of virgin raw materials, but it is cost effective only if recycling degree is high enough and is a daily practice. reclaimed asphalt recycling; rejuvenator asphalt plant Transportation engineering Lidija AVSENIK verfasserin aut In Transport Problems Silesian University of Technology, 2017 9(2014), 3, Seite 32-42 (DE-627)581037294 (DE-600)2455243-4 2300861X nnns volume:9 year:2014 number:3 pages:32-42 https://doaj.org/article/2aac5b793a444337ae7200e97a7f8232 kostenfrei http://transportproblems.polsl.pl/pl/Archiwum/2014/zeszyt3/2014t9z3_04.pdf kostenfrei https://doaj.org/toc/1896-0596 Journal toc kostenfrei https://doaj.org/toc/2300-861X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_206 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4305 AR 9 2014 3 32-42 |
allfieldsGer |
(DE-627)DOAJ022492348 (DE-599)DOAJ2aac5b793a444337ae7200e97a7f8232 DE-627 ger DE-627 rakwb eng TA1001-1280 Marjan TUŠAR verfasserin aut Increasing the rate of recycled asphalt: an experimental study 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Asphalt is material that can be recycled. In particular reclaimed asphalt (RA) contains aged binder, which limits the reuse of RA. In this study the rate of recycled asphalt was increased by adding a rejuvenator containing paraffin. The authors investigated the effect of the rejuvenator in laboratory and in plant prepared samples of asphalt mixture. In laboratory samples with different percentage of RA (0%, 10%, 30%, 50%) and rejuvenator were prepared. In asphalt plant only asphalt mixture with highest amount of RA and rejuvenator and control mixture without RA were prepared. On samples were conducted different tests, e.g. determining softening point, Fraass breaking point, penetration, indirect tensile strength. Results on extracted bitumen showed increase in softening point and decrease in Fraass breaking point with increasing percentage of RA and rejuvenator, meaning that service temperature of binders increased. Asphalt samples prepared in asphalt plant were laid on test field. Asphalt with RA and rejuvenator was built in at lower temperature (round 100 °C). Mixtures with RA and rejuvenator have better low temperature properties confirmed with Thermal Stress Restrained Specimen Test (TSRST) method, but are less resistant to compaction and less sensitive to water than control mixture. For comparison of long term behaviour wheel tracking test was performed on mixtures built in test field. A week after paving, the control mixture showed better properties, but one year later the results were opposite, asphalt containing RA and rejuvenator was more resistant to rutting. From the results of this experimental study the following was concluded: the amount of RA can be increased by using rejuvenator and the quality of such asphalt mixture is in most cases equal or even better than asphalt mixture made of virgin materials. By using RA we preserve nature, reduce usage of virgin raw materials, but it is cost effective only if recycling degree is high enough and is a daily practice. reclaimed asphalt recycling; rejuvenator asphalt plant Transportation engineering Lidija AVSENIK verfasserin aut In Transport Problems Silesian University of Technology, 2017 9(2014), 3, Seite 32-42 (DE-627)581037294 (DE-600)2455243-4 2300861X nnns volume:9 year:2014 number:3 pages:32-42 https://doaj.org/article/2aac5b793a444337ae7200e97a7f8232 kostenfrei http://transportproblems.polsl.pl/pl/Archiwum/2014/zeszyt3/2014t9z3_04.pdf kostenfrei https://doaj.org/toc/1896-0596 Journal toc kostenfrei https://doaj.org/toc/2300-861X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_206 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4305 AR 9 2014 3 32-42 |
allfieldsSound |
(DE-627)DOAJ022492348 (DE-599)DOAJ2aac5b793a444337ae7200e97a7f8232 DE-627 ger DE-627 rakwb eng TA1001-1280 Marjan TUŠAR verfasserin aut Increasing the rate of recycled asphalt: an experimental study 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Asphalt is material that can be recycled. In particular reclaimed asphalt (RA) contains aged binder, which limits the reuse of RA. In this study the rate of recycled asphalt was increased by adding a rejuvenator containing paraffin. The authors investigated the effect of the rejuvenator in laboratory and in plant prepared samples of asphalt mixture. In laboratory samples with different percentage of RA (0%, 10%, 30%, 50%) and rejuvenator were prepared. In asphalt plant only asphalt mixture with highest amount of RA and rejuvenator and control mixture without RA were prepared. On samples were conducted different tests, e.g. determining softening point, Fraass breaking point, penetration, indirect tensile strength. Results on extracted bitumen showed increase in softening point and decrease in Fraass breaking point with increasing percentage of RA and rejuvenator, meaning that service temperature of binders increased. Asphalt samples prepared in asphalt plant were laid on test field. Asphalt with RA and rejuvenator was built in at lower temperature (round 100 °C). Mixtures with RA and rejuvenator have better low temperature properties confirmed with Thermal Stress Restrained Specimen Test (TSRST) method, but are less resistant to compaction and less sensitive to water than control mixture. For comparison of long term behaviour wheel tracking test was performed on mixtures built in test field. A week after paving, the control mixture showed better properties, but one year later the results were opposite, asphalt containing RA and rejuvenator was more resistant to rutting. From the results of this experimental study the following was concluded: the amount of RA can be increased by using rejuvenator and the quality of such asphalt mixture is in most cases equal or even better than asphalt mixture made of virgin materials. By using RA we preserve nature, reduce usage of virgin raw materials, but it is cost effective only if recycling degree is high enough and is a daily practice. reclaimed asphalt recycling; rejuvenator asphalt plant Transportation engineering Lidija AVSENIK verfasserin aut In Transport Problems Silesian University of Technology, 2017 9(2014), 3, Seite 32-42 (DE-627)581037294 (DE-600)2455243-4 2300861X nnns volume:9 year:2014 number:3 pages:32-42 https://doaj.org/article/2aac5b793a444337ae7200e97a7f8232 kostenfrei http://transportproblems.polsl.pl/pl/Archiwum/2014/zeszyt3/2014t9z3_04.pdf kostenfrei https://doaj.org/toc/1896-0596 Journal toc kostenfrei https://doaj.org/toc/2300-861X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_206 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4305 AR 9 2014 3 32-42 |
language |
English |
source |
In Transport Problems 9(2014), 3, Seite 32-42 volume:9 year:2014 number:3 pages:32-42 |
sourceStr |
In Transport Problems 9(2014), 3, Seite 32-42 volume:9 year:2014 number:3 pages:32-42 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
reclaimed asphalt recycling; rejuvenator asphalt plant Transportation engineering |
isfreeaccess_bool |
true |
container_title |
Transport Problems |
authorswithroles_txt_mv |
Marjan TUŠAR @@aut@@ Lidija AVSENIK @@aut@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
581037294 |
id |
DOAJ022492348 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ022492348</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501185923.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ022492348</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2aac5b793a444337ae7200e97a7f8232</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1001-1280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Marjan TUŠAR</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Increasing the rate of recycled asphalt: an experimental study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Asphalt is material that can be recycled. In particular reclaimed asphalt (RA) contains aged binder, which limits the reuse of RA. In this study the rate of recycled asphalt was increased by adding a rejuvenator containing paraffin. The authors investigated the effect of the rejuvenator in laboratory and in plant prepared samples of asphalt mixture. In laboratory samples with different percentage of RA (0%, 10%, 30%, 50%) and rejuvenator were prepared. In asphalt plant only asphalt mixture with highest amount of RA and rejuvenator and control mixture without RA were prepared. On samples were conducted different tests, e.g. determining softening point, Fraass breaking point, penetration, indirect tensile strength. Results on extracted bitumen showed increase in softening point and decrease in Fraass breaking point with increasing percentage of RA and rejuvenator, meaning that service temperature of binders increased. Asphalt samples prepared in asphalt plant were laid on test field. Asphalt with RA and rejuvenator was built in at lower temperature (round 100 °C). Mixtures with RA and rejuvenator have better low temperature properties confirmed with Thermal Stress Restrained Specimen Test (TSRST) method, but are less resistant to compaction and less sensitive to water than control mixture. For comparison of long term behaviour wheel tracking test was performed on mixtures built in test field. A week after paving, the control mixture showed better properties, but one year later the results were opposite, asphalt containing RA and rejuvenator was more resistant to rutting. From the results of this experimental study the following was concluded: the amount of RA can be increased by using rejuvenator and the quality of such asphalt mixture is in most cases equal or even better than asphalt mixture made of virgin materials. By using RA we preserve nature, reduce usage of virgin raw materials, but it is cost effective only if recycling degree is high enough and is a daily practice.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reclaimed asphalt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">recycling; rejuvenator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asphalt plant</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lidija AVSENIK</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Transport Problems</subfield><subfield code="d">Silesian University of Technology, 2017</subfield><subfield code="g">9(2014), 3, Seite 32-42</subfield><subfield code="w">(DE-627)581037294</subfield><subfield code="w">(DE-600)2455243-4</subfield><subfield code="x">2300861X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:32-42</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2aac5b793a444337ae7200e97a7f8232</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://transportproblems.polsl.pl/pl/Archiwum/2014/zeszyt3/2014t9z3_04.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1896-0596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2300-861X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2014</subfield><subfield code="e">3</subfield><subfield code="h">32-42</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Marjan TUŠAR |
spellingShingle |
Marjan TUŠAR misc TA1001-1280 misc reclaimed asphalt misc recycling; rejuvenator misc asphalt plant misc Transportation engineering Increasing the rate of recycled asphalt: an experimental study |
authorStr |
Marjan TUŠAR |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)581037294 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1001-1280 |
illustrated |
Not Illustrated |
issn |
2300861X |
topic_title |
TA1001-1280 Increasing the rate of recycled asphalt: an experimental study reclaimed asphalt recycling; rejuvenator asphalt plant |
topic |
misc TA1001-1280 misc reclaimed asphalt misc recycling; rejuvenator misc asphalt plant misc Transportation engineering |
topic_unstemmed |
misc TA1001-1280 misc reclaimed asphalt misc recycling; rejuvenator misc asphalt plant misc Transportation engineering |
topic_browse |
misc TA1001-1280 misc reclaimed asphalt misc recycling; rejuvenator misc asphalt plant misc Transportation engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Transport Problems |
hierarchy_parent_id |
581037294 |
hierarchy_top_title |
Transport Problems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)581037294 (DE-600)2455243-4 |
title |
Increasing the rate of recycled asphalt: an experimental study |
ctrlnum |
(DE-627)DOAJ022492348 (DE-599)DOAJ2aac5b793a444337ae7200e97a7f8232 |
title_full |
Increasing the rate of recycled asphalt: an experimental study |
author_sort |
Marjan TUŠAR |
journal |
Transport Problems |
journalStr |
Transport Problems |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
32 |
author_browse |
Marjan TUŠAR Lidija AVSENIK |
container_volume |
9 |
class |
TA1001-1280 |
format_se |
Elektronische Aufsätze |
author-letter |
Marjan TUŠAR |
author2-role |
verfasserin |
title_sort |
increasing the rate of recycled asphalt: an experimental study |
callnumber |
TA1001-1280 |
title_auth |
Increasing the rate of recycled asphalt: an experimental study |
abstract |
Asphalt is material that can be recycled. In particular reclaimed asphalt (RA) contains aged binder, which limits the reuse of RA. In this study the rate of recycled asphalt was increased by adding a rejuvenator containing paraffin. The authors investigated the effect of the rejuvenator in laboratory and in plant prepared samples of asphalt mixture. In laboratory samples with different percentage of RA (0%, 10%, 30%, 50%) and rejuvenator were prepared. In asphalt plant only asphalt mixture with highest amount of RA and rejuvenator and control mixture without RA were prepared. On samples were conducted different tests, e.g. determining softening point, Fraass breaking point, penetration, indirect tensile strength. Results on extracted bitumen showed increase in softening point and decrease in Fraass breaking point with increasing percentage of RA and rejuvenator, meaning that service temperature of binders increased. Asphalt samples prepared in asphalt plant were laid on test field. Asphalt with RA and rejuvenator was built in at lower temperature (round 100 °C). Mixtures with RA and rejuvenator have better low temperature properties confirmed with Thermal Stress Restrained Specimen Test (TSRST) method, but are less resistant to compaction and less sensitive to water than control mixture. For comparison of long term behaviour wheel tracking test was performed on mixtures built in test field. A week after paving, the control mixture showed better properties, but one year later the results were opposite, asphalt containing RA and rejuvenator was more resistant to rutting. From the results of this experimental study the following was concluded: the amount of RA can be increased by using rejuvenator and the quality of such asphalt mixture is in most cases equal or even better than asphalt mixture made of virgin materials. By using RA we preserve nature, reduce usage of virgin raw materials, but it is cost effective only if recycling degree is high enough and is a daily practice. |
abstractGer |
Asphalt is material that can be recycled. In particular reclaimed asphalt (RA) contains aged binder, which limits the reuse of RA. In this study the rate of recycled asphalt was increased by adding a rejuvenator containing paraffin. The authors investigated the effect of the rejuvenator in laboratory and in plant prepared samples of asphalt mixture. In laboratory samples with different percentage of RA (0%, 10%, 30%, 50%) and rejuvenator were prepared. In asphalt plant only asphalt mixture with highest amount of RA and rejuvenator and control mixture without RA were prepared. On samples were conducted different tests, e.g. determining softening point, Fraass breaking point, penetration, indirect tensile strength. Results on extracted bitumen showed increase in softening point and decrease in Fraass breaking point with increasing percentage of RA and rejuvenator, meaning that service temperature of binders increased. Asphalt samples prepared in asphalt plant were laid on test field. Asphalt with RA and rejuvenator was built in at lower temperature (round 100 °C). Mixtures with RA and rejuvenator have better low temperature properties confirmed with Thermal Stress Restrained Specimen Test (TSRST) method, but are less resistant to compaction and less sensitive to water than control mixture. For comparison of long term behaviour wheel tracking test was performed on mixtures built in test field. A week after paving, the control mixture showed better properties, but one year later the results were opposite, asphalt containing RA and rejuvenator was more resistant to rutting. From the results of this experimental study the following was concluded: the amount of RA can be increased by using rejuvenator and the quality of such asphalt mixture is in most cases equal or even better than asphalt mixture made of virgin materials. By using RA we preserve nature, reduce usage of virgin raw materials, but it is cost effective only if recycling degree is high enough and is a daily practice. |
abstract_unstemmed |
Asphalt is material that can be recycled. In particular reclaimed asphalt (RA) contains aged binder, which limits the reuse of RA. In this study the rate of recycled asphalt was increased by adding a rejuvenator containing paraffin. The authors investigated the effect of the rejuvenator in laboratory and in plant prepared samples of asphalt mixture. In laboratory samples with different percentage of RA (0%, 10%, 30%, 50%) and rejuvenator were prepared. In asphalt plant only asphalt mixture with highest amount of RA and rejuvenator and control mixture without RA were prepared. On samples were conducted different tests, e.g. determining softening point, Fraass breaking point, penetration, indirect tensile strength. Results on extracted bitumen showed increase in softening point and decrease in Fraass breaking point with increasing percentage of RA and rejuvenator, meaning that service temperature of binders increased. Asphalt samples prepared in asphalt plant were laid on test field. Asphalt with RA and rejuvenator was built in at lower temperature (round 100 °C). Mixtures with RA and rejuvenator have better low temperature properties confirmed with Thermal Stress Restrained Specimen Test (TSRST) method, but are less resistant to compaction and less sensitive to water than control mixture. For comparison of long term behaviour wheel tracking test was performed on mixtures built in test field. A week after paving, the control mixture showed better properties, but one year later the results were opposite, asphalt containing RA and rejuvenator was more resistant to rutting. From the results of this experimental study the following was concluded: the amount of RA can be increased by using rejuvenator and the quality of such asphalt mixture is in most cases equal or even better than asphalt mixture made of virgin materials. By using RA we preserve nature, reduce usage of virgin raw materials, but it is cost effective only if recycling degree is high enough and is a daily practice. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_206 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4305 |
container_issue |
3 |
title_short |
Increasing the rate of recycled asphalt: an experimental study |
url |
https://doaj.org/article/2aac5b793a444337ae7200e97a7f8232 http://transportproblems.polsl.pl/pl/Archiwum/2014/zeszyt3/2014t9z3_04.pdf https://doaj.org/toc/1896-0596 https://doaj.org/toc/2300-861X |
remote_bool |
true |
author2 |
Lidija AVSENIK |
author2Str |
Lidija AVSENIK |
ppnlink |
581037294 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
TA1001-1280 |
up_date |
2024-07-04T01:45:10.123Z |
_version_ |
1803611023737880576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ022492348</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501185923.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ022492348</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2aac5b793a444337ae7200e97a7f8232</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1001-1280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Marjan TUŠAR</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Increasing the rate of recycled asphalt: an experimental study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Asphalt is material that can be recycled. In particular reclaimed asphalt (RA) contains aged binder, which limits the reuse of RA. In this study the rate of recycled asphalt was increased by adding a rejuvenator containing paraffin. The authors investigated the effect of the rejuvenator in laboratory and in plant prepared samples of asphalt mixture. In laboratory samples with different percentage of RA (0%, 10%, 30%, 50%) and rejuvenator were prepared. In asphalt plant only asphalt mixture with highest amount of RA and rejuvenator and control mixture without RA were prepared. On samples were conducted different tests, e.g. determining softening point, Fraass breaking point, penetration, indirect tensile strength. Results on extracted bitumen showed increase in softening point and decrease in Fraass breaking point with increasing percentage of RA and rejuvenator, meaning that service temperature of binders increased. Asphalt samples prepared in asphalt plant were laid on test field. Asphalt with RA and rejuvenator was built in at lower temperature (round 100 °C). Mixtures with RA and rejuvenator have better low temperature properties confirmed with Thermal Stress Restrained Specimen Test (TSRST) method, but are less resistant to compaction and less sensitive to water than control mixture. For comparison of long term behaviour wheel tracking test was performed on mixtures built in test field. A week after paving, the control mixture showed better properties, but one year later the results were opposite, asphalt containing RA and rejuvenator was more resistant to rutting. From the results of this experimental study the following was concluded: the amount of RA can be increased by using rejuvenator and the quality of such asphalt mixture is in most cases equal or even better than asphalt mixture made of virgin materials. By using RA we preserve nature, reduce usage of virgin raw materials, but it is cost effective only if recycling degree is high enough and is a daily practice.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reclaimed asphalt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">recycling; rejuvenator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asphalt plant</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lidija AVSENIK</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Transport Problems</subfield><subfield code="d">Silesian University of Technology, 2017</subfield><subfield code="g">9(2014), 3, Seite 32-42</subfield><subfield code="w">(DE-627)581037294</subfield><subfield code="w">(DE-600)2455243-4</subfield><subfield code="x">2300861X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:32-42</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2aac5b793a444337ae7200e97a7f8232</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://transportproblems.polsl.pl/pl/Archiwum/2014/zeszyt3/2014t9z3_04.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1896-0596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2300-861X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2014</subfield><subfield code="e">3</subfield><subfield code="h">32-42</subfield></datafield></record></collection>
|
score |
7.399441 |