Multi-model ensemble simulations of tropospheric NO<sub<2</sub< compared with GOME retrievals for the year 2000
We present a systematic comparison of tropospheric NO<sub<2</sub< from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2...
Ausführliche Beschreibung
Autor*in: |
T. P. C. van Noije [verfasserIn] H. J. Eskes [verfasserIn] F. J. Dentener [verfasserIn] D. S. Stevenson [verfasserIn] K. Ellingsen [verfasserIn] M. G. Schultz [verfasserIn] O. Wild [verfasserIn] M. Amann [verfasserIn] C. S. Atherton [verfasserIn] D. J. Bergmann [verfasserIn] I. Bey [verfasserIn] K. F. Boersma [verfasserIn] T. Butler [verfasserIn] J. Cofala [verfasserIn] J. Drevet [verfasserIn] A. M. Fiore [verfasserIn] M. Gauss [verfasserIn] D. A. Hauglustaine [verfasserIn] L. W. Horowitz [verfasserIn] I. S. A. Isaksen [verfasserIn] M. C. Krol [verfasserIn] J.-F. Lamarque [verfasserIn] M. G. Lawrence [verfasserIn] R. V. Martin [verfasserIn] V. Montanaro [verfasserIn] J.-F. Müller [verfasserIn] G. Pitari [verfasserIn] M. J. Prather [verfasserIn] J. A. Pyle [verfasserIn] A. Richter [verfasserIn] J. M. Rodriguez [verfasserIn] N. H. Savage [verfasserIn] S. E. Strahan [verfasserIn] K. Sudo [verfasserIn] S. Szopa [verfasserIn] M. van Roozendael [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2006 |
---|
Übergeordnetes Werk: |
In: Atmospheric Chemistry and Physics - Copernicus Publications, 2003, 6(2006), 10, Seite 2943-2979 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2006 ; number:10 ; pages:2943-2979 |
Links: |
---|
Katalog-ID: |
DOAJ02268011X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ02268011X | ||
003 | DE-627 | ||
005 | 20230307060726.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2006 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ02268011X | ||
035 | |a (DE-599)DOAJceb28c1cd19a47359c009b9a3eae1146 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a T. P. C. van Noije |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multi-model ensemble simulations of tropospheric NO<sub<2</sub< compared with GOME retrievals for the year 2000 |
264 | 1 | |c 2006 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We present a systematic comparison of tropospheric NO<sub<2</sub< from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997–2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10:30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30–50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions (between –25% and +10% of the NO<sub<2</sub< column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO<sub<2</sub< column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between the individual models and retrievals are high, typically in the range 0.81–0.93 after smoothing the data to a common resolution. On average the models underestimate the retrievals in industrial regions, especially over eastern China and over the Highveld region of South Africa, and overestimate the retrievals in regions dominated by biomass burning during the dry season. The discrepancy over South America south of the Amazon disappears when we use the GFED emissions specific to the year 2000. The seasonal cycle is analyzed in detail for eight different continental regions. Over regions dominated by biomass burning, the timing of the seasonal cycle is generally well reproduced by the models. However, over Central Africa south of the Equator the models peak one to two months earlier than the retrievals. We further evaluate a recent proposal to reduce the NO<sub<x</sub< emission factors for savanna fires by 40% and find that this leads to an improvement of the amplitude of the seasonal cycle over the biomass burning regions of Northern and Central Africa. In these regions the models tend to underestimate the retrievals during the wet season, suggesting that the soil emissions are higher than assumed in the models. In general, the discrepancies between models and retrievals cannot be explained by a priori profile assumptions made in the retrievals, neither by diurnal variations in anthropogenic emissions, which lead to a marginal reduction of the NO<sub<2</sub< abundance at 10:30 local time (by 2.5–4.1% over Europe). Overall, there are significant differences among the various models and, in particular, among the three retrievals. The discrepancies among the retrievals (10–50% in the annual mean over polluted regions) indicate that the previously estimated retrieval uncertainties have a large systematic component. Our findings imply that top-down estimations of NO<sub<x</sub< emissions from satellite retrievals of tropospheric NO<sub<2</sub< are strongly dependent on the choice of model and retrieval. | ||
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a H. J. Eskes |e verfasserin |4 aut | |
700 | 0 | |a F. J. Dentener |e verfasserin |4 aut | |
700 | 0 | |a D. S. Stevenson |e verfasserin |4 aut | |
700 | 0 | |a K. Ellingsen |e verfasserin |4 aut | |
700 | 0 | |a M. G. Schultz |e verfasserin |4 aut | |
700 | 0 | |a O. Wild |e verfasserin |4 aut | |
700 | 0 | |a O. Wild |e verfasserin |4 aut | |
700 | 0 | |a M. Amann |e verfasserin |4 aut | |
700 | 0 | |a C. S. Atherton |e verfasserin |4 aut | |
700 | 0 | |a D. J. Bergmann |e verfasserin |4 aut | |
700 | 0 | |a I. Bey |e verfasserin |4 aut | |
700 | 0 | |a K. F. Boersma |e verfasserin |4 aut | |
700 | 0 | |a T. Butler |e verfasserin |4 aut | |
700 | 0 | |a J. Cofala |e verfasserin |4 aut | |
700 | 0 | |a J. Drevet |e verfasserin |4 aut | |
700 | 0 | |a A. M. Fiore |e verfasserin |4 aut | |
700 | 0 | |a M. Gauss |e verfasserin |4 aut | |
700 | 0 | |a D. A. Hauglustaine |e verfasserin |4 aut | |
700 | 0 | |a L. W. Horowitz |e verfasserin |4 aut | |
700 | 0 | |a I. S. A. Isaksen |e verfasserin |4 aut | |
700 | 0 | |a M. C. Krol |e verfasserin |4 aut | |
700 | 0 | |a M. C. Krol |e verfasserin |4 aut | |
700 | 0 | |a J.-F. Lamarque |e verfasserin |4 aut | |
700 | 0 | |a M. G. Lawrence |e verfasserin |4 aut | |
700 | 0 | |a R. V. Martin |e verfasserin |4 aut | |
700 | 0 | |a R. V. Martin |e verfasserin |4 aut | |
700 | 0 | |a V. Montanaro |e verfasserin |4 aut | |
700 | 0 | |a J.-F. Müller |e verfasserin |4 aut | |
700 | 0 | |a G. Pitari |e verfasserin |4 aut | |
700 | 0 | |a M. J. Prather |e verfasserin |4 aut | |
700 | 0 | |a J. A. Pyle |e verfasserin |4 aut | |
700 | 0 | |a A. Richter |e verfasserin |4 aut | |
700 | 0 | |a J. M. Rodriguez |e verfasserin |4 aut | |
700 | 0 | |a N. H. Savage |e verfasserin |4 aut | |
700 | 0 | |a S. E. Strahan |e verfasserin |4 aut | |
700 | 0 | |a K. Sudo |e verfasserin |4 aut | |
700 | 0 | |a S. Szopa |e verfasserin |4 aut | |
700 | 0 | |a M. van Roozendael |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Atmospheric Chemistry and Physics |d Copernicus Publications, 2003 |g 6(2006), 10, Seite 2943-2979 |w (DE-627)092499996 |x 16807324 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2006 |g number:10 |g pages:2943-2979 |
856 | 4 | 0 | |u https://doaj.org/article/ceb28c1cd19a47359c009b9a3eae1146 |z kostenfrei |
856 | 4 | 0 | |u http://www.atmos-chem-phys.net/6/2943/2006/acp-6-2943-2006.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1680-7316 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1680-7324 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_381 | ||
951 | |a AR | ||
952 | |d 6 |j 2006 |e 10 |h 2943-2979 |
author_variant |
t p c v n tpcvn h j e hje f j d fjd d s s dss k e ke m g s mgs o w ow o w ow m a ma c s a csa d j b djb i b ib k f b kfb t b tb j c jc j d jd a m f amf m g mg d a h dah l w h lwh i s a i isai m c k mck m c k mck j f l jfl m g l mgl r v m rvm r v m rvm v m vm j f m jfm g p gp m j p mjp j a p jap a r ar j m r jmr n h s nhs s e s ses k s ks s s ss m v r mvr |
---|---|
matchkey_str |
article:16807324:2006----::utmdlnebeiuainotoopeinsbsboprdihoe |
hierarchy_sort_str |
2006 |
callnumber-subject-code |
QC |
publishDate |
2006 |
allfields |
(DE-627)DOAJ02268011X (DE-599)DOAJceb28c1cd19a47359c009b9a3eae1146 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 T. P. C. van Noije verfasserin aut Multi-model ensemble simulations of tropospheric NO<sub<2</sub< compared with GOME retrievals for the year 2000 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a systematic comparison of tropospheric NO<sub<2</sub< from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997–2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10:30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30–50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions (between –25% and +10% of the NO<sub<2</sub< column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO<sub<2</sub< column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between the individual models and retrievals are high, typically in the range 0.81–0.93 after smoothing the data to a common resolution. On average the models underestimate the retrievals in industrial regions, especially over eastern China and over the Highveld region of South Africa, and overestimate the retrievals in regions dominated by biomass burning during the dry season. The discrepancy over South America south of the Amazon disappears when we use the GFED emissions specific to the year 2000. The seasonal cycle is analyzed in detail for eight different continental regions. Over regions dominated by biomass burning, the timing of the seasonal cycle is generally well reproduced by the models. However, over Central Africa south of the Equator the models peak one to two months earlier than the retrievals. We further evaluate a recent proposal to reduce the NO<sub<x</sub< emission factors for savanna fires by 40% and find that this leads to an improvement of the amplitude of the seasonal cycle over the biomass burning regions of Northern and Central Africa. In these regions the models tend to underestimate the retrievals during the wet season, suggesting that the soil emissions are higher than assumed in the models. In general, the discrepancies between models and retrievals cannot be explained by a priori profile assumptions made in the retrievals, neither by diurnal variations in anthropogenic emissions, which lead to a marginal reduction of the NO<sub<2</sub< abundance at 10:30 local time (by 2.5–4.1% over Europe). Overall, there are significant differences among the various models and, in particular, among the three retrievals. The discrepancies among the retrievals (10–50% in the annual mean over polluted regions) indicate that the previously estimated retrieval uncertainties have a large systematic component. Our findings imply that top-down estimations of NO<sub<x</sub< emissions from satellite retrievals of tropospheric NO<sub<2</sub< are strongly dependent on the choice of model and retrieval. Physics Chemistry H. J. Eskes verfasserin aut F. J. Dentener verfasserin aut D. S. Stevenson verfasserin aut K. Ellingsen verfasserin aut M. G. Schultz verfasserin aut O. Wild verfasserin aut O. Wild verfasserin aut M. Amann verfasserin aut C. S. Atherton verfasserin aut D. J. Bergmann verfasserin aut I. Bey verfasserin aut K. F. Boersma verfasserin aut T. Butler verfasserin aut J. Cofala verfasserin aut J. Drevet verfasserin aut A. M. Fiore verfasserin aut M. Gauss verfasserin aut D. A. Hauglustaine verfasserin aut L. W. Horowitz verfasserin aut I. S. A. Isaksen verfasserin aut M. C. Krol verfasserin aut M. C. Krol verfasserin aut J.-F. Lamarque verfasserin aut M. G. Lawrence verfasserin aut R. V. Martin verfasserin aut R. V. Martin verfasserin aut V. Montanaro verfasserin aut J.-F. Müller verfasserin aut G. Pitari verfasserin aut M. J. Prather verfasserin aut J. A. Pyle verfasserin aut A. Richter verfasserin aut J. M. Rodriguez verfasserin aut N. H. Savage verfasserin aut S. E. Strahan verfasserin aut K. Sudo verfasserin aut S. Szopa verfasserin aut M. van Roozendael verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 6(2006), 10, Seite 2943-2979 (DE-627)092499996 16807324 nnns volume:6 year:2006 number:10 pages:2943-2979 https://doaj.org/article/ceb28c1cd19a47359c009b9a3eae1146 kostenfrei http://www.atmos-chem-phys.net/6/2943/2006/acp-6-2943-2006.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 6 2006 10 2943-2979 |
spelling |
(DE-627)DOAJ02268011X (DE-599)DOAJceb28c1cd19a47359c009b9a3eae1146 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 T. P. C. van Noije verfasserin aut Multi-model ensemble simulations of tropospheric NO<sub<2</sub< compared with GOME retrievals for the year 2000 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a systematic comparison of tropospheric NO<sub<2</sub< from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997–2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10:30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30–50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions (between –25% and +10% of the NO<sub<2</sub< column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO<sub<2</sub< column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between the individual models and retrievals are high, typically in the range 0.81–0.93 after smoothing the data to a common resolution. On average the models underestimate the retrievals in industrial regions, especially over eastern China and over the Highveld region of South Africa, and overestimate the retrievals in regions dominated by biomass burning during the dry season. The discrepancy over South America south of the Amazon disappears when we use the GFED emissions specific to the year 2000. The seasonal cycle is analyzed in detail for eight different continental regions. Over regions dominated by biomass burning, the timing of the seasonal cycle is generally well reproduced by the models. However, over Central Africa south of the Equator the models peak one to two months earlier than the retrievals. We further evaluate a recent proposal to reduce the NO<sub<x</sub< emission factors for savanna fires by 40% and find that this leads to an improvement of the amplitude of the seasonal cycle over the biomass burning regions of Northern and Central Africa. In these regions the models tend to underestimate the retrievals during the wet season, suggesting that the soil emissions are higher than assumed in the models. In general, the discrepancies between models and retrievals cannot be explained by a priori profile assumptions made in the retrievals, neither by diurnal variations in anthropogenic emissions, which lead to a marginal reduction of the NO<sub<2</sub< abundance at 10:30 local time (by 2.5–4.1% over Europe). Overall, there are significant differences among the various models and, in particular, among the three retrievals. The discrepancies among the retrievals (10–50% in the annual mean over polluted regions) indicate that the previously estimated retrieval uncertainties have a large systematic component. Our findings imply that top-down estimations of NO<sub<x</sub< emissions from satellite retrievals of tropospheric NO<sub<2</sub< are strongly dependent on the choice of model and retrieval. Physics Chemistry H. J. Eskes verfasserin aut F. J. Dentener verfasserin aut D. S. Stevenson verfasserin aut K. Ellingsen verfasserin aut M. G. Schultz verfasserin aut O. Wild verfasserin aut O. Wild verfasserin aut M. Amann verfasserin aut C. S. Atherton verfasserin aut D. J. Bergmann verfasserin aut I. Bey verfasserin aut K. F. Boersma verfasserin aut T. Butler verfasserin aut J. Cofala verfasserin aut J. Drevet verfasserin aut A. M. Fiore verfasserin aut M. Gauss verfasserin aut D. A. Hauglustaine verfasserin aut L. W. Horowitz verfasserin aut I. S. A. Isaksen verfasserin aut M. C. Krol verfasserin aut M. C. Krol verfasserin aut J.-F. Lamarque verfasserin aut M. G. Lawrence verfasserin aut R. V. Martin verfasserin aut R. V. Martin verfasserin aut V. Montanaro verfasserin aut J.-F. Müller verfasserin aut G. Pitari verfasserin aut M. J. Prather verfasserin aut J. A. Pyle verfasserin aut A. Richter verfasserin aut J. M. Rodriguez verfasserin aut N. H. Savage verfasserin aut S. E. Strahan verfasserin aut K. Sudo verfasserin aut S. Szopa verfasserin aut M. van Roozendael verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 6(2006), 10, Seite 2943-2979 (DE-627)092499996 16807324 nnns volume:6 year:2006 number:10 pages:2943-2979 https://doaj.org/article/ceb28c1cd19a47359c009b9a3eae1146 kostenfrei http://www.atmos-chem-phys.net/6/2943/2006/acp-6-2943-2006.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 6 2006 10 2943-2979 |
allfields_unstemmed |
(DE-627)DOAJ02268011X (DE-599)DOAJceb28c1cd19a47359c009b9a3eae1146 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 T. P. C. van Noije verfasserin aut Multi-model ensemble simulations of tropospheric NO<sub<2</sub< compared with GOME retrievals for the year 2000 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a systematic comparison of tropospheric NO<sub<2</sub< from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997–2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10:30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30–50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions (between –25% and +10% of the NO<sub<2</sub< column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO<sub<2</sub< column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between the individual models and retrievals are high, typically in the range 0.81–0.93 after smoothing the data to a common resolution. On average the models underestimate the retrievals in industrial regions, especially over eastern China and over the Highveld region of South Africa, and overestimate the retrievals in regions dominated by biomass burning during the dry season. The discrepancy over South America south of the Amazon disappears when we use the GFED emissions specific to the year 2000. The seasonal cycle is analyzed in detail for eight different continental regions. Over regions dominated by biomass burning, the timing of the seasonal cycle is generally well reproduced by the models. However, over Central Africa south of the Equator the models peak one to two months earlier than the retrievals. We further evaluate a recent proposal to reduce the NO<sub<x</sub< emission factors for savanna fires by 40% and find that this leads to an improvement of the amplitude of the seasonal cycle over the biomass burning regions of Northern and Central Africa. In these regions the models tend to underestimate the retrievals during the wet season, suggesting that the soil emissions are higher than assumed in the models. In general, the discrepancies between models and retrievals cannot be explained by a priori profile assumptions made in the retrievals, neither by diurnal variations in anthropogenic emissions, which lead to a marginal reduction of the NO<sub<2</sub< abundance at 10:30 local time (by 2.5–4.1% over Europe). Overall, there are significant differences among the various models and, in particular, among the three retrievals. The discrepancies among the retrievals (10–50% in the annual mean over polluted regions) indicate that the previously estimated retrieval uncertainties have a large systematic component. Our findings imply that top-down estimations of NO<sub<x</sub< emissions from satellite retrievals of tropospheric NO<sub<2</sub< are strongly dependent on the choice of model and retrieval. Physics Chemistry H. J. Eskes verfasserin aut F. J. Dentener verfasserin aut D. S. Stevenson verfasserin aut K. Ellingsen verfasserin aut M. G. Schultz verfasserin aut O. Wild verfasserin aut O. Wild verfasserin aut M. Amann verfasserin aut C. S. Atherton verfasserin aut D. J. Bergmann verfasserin aut I. Bey verfasserin aut K. F. Boersma verfasserin aut T. Butler verfasserin aut J. Cofala verfasserin aut J. Drevet verfasserin aut A. M. Fiore verfasserin aut M. Gauss verfasserin aut D. A. Hauglustaine verfasserin aut L. W. Horowitz verfasserin aut I. S. A. Isaksen verfasserin aut M. C. Krol verfasserin aut M. C. Krol verfasserin aut J.-F. Lamarque verfasserin aut M. G. Lawrence verfasserin aut R. V. Martin verfasserin aut R. V. Martin verfasserin aut V. Montanaro verfasserin aut J.-F. Müller verfasserin aut G. Pitari verfasserin aut M. J. Prather verfasserin aut J. A. Pyle verfasserin aut A. Richter verfasserin aut J. M. Rodriguez verfasserin aut N. H. Savage verfasserin aut S. E. Strahan verfasserin aut K. Sudo verfasserin aut S. Szopa verfasserin aut M. van Roozendael verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 6(2006), 10, Seite 2943-2979 (DE-627)092499996 16807324 nnns volume:6 year:2006 number:10 pages:2943-2979 https://doaj.org/article/ceb28c1cd19a47359c009b9a3eae1146 kostenfrei http://www.atmos-chem-phys.net/6/2943/2006/acp-6-2943-2006.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 6 2006 10 2943-2979 |
allfieldsGer |
(DE-627)DOAJ02268011X (DE-599)DOAJceb28c1cd19a47359c009b9a3eae1146 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 T. P. C. van Noije verfasserin aut Multi-model ensemble simulations of tropospheric NO<sub<2</sub< compared with GOME retrievals for the year 2000 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a systematic comparison of tropospheric NO<sub<2</sub< from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997–2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10:30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30–50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions (between –25% and +10% of the NO<sub<2</sub< column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO<sub<2</sub< column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between the individual models and retrievals are high, typically in the range 0.81–0.93 after smoothing the data to a common resolution. On average the models underestimate the retrievals in industrial regions, especially over eastern China and over the Highveld region of South Africa, and overestimate the retrievals in regions dominated by biomass burning during the dry season. The discrepancy over South America south of the Amazon disappears when we use the GFED emissions specific to the year 2000. The seasonal cycle is analyzed in detail for eight different continental regions. Over regions dominated by biomass burning, the timing of the seasonal cycle is generally well reproduced by the models. However, over Central Africa south of the Equator the models peak one to two months earlier than the retrievals. We further evaluate a recent proposal to reduce the NO<sub<x</sub< emission factors for savanna fires by 40% and find that this leads to an improvement of the amplitude of the seasonal cycle over the biomass burning regions of Northern and Central Africa. In these regions the models tend to underestimate the retrievals during the wet season, suggesting that the soil emissions are higher than assumed in the models. In general, the discrepancies between models and retrievals cannot be explained by a priori profile assumptions made in the retrievals, neither by diurnal variations in anthropogenic emissions, which lead to a marginal reduction of the NO<sub<2</sub< abundance at 10:30 local time (by 2.5–4.1% over Europe). Overall, there are significant differences among the various models and, in particular, among the three retrievals. The discrepancies among the retrievals (10–50% in the annual mean over polluted regions) indicate that the previously estimated retrieval uncertainties have a large systematic component. Our findings imply that top-down estimations of NO<sub<x</sub< emissions from satellite retrievals of tropospheric NO<sub<2</sub< are strongly dependent on the choice of model and retrieval. Physics Chemistry H. J. Eskes verfasserin aut F. J. Dentener verfasserin aut D. S. Stevenson verfasserin aut K. Ellingsen verfasserin aut M. G. Schultz verfasserin aut O. Wild verfasserin aut O. Wild verfasserin aut M. Amann verfasserin aut C. S. Atherton verfasserin aut D. J. Bergmann verfasserin aut I. Bey verfasserin aut K. F. Boersma verfasserin aut T. Butler verfasserin aut J. Cofala verfasserin aut J. Drevet verfasserin aut A. M. Fiore verfasserin aut M. Gauss verfasserin aut D. A. Hauglustaine verfasserin aut L. W. Horowitz verfasserin aut I. S. A. Isaksen verfasserin aut M. C. Krol verfasserin aut M. C. Krol verfasserin aut J.-F. Lamarque verfasserin aut M. G. Lawrence verfasserin aut R. V. Martin verfasserin aut R. V. Martin verfasserin aut V. Montanaro verfasserin aut J.-F. Müller verfasserin aut G. Pitari verfasserin aut M. J. Prather verfasserin aut J. A. Pyle verfasserin aut A. Richter verfasserin aut J. M. Rodriguez verfasserin aut N. H. Savage verfasserin aut S. E. Strahan verfasserin aut K. Sudo verfasserin aut S. Szopa verfasserin aut M. van Roozendael verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 6(2006), 10, Seite 2943-2979 (DE-627)092499996 16807324 nnns volume:6 year:2006 number:10 pages:2943-2979 https://doaj.org/article/ceb28c1cd19a47359c009b9a3eae1146 kostenfrei http://www.atmos-chem-phys.net/6/2943/2006/acp-6-2943-2006.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 6 2006 10 2943-2979 |
allfieldsSound |
(DE-627)DOAJ02268011X (DE-599)DOAJceb28c1cd19a47359c009b9a3eae1146 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 T. P. C. van Noije verfasserin aut Multi-model ensemble simulations of tropospheric NO<sub<2</sub< compared with GOME retrievals for the year 2000 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a systematic comparison of tropospheric NO<sub<2</sub< from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997–2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10:30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30–50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions (between –25% and +10% of the NO<sub<2</sub< column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO<sub<2</sub< column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between the individual models and retrievals are high, typically in the range 0.81–0.93 after smoothing the data to a common resolution. On average the models underestimate the retrievals in industrial regions, especially over eastern China and over the Highveld region of South Africa, and overestimate the retrievals in regions dominated by biomass burning during the dry season. The discrepancy over South America south of the Amazon disappears when we use the GFED emissions specific to the year 2000. The seasonal cycle is analyzed in detail for eight different continental regions. Over regions dominated by biomass burning, the timing of the seasonal cycle is generally well reproduced by the models. However, over Central Africa south of the Equator the models peak one to two months earlier than the retrievals. We further evaluate a recent proposal to reduce the NO<sub<x</sub< emission factors for savanna fires by 40% and find that this leads to an improvement of the amplitude of the seasonal cycle over the biomass burning regions of Northern and Central Africa. In these regions the models tend to underestimate the retrievals during the wet season, suggesting that the soil emissions are higher than assumed in the models. In general, the discrepancies between models and retrievals cannot be explained by a priori profile assumptions made in the retrievals, neither by diurnal variations in anthropogenic emissions, which lead to a marginal reduction of the NO<sub<2</sub< abundance at 10:30 local time (by 2.5–4.1% over Europe). Overall, there are significant differences among the various models and, in particular, among the three retrievals. The discrepancies among the retrievals (10–50% in the annual mean over polluted regions) indicate that the previously estimated retrieval uncertainties have a large systematic component. Our findings imply that top-down estimations of NO<sub<x</sub< emissions from satellite retrievals of tropospheric NO<sub<2</sub< are strongly dependent on the choice of model and retrieval. Physics Chemistry H. J. Eskes verfasserin aut F. J. Dentener verfasserin aut D. S. Stevenson verfasserin aut K. Ellingsen verfasserin aut M. G. Schultz verfasserin aut O. Wild verfasserin aut O. Wild verfasserin aut M. Amann verfasserin aut C. S. Atherton verfasserin aut D. J. Bergmann verfasserin aut I. Bey verfasserin aut K. F. Boersma verfasserin aut T. Butler verfasserin aut J. Cofala verfasserin aut J. Drevet verfasserin aut A. M. Fiore verfasserin aut M. Gauss verfasserin aut D. A. Hauglustaine verfasserin aut L. W. Horowitz verfasserin aut I. S. A. Isaksen verfasserin aut M. C. Krol verfasserin aut M. C. Krol verfasserin aut J.-F. Lamarque verfasserin aut M. G. Lawrence verfasserin aut R. V. Martin verfasserin aut R. V. Martin verfasserin aut V. Montanaro verfasserin aut J.-F. Müller verfasserin aut G. Pitari verfasserin aut M. J. Prather verfasserin aut J. A. Pyle verfasserin aut A. Richter verfasserin aut J. M. Rodriguez verfasserin aut N. H. Savage verfasserin aut S. E. Strahan verfasserin aut K. Sudo verfasserin aut S. Szopa verfasserin aut M. van Roozendael verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 6(2006), 10, Seite 2943-2979 (DE-627)092499996 16807324 nnns volume:6 year:2006 number:10 pages:2943-2979 https://doaj.org/article/ceb28c1cd19a47359c009b9a3eae1146 kostenfrei http://www.atmos-chem-phys.net/6/2943/2006/acp-6-2943-2006.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 6 2006 10 2943-2979 |
language |
English |
source |
In Atmospheric Chemistry and Physics 6(2006), 10, Seite 2943-2979 volume:6 year:2006 number:10 pages:2943-2979 |
sourceStr |
In Atmospheric Chemistry and Physics 6(2006), 10, Seite 2943-2979 volume:6 year:2006 number:10 pages:2943-2979 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Atmospheric Chemistry and Physics |
authorswithroles_txt_mv |
T. P. C. van Noije @@aut@@ H. J. Eskes @@aut@@ F. J. Dentener @@aut@@ D. S. Stevenson @@aut@@ K. Ellingsen @@aut@@ M. G. Schultz @@aut@@ O. Wild @@aut@@ M. Amann @@aut@@ C. S. Atherton @@aut@@ D. J. Bergmann @@aut@@ I. Bey @@aut@@ K. F. Boersma @@aut@@ T. Butler @@aut@@ J. Cofala @@aut@@ J. Drevet @@aut@@ A. M. Fiore @@aut@@ M. Gauss @@aut@@ D. A. Hauglustaine @@aut@@ L. W. Horowitz @@aut@@ I. S. A. Isaksen @@aut@@ M. C. Krol @@aut@@ J.-F. Lamarque @@aut@@ M. G. Lawrence @@aut@@ R. V. Martin @@aut@@ V. Montanaro @@aut@@ J.-F. Müller @@aut@@ G. Pitari @@aut@@ M. J. Prather @@aut@@ J. A. Pyle @@aut@@ A. Richter @@aut@@ J. M. Rodriguez @@aut@@ N. H. Savage @@aut@@ S. E. Strahan @@aut@@ K. Sudo @@aut@@ S. Szopa @@aut@@ M. van Roozendael @@aut@@ |
publishDateDaySort_date |
2006-01-01T00:00:00Z |
hierarchy_top_id |
092499996 |
id |
DOAJ02268011X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02268011X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307060726.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2006 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02268011X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJceb28c1cd19a47359c009b9a3eae1146</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">T. P. C. van Noije</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-model ensemble simulations of tropospheric NO<sub<2</sub< compared with GOME retrievals for the year 2000</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present a systematic comparison of tropospheric NO<sub<2</sub< from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997&ndash;2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10:30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30&ndash;50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions (between &ndash;25% and +10% of the NO<sub<2</sub< column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO<sub<2</sub< column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between the individual models and retrievals are high, typically in the range 0.81&ndash;0.93 after smoothing the data to a common resolution. On average the models underestimate the retrievals in industrial regions, especially over eastern China and over the Highveld region of South Africa, and overestimate the retrievals in regions dominated by biomass burning during the dry season. The discrepancy over South America south of the Amazon disappears when we use the GFED emissions specific to the year 2000. The seasonal cycle is analyzed in detail for eight different continental regions. Over regions dominated by biomass burning, the timing of the seasonal cycle is generally well reproduced by the models. However, over Central Africa south of the Equator the models peak one to two months earlier than the retrievals. We further evaluate a recent proposal to reduce the NO<sub<x</sub< emission factors for savanna fires by 40% and find that this leads to an improvement of the amplitude of the seasonal cycle over the biomass burning regions of Northern and Central Africa. In these regions the models tend to underestimate the retrievals during the wet season, suggesting that the soil emissions are higher than assumed in the models. In general, the discrepancies between models and retrievals cannot be explained by a priori profile assumptions made in the retrievals, neither by diurnal variations in anthropogenic emissions, which lead to a marginal reduction of the NO<sub<2</sub< abundance at 10:30 local time (by 2.5&ndash;4.1% over Europe). Overall, there are significant differences among the various models and, in particular, among the three retrievals. The discrepancies among the retrievals (10&ndash;50% in the annual mean over polluted regions) indicate that the previously estimated retrieval uncertainties have a large systematic component. Our findings imply that top-down estimations of NO<sub<x</sub< emissions from satellite retrievals of tropospheric NO<sub<2</sub< are strongly dependent on the choice of model and retrieval.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">H. J. Eskes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">F. J. Dentener</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. S. Stevenson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">K. Ellingsen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. G. Schultz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">O. Wild</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">O. Wild</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. Amann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">C. S. Atherton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. J. Bergmann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">I. Bey</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">K. F. Boersma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">T. Butler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. Cofala</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. Drevet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. M. Fiore</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. Gauss</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. A. Hauglustaine</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">L. W. Horowitz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">I. S. A. Isaksen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. C. Krol</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. C. Krol</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J.-F. Lamarque</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. G. Lawrence</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">R. V. Martin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">R. V. Martin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">V. Montanaro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J.-F. Müller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">G. Pitari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. J. Prather</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. A. Pyle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. Richter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. M. Rodriguez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">N. H. Savage</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. E. Strahan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">K. Sudo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Szopa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. van Roozendael</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmospheric Chemistry and Physics</subfield><subfield code="d">Copernicus Publications, 2003</subfield><subfield code="g">6(2006), 10, Seite 2943-2979</subfield><subfield code="w">(DE-627)092499996</subfield><subfield code="x">16807324</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:2943-2979</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ceb28c1cd19a47359c009b9a3eae1146</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.atmos-chem-phys.net/6/2943/2006/acp-6-2943-2006.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1680-7316</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1680-7324</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2006</subfield><subfield code="e">10</subfield><subfield code="h">2943-2979</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
T. P. C. van Noije |
spellingShingle |
T. P. C. van Noije misc QC1-999 misc QD1-999 misc Physics misc Chemistry Multi-model ensemble simulations of tropospheric NO<sub<2</sub< compared with GOME retrievals for the year 2000 |
authorStr |
T. P. C. van Noije |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)092499996 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
16807324 |
topic_title |
QC1-999 QD1-999 Multi-model ensemble simulations of tropospheric NO<sub<2</sub< compared with GOME retrievals for the year 2000 |
topic |
misc QC1-999 misc QD1-999 misc Physics misc Chemistry |
topic_unstemmed |
misc QC1-999 misc QD1-999 misc Physics misc Chemistry |
topic_browse |
misc QC1-999 misc QD1-999 misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Atmospheric Chemistry and Physics |
hierarchy_parent_id |
092499996 |
hierarchy_top_title |
Atmospheric Chemistry and Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)092499996 |
title |
Multi-model ensemble simulations of tropospheric NO<sub<2</sub< compared with GOME retrievals for the year 2000 |
ctrlnum |
(DE-627)DOAJ02268011X (DE-599)DOAJceb28c1cd19a47359c009b9a3eae1146 |
title_full |
Multi-model ensemble simulations of tropospheric NO<sub<2</sub< compared with GOME retrievals for the year 2000 |
author_sort |
T. P. C. van Noije |
journal |
Atmospheric Chemistry and Physics |
journalStr |
Atmospheric Chemistry and Physics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2006 |
contenttype_str_mv |
txt |
container_start_page |
2943 |
author_browse |
T. P. C. van Noije H. J. Eskes F. J. Dentener D. S. Stevenson K. Ellingsen M. G. Schultz O. Wild M. Amann C. S. Atherton D. J. Bergmann I. Bey K. F. Boersma T. Butler J. Cofala J. Drevet A. M. Fiore M. Gauss D. A. Hauglustaine L. W. Horowitz I. S. A. Isaksen M. C. Krol J.-F. Lamarque M. G. Lawrence R. V. Martin V. Montanaro J.-F. Müller G. Pitari M. J. Prather J. A. Pyle A. Richter J. M. Rodriguez N. H. Savage S. E. Strahan K. Sudo S. Szopa M. van Roozendael |
container_volume |
6 |
class |
QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
T. P. C. van Noije |
author2-role |
verfasserin |
title_sort |
multi-model ensemble simulations of tropospheric no<sub<2</sub< compared with gome retrievals for the year 2000 |
callnumber |
QC1-999 |
title_auth |
Multi-model ensemble simulations of tropospheric NO<sub<2</sub< compared with GOME retrievals for the year 2000 |
abstract |
We present a systematic comparison of tropospheric NO<sub<2</sub< from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997–2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10:30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30–50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions (between –25% and +10% of the NO<sub<2</sub< column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO<sub<2</sub< column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between the individual models and retrievals are high, typically in the range 0.81–0.93 after smoothing the data to a common resolution. On average the models underestimate the retrievals in industrial regions, especially over eastern China and over the Highveld region of South Africa, and overestimate the retrievals in regions dominated by biomass burning during the dry season. The discrepancy over South America south of the Amazon disappears when we use the GFED emissions specific to the year 2000. The seasonal cycle is analyzed in detail for eight different continental regions. Over regions dominated by biomass burning, the timing of the seasonal cycle is generally well reproduced by the models. However, over Central Africa south of the Equator the models peak one to two months earlier than the retrievals. We further evaluate a recent proposal to reduce the NO<sub<x</sub< emission factors for savanna fires by 40% and find that this leads to an improvement of the amplitude of the seasonal cycle over the biomass burning regions of Northern and Central Africa. In these regions the models tend to underestimate the retrievals during the wet season, suggesting that the soil emissions are higher than assumed in the models. In general, the discrepancies between models and retrievals cannot be explained by a priori profile assumptions made in the retrievals, neither by diurnal variations in anthropogenic emissions, which lead to a marginal reduction of the NO<sub<2</sub< abundance at 10:30 local time (by 2.5–4.1% over Europe). Overall, there are significant differences among the various models and, in particular, among the three retrievals. The discrepancies among the retrievals (10–50% in the annual mean over polluted regions) indicate that the previously estimated retrieval uncertainties have a large systematic component. Our findings imply that top-down estimations of NO<sub<x</sub< emissions from satellite retrievals of tropospheric NO<sub<2</sub< are strongly dependent on the choice of model and retrieval. |
abstractGer |
We present a systematic comparison of tropospheric NO<sub<2</sub< from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997–2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10:30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30–50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions (between –25% and +10% of the NO<sub<2</sub< column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO<sub<2</sub< column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between the individual models and retrievals are high, typically in the range 0.81–0.93 after smoothing the data to a common resolution. On average the models underestimate the retrievals in industrial regions, especially over eastern China and over the Highveld region of South Africa, and overestimate the retrievals in regions dominated by biomass burning during the dry season. The discrepancy over South America south of the Amazon disappears when we use the GFED emissions specific to the year 2000. The seasonal cycle is analyzed in detail for eight different continental regions. Over regions dominated by biomass burning, the timing of the seasonal cycle is generally well reproduced by the models. However, over Central Africa south of the Equator the models peak one to two months earlier than the retrievals. We further evaluate a recent proposal to reduce the NO<sub<x</sub< emission factors for savanna fires by 40% and find that this leads to an improvement of the amplitude of the seasonal cycle over the biomass burning regions of Northern and Central Africa. In these regions the models tend to underestimate the retrievals during the wet season, suggesting that the soil emissions are higher than assumed in the models. In general, the discrepancies between models and retrievals cannot be explained by a priori profile assumptions made in the retrievals, neither by diurnal variations in anthropogenic emissions, which lead to a marginal reduction of the NO<sub<2</sub< abundance at 10:30 local time (by 2.5–4.1% over Europe). Overall, there are significant differences among the various models and, in particular, among the three retrievals. The discrepancies among the retrievals (10–50% in the annual mean over polluted regions) indicate that the previously estimated retrieval uncertainties have a large systematic component. Our findings imply that top-down estimations of NO<sub<x</sub< emissions from satellite retrievals of tropospheric NO<sub<2</sub< are strongly dependent on the choice of model and retrieval. |
abstract_unstemmed |
We present a systematic comparison of tropospheric NO<sub<2</sub< from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997–2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10:30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30–50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions (between –25% and +10% of the NO<sub<2</sub< column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO<sub<2</sub< column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between the individual models and retrievals are high, typically in the range 0.81–0.93 after smoothing the data to a common resolution. On average the models underestimate the retrievals in industrial regions, especially over eastern China and over the Highveld region of South Africa, and overestimate the retrievals in regions dominated by biomass burning during the dry season. The discrepancy over South America south of the Amazon disappears when we use the GFED emissions specific to the year 2000. The seasonal cycle is analyzed in detail for eight different continental regions. Over regions dominated by biomass burning, the timing of the seasonal cycle is generally well reproduced by the models. However, over Central Africa south of the Equator the models peak one to two months earlier than the retrievals. We further evaluate a recent proposal to reduce the NO<sub<x</sub< emission factors for savanna fires by 40% and find that this leads to an improvement of the amplitude of the seasonal cycle over the biomass burning regions of Northern and Central Africa. In these regions the models tend to underestimate the retrievals during the wet season, suggesting that the soil emissions are higher than assumed in the models. In general, the discrepancies between models and retrievals cannot be explained by a priori profile assumptions made in the retrievals, neither by diurnal variations in anthropogenic emissions, which lead to a marginal reduction of the NO<sub<2</sub< abundance at 10:30 local time (by 2.5–4.1% over Europe). Overall, there are significant differences among the various models and, in particular, among the three retrievals. The discrepancies among the retrievals (10–50% in the annual mean over polluted regions) indicate that the previously estimated retrieval uncertainties have a large systematic component. Our findings imply that top-down estimations of NO<sub<x</sub< emissions from satellite retrievals of tropospheric NO<sub<2</sub< are strongly dependent on the choice of model and retrieval. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 |
container_issue |
10 |
title_short |
Multi-model ensemble simulations of tropospheric NO<sub<2</sub< compared with GOME retrievals for the year 2000 |
url |
https://doaj.org/article/ceb28c1cd19a47359c009b9a3eae1146 http://www.atmos-chem-phys.net/6/2943/2006/acp-6-2943-2006.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 |
remote_bool |
true |
author2 |
H. J. Eskes F. J. Dentener D. S. Stevenson K. Ellingsen M. G. Schultz O. Wild M. Amann C. S. Atherton D. J. Bergmann I. Bey K. F. Boersma T. Butler J. Cofala J. Drevet A. M. Fiore M. Gauss D. A. Hauglustaine L. W. Horowitz I. S. A. Isaksen M. C. Krol J.-F. Lamarque M. G. Lawrence R. V. Martin V. Montanaro J.-F. Müller G. Pitari M. J. Prather J. A. Pyle A. Richter J. M. Rodriguez N. H. Savage S. E. Strahan K. Sudo S. Szopa M. van Roozendael |
author2Str |
H. J. Eskes F. J. Dentener D. S. Stevenson K. Ellingsen M. G. Schultz O. Wild M. Amann C. S. Atherton D. J. Bergmann I. Bey K. F. Boersma T. Butler J. Cofala J. Drevet A. M. Fiore M. Gauss D. A. Hauglustaine L. W. Horowitz I. S. A. Isaksen M. C. Krol J.-F. Lamarque M. G. Lawrence R. V. Martin V. Montanaro J.-F. Müller G. Pitari M. J. Prather J. A. Pyle A. Richter J. M. Rodriguez N. H. Savage S. E. Strahan K. Sudo S. Szopa M. van Roozendael |
ppnlink |
092499996 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T13:26:34.097Z |
_version_ |
1803564555019747329 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02268011X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307060726.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2006 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02268011X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJceb28c1cd19a47359c009b9a3eae1146</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">T. P. C. van Noije</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-model ensemble simulations of tropospheric NO<sub<2</sub< compared with GOME retrievals for the year 2000</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present a systematic comparison of tropospheric NO<sub<2</sub< from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997&ndash;2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10:30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30&ndash;50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions (between &ndash;25% and +10% of the NO<sub<2</sub< column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO<sub<2</sub< column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between the individual models and retrievals are high, typically in the range 0.81&ndash;0.93 after smoothing the data to a common resolution. On average the models underestimate the retrievals in industrial regions, especially over eastern China and over the Highveld region of South Africa, and overestimate the retrievals in regions dominated by biomass burning during the dry season. The discrepancy over South America south of the Amazon disappears when we use the GFED emissions specific to the year 2000. The seasonal cycle is analyzed in detail for eight different continental regions. Over regions dominated by biomass burning, the timing of the seasonal cycle is generally well reproduced by the models. However, over Central Africa south of the Equator the models peak one to two months earlier than the retrievals. We further evaluate a recent proposal to reduce the NO<sub<x</sub< emission factors for savanna fires by 40% and find that this leads to an improvement of the amplitude of the seasonal cycle over the biomass burning regions of Northern and Central Africa. In these regions the models tend to underestimate the retrievals during the wet season, suggesting that the soil emissions are higher than assumed in the models. In general, the discrepancies between models and retrievals cannot be explained by a priori profile assumptions made in the retrievals, neither by diurnal variations in anthropogenic emissions, which lead to a marginal reduction of the NO<sub<2</sub< abundance at 10:30 local time (by 2.5&ndash;4.1% over Europe). Overall, there are significant differences among the various models and, in particular, among the three retrievals. The discrepancies among the retrievals (10&ndash;50% in the annual mean over polluted regions) indicate that the previously estimated retrieval uncertainties have a large systematic component. Our findings imply that top-down estimations of NO<sub<x</sub< emissions from satellite retrievals of tropospheric NO<sub<2</sub< are strongly dependent on the choice of model and retrieval.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">H. J. Eskes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">F. J. Dentener</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. S. Stevenson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">K. Ellingsen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. G. Schultz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">O. Wild</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">O. Wild</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. Amann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">C. S. Atherton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. J. Bergmann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">I. Bey</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">K. F. Boersma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">T. Butler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. Cofala</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. Drevet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. M. Fiore</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. Gauss</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. A. Hauglustaine</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">L. W. Horowitz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">I. S. A. Isaksen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. C. Krol</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. C. Krol</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J.-F. Lamarque</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. G. Lawrence</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">R. V. Martin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">R. V. Martin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">V. Montanaro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J.-F. Müller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">G. Pitari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. J. Prather</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. A. Pyle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. Richter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. M. Rodriguez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">N. H. Savage</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. E. Strahan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">K. Sudo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Szopa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. van Roozendael</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmospheric Chemistry and Physics</subfield><subfield code="d">Copernicus Publications, 2003</subfield><subfield code="g">6(2006), 10, Seite 2943-2979</subfield><subfield code="w">(DE-627)092499996</subfield><subfield code="x">16807324</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:2943-2979</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ceb28c1cd19a47359c009b9a3eae1146</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.atmos-chem-phys.net/6/2943/2006/acp-6-2943-2006.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1680-7316</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1680-7324</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2006</subfield><subfield code="e">10</subfield><subfield code="h">2943-2979</subfield></datafield></record></collection>
|
score |
7.4019346 |