Effect of vehicle properties and driving environment on fuel consumption and CO2 emissions of timber trucking based on data from fleet management system
This study evaluated fuel consumption and CO2 emissions for 13 typical log trucks in operating conditions in Finland. The effects of season, transportation distance, mass, vehicle and road properties, and weather conditions on fuel consumption for driving were analyzed and modeled. The average fuel...
Ausführliche Beschreibung
Autor*in: |
Perttu Anttila [verfasserIn] Tuomas Nummelin [verfasserIn] Kari Väätäinen [verfasserIn] Juha Laitila [verfasserIn] Jari Ala-Ilomäki [verfasserIn] Antti Kilpeläinen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Transportation Research Interdisciplinary Perspectives - Elsevier, 2020, 15(2022), Seite 100671- |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; pages:100671- |
Links: |
---|
DOI / URN: |
10.1016/j.trip.2022.100671 |
---|
Katalog-ID: |
DOAJ022692436 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ022692436 | ||
003 | DE-627 | ||
005 | 20230307060810.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.trip.2022.100671 |2 doi | |
035 | |a (DE-627)DOAJ022692436 | ||
035 | |a (DE-599)DOAJ917746e6060c44518e0fc86b65e9163e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a HE1-9990 | |
100 | 0 | |a Perttu Anttila |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effect of vehicle properties and driving environment on fuel consumption and CO2 emissions of timber trucking based on data from fleet management system |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study evaluated fuel consumption and CO2 emissions for 13 typical log trucks in operating conditions in Finland. The effects of season, transportation distance, mass, vehicle and road properties, and weather conditions on fuel consumption for driving were analyzed and modeled. The average fuel consumption and CO2 emission of the 76-t trucks when driving with a load was 0.013 l(t·km)−1 and 30.856 g(t·km)−1 respectively. The consumptions and emissions for the 68- and 76-tonners were found to be at the same level per tonne kilometer due to the overload of the former. The highest consumptions were measured in January (on average 57.5 l(100 km)−1), and the lowest in July (on average 48.7 l(100 km)−1). Machine learning was applied to predict fuel consumption with the above-mentioned factors for 73,686 road segments. Based on the developed models, driving speed was the most influential explanatory variable, in addition to road gradient, pavement, and sinuosity. Engine power and truck mass had minor importance. Wind effect was the only significant weather variable. The “big data” approach, as used in this study, enables the collection of a vast amount of data on very varying conditions in log transportation. However, higher resolution data than the fleet management system data used in this study will be needed to construct more accurate models. | ||
650 | 4 | |a Log truck | |
650 | 4 | |a Fuel economy | |
650 | 4 | |a Greenhouse gas emissions | |
650 | 4 | |a CAN bus | |
650 | 4 | |a Machine learning | |
653 | 0 | |a Transportation and communications | |
700 | 0 | |a Tuomas Nummelin |e verfasserin |4 aut | |
700 | 0 | |a Kari Väätäinen |e verfasserin |4 aut | |
700 | 0 | |a Juha Laitila |e verfasserin |4 aut | |
700 | 0 | |a Jari Ala-Ilomäki |e verfasserin |4 aut | |
700 | 0 | |a Antti Kilpeläinen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Transportation Research Interdisciplinary Perspectives |d Elsevier, 2020 |g 15(2022), Seite 100671- |w (DE-627)1690634936 |x 25901982 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g pages:100671- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.trip.2022.100671 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/917746e6060c44518e0fc86b65e9163e |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2590198222001312 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2590-1982 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |h 100671- |
author_variant |
p a pa t n tn k v kv j l jl j a i jai a k ak |
---|---|
matchkey_str |
article:25901982:2022----::fetfeilpoeteadrvnevrnetnulosmtoadoeisosfibrrciga |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
HE |
publishDate |
2022 |
allfields |
10.1016/j.trip.2022.100671 doi (DE-627)DOAJ022692436 (DE-599)DOAJ917746e6060c44518e0fc86b65e9163e DE-627 ger DE-627 rakwb eng HE1-9990 Perttu Anttila verfasserin aut Effect of vehicle properties and driving environment on fuel consumption and CO2 emissions of timber trucking based on data from fleet management system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study evaluated fuel consumption and CO2 emissions for 13 typical log trucks in operating conditions in Finland. The effects of season, transportation distance, mass, vehicle and road properties, and weather conditions on fuel consumption for driving were analyzed and modeled. The average fuel consumption and CO2 emission of the 76-t trucks when driving with a load was 0.013 l(t·km)−1 and 30.856 g(t·km)−1 respectively. The consumptions and emissions for the 68- and 76-tonners were found to be at the same level per tonne kilometer due to the overload of the former. The highest consumptions were measured in January (on average 57.5 l(100 km)−1), and the lowest in July (on average 48.7 l(100 km)−1). Machine learning was applied to predict fuel consumption with the above-mentioned factors for 73,686 road segments. Based on the developed models, driving speed was the most influential explanatory variable, in addition to road gradient, pavement, and sinuosity. Engine power and truck mass had minor importance. Wind effect was the only significant weather variable. The “big data” approach, as used in this study, enables the collection of a vast amount of data on very varying conditions in log transportation. However, higher resolution data than the fleet management system data used in this study will be needed to construct more accurate models. Log truck Fuel economy Greenhouse gas emissions CAN bus Machine learning Transportation and communications Tuomas Nummelin verfasserin aut Kari Väätäinen verfasserin aut Juha Laitila verfasserin aut Jari Ala-Ilomäki verfasserin aut Antti Kilpeläinen verfasserin aut In Transportation Research Interdisciplinary Perspectives Elsevier, 2020 15(2022), Seite 100671- (DE-627)1690634936 25901982 nnns volume:15 year:2022 pages:100671- https://doi.org/10.1016/j.trip.2022.100671 kostenfrei https://doaj.org/article/917746e6060c44518e0fc86b65e9163e kostenfrei http://www.sciencedirect.com/science/article/pii/S2590198222001312 kostenfrei https://doaj.org/toc/2590-1982 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 15 2022 100671- |
spelling |
10.1016/j.trip.2022.100671 doi (DE-627)DOAJ022692436 (DE-599)DOAJ917746e6060c44518e0fc86b65e9163e DE-627 ger DE-627 rakwb eng HE1-9990 Perttu Anttila verfasserin aut Effect of vehicle properties and driving environment on fuel consumption and CO2 emissions of timber trucking based on data from fleet management system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study evaluated fuel consumption and CO2 emissions for 13 typical log trucks in operating conditions in Finland. The effects of season, transportation distance, mass, vehicle and road properties, and weather conditions on fuel consumption for driving were analyzed and modeled. The average fuel consumption and CO2 emission of the 76-t trucks when driving with a load was 0.013 l(t·km)−1 and 30.856 g(t·km)−1 respectively. The consumptions and emissions for the 68- and 76-tonners were found to be at the same level per tonne kilometer due to the overload of the former. The highest consumptions were measured in January (on average 57.5 l(100 km)−1), and the lowest in July (on average 48.7 l(100 km)−1). Machine learning was applied to predict fuel consumption with the above-mentioned factors for 73,686 road segments. Based on the developed models, driving speed was the most influential explanatory variable, in addition to road gradient, pavement, and sinuosity. Engine power and truck mass had minor importance. Wind effect was the only significant weather variable. The “big data” approach, as used in this study, enables the collection of a vast amount of data on very varying conditions in log transportation. However, higher resolution data than the fleet management system data used in this study will be needed to construct more accurate models. Log truck Fuel economy Greenhouse gas emissions CAN bus Machine learning Transportation and communications Tuomas Nummelin verfasserin aut Kari Väätäinen verfasserin aut Juha Laitila verfasserin aut Jari Ala-Ilomäki verfasserin aut Antti Kilpeläinen verfasserin aut In Transportation Research Interdisciplinary Perspectives Elsevier, 2020 15(2022), Seite 100671- (DE-627)1690634936 25901982 nnns volume:15 year:2022 pages:100671- https://doi.org/10.1016/j.trip.2022.100671 kostenfrei https://doaj.org/article/917746e6060c44518e0fc86b65e9163e kostenfrei http://www.sciencedirect.com/science/article/pii/S2590198222001312 kostenfrei https://doaj.org/toc/2590-1982 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 15 2022 100671- |
allfields_unstemmed |
10.1016/j.trip.2022.100671 doi (DE-627)DOAJ022692436 (DE-599)DOAJ917746e6060c44518e0fc86b65e9163e DE-627 ger DE-627 rakwb eng HE1-9990 Perttu Anttila verfasserin aut Effect of vehicle properties and driving environment on fuel consumption and CO2 emissions of timber trucking based on data from fleet management system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study evaluated fuel consumption and CO2 emissions for 13 typical log trucks in operating conditions in Finland. The effects of season, transportation distance, mass, vehicle and road properties, and weather conditions on fuel consumption for driving were analyzed and modeled. The average fuel consumption and CO2 emission of the 76-t trucks when driving with a load was 0.013 l(t·km)−1 and 30.856 g(t·km)−1 respectively. The consumptions and emissions for the 68- and 76-tonners were found to be at the same level per tonne kilometer due to the overload of the former. The highest consumptions were measured in January (on average 57.5 l(100 km)−1), and the lowest in July (on average 48.7 l(100 km)−1). Machine learning was applied to predict fuel consumption with the above-mentioned factors for 73,686 road segments. Based on the developed models, driving speed was the most influential explanatory variable, in addition to road gradient, pavement, and sinuosity. Engine power and truck mass had minor importance. Wind effect was the only significant weather variable. The “big data” approach, as used in this study, enables the collection of a vast amount of data on very varying conditions in log transportation. However, higher resolution data than the fleet management system data used in this study will be needed to construct more accurate models. Log truck Fuel economy Greenhouse gas emissions CAN bus Machine learning Transportation and communications Tuomas Nummelin verfasserin aut Kari Väätäinen verfasserin aut Juha Laitila verfasserin aut Jari Ala-Ilomäki verfasserin aut Antti Kilpeläinen verfasserin aut In Transportation Research Interdisciplinary Perspectives Elsevier, 2020 15(2022), Seite 100671- (DE-627)1690634936 25901982 nnns volume:15 year:2022 pages:100671- https://doi.org/10.1016/j.trip.2022.100671 kostenfrei https://doaj.org/article/917746e6060c44518e0fc86b65e9163e kostenfrei http://www.sciencedirect.com/science/article/pii/S2590198222001312 kostenfrei https://doaj.org/toc/2590-1982 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 15 2022 100671- |
allfieldsGer |
10.1016/j.trip.2022.100671 doi (DE-627)DOAJ022692436 (DE-599)DOAJ917746e6060c44518e0fc86b65e9163e DE-627 ger DE-627 rakwb eng HE1-9990 Perttu Anttila verfasserin aut Effect of vehicle properties and driving environment on fuel consumption and CO2 emissions of timber trucking based on data from fleet management system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study evaluated fuel consumption and CO2 emissions for 13 typical log trucks in operating conditions in Finland. The effects of season, transportation distance, mass, vehicle and road properties, and weather conditions on fuel consumption for driving were analyzed and modeled. The average fuel consumption and CO2 emission of the 76-t trucks when driving with a load was 0.013 l(t·km)−1 and 30.856 g(t·km)−1 respectively. The consumptions and emissions for the 68- and 76-tonners were found to be at the same level per tonne kilometer due to the overload of the former. The highest consumptions were measured in January (on average 57.5 l(100 km)−1), and the lowest in July (on average 48.7 l(100 km)−1). Machine learning was applied to predict fuel consumption with the above-mentioned factors for 73,686 road segments. Based on the developed models, driving speed was the most influential explanatory variable, in addition to road gradient, pavement, and sinuosity. Engine power and truck mass had minor importance. Wind effect was the only significant weather variable. The “big data” approach, as used in this study, enables the collection of a vast amount of data on very varying conditions in log transportation. However, higher resolution data than the fleet management system data used in this study will be needed to construct more accurate models. Log truck Fuel economy Greenhouse gas emissions CAN bus Machine learning Transportation and communications Tuomas Nummelin verfasserin aut Kari Väätäinen verfasserin aut Juha Laitila verfasserin aut Jari Ala-Ilomäki verfasserin aut Antti Kilpeläinen verfasserin aut In Transportation Research Interdisciplinary Perspectives Elsevier, 2020 15(2022), Seite 100671- (DE-627)1690634936 25901982 nnns volume:15 year:2022 pages:100671- https://doi.org/10.1016/j.trip.2022.100671 kostenfrei https://doaj.org/article/917746e6060c44518e0fc86b65e9163e kostenfrei http://www.sciencedirect.com/science/article/pii/S2590198222001312 kostenfrei https://doaj.org/toc/2590-1982 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 15 2022 100671- |
allfieldsSound |
10.1016/j.trip.2022.100671 doi (DE-627)DOAJ022692436 (DE-599)DOAJ917746e6060c44518e0fc86b65e9163e DE-627 ger DE-627 rakwb eng HE1-9990 Perttu Anttila verfasserin aut Effect of vehicle properties and driving environment on fuel consumption and CO2 emissions of timber trucking based on data from fleet management system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study evaluated fuel consumption and CO2 emissions for 13 typical log trucks in operating conditions in Finland. The effects of season, transportation distance, mass, vehicle and road properties, and weather conditions on fuel consumption for driving were analyzed and modeled. The average fuel consumption and CO2 emission of the 76-t trucks when driving with a load was 0.013 l(t·km)−1 and 30.856 g(t·km)−1 respectively. The consumptions and emissions for the 68- and 76-tonners were found to be at the same level per tonne kilometer due to the overload of the former. The highest consumptions were measured in January (on average 57.5 l(100 km)−1), and the lowest in July (on average 48.7 l(100 km)−1). Machine learning was applied to predict fuel consumption with the above-mentioned factors for 73,686 road segments. Based on the developed models, driving speed was the most influential explanatory variable, in addition to road gradient, pavement, and sinuosity. Engine power and truck mass had minor importance. Wind effect was the only significant weather variable. The “big data” approach, as used in this study, enables the collection of a vast amount of data on very varying conditions in log transportation. However, higher resolution data than the fleet management system data used in this study will be needed to construct more accurate models. Log truck Fuel economy Greenhouse gas emissions CAN bus Machine learning Transportation and communications Tuomas Nummelin verfasserin aut Kari Väätäinen verfasserin aut Juha Laitila verfasserin aut Jari Ala-Ilomäki verfasserin aut Antti Kilpeläinen verfasserin aut In Transportation Research Interdisciplinary Perspectives Elsevier, 2020 15(2022), Seite 100671- (DE-627)1690634936 25901982 nnns volume:15 year:2022 pages:100671- https://doi.org/10.1016/j.trip.2022.100671 kostenfrei https://doaj.org/article/917746e6060c44518e0fc86b65e9163e kostenfrei http://www.sciencedirect.com/science/article/pii/S2590198222001312 kostenfrei https://doaj.org/toc/2590-1982 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 15 2022 100671- |
language |
English |
source |
In Transportation Research Interdisciplinary Perspectives 15(2022), Seite 100671- volume:15 year:2022 pages:100671- |
sourceStr |
In Transportation Research Interdisciplinary Perspectives 15(2022), Seite 100671- volume:15 year:2022 pages:100671- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Log truck Fuel economy Greenhouse gas emissions CAN bus Machine learning Transportation and communications |
isfreeaccess_bool |
true |
container_title |
Transportation Research Interdisciplinary Perspectives |
authorswithroles_txt_mv |
Perttu Anttila @@aut@@ Tuomas Nummelin @@aut@@ Kari Väätäinen @@aut@@ Juha Laitila @@aut@@ Jari Ala-Ilomäki @@aut@@ Antti Kilpeläinen @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1690634936 |
id |
DOAJ022692436 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ022692436</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307060810.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.trip.2022.100671</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ022692436</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ917746e6060c44518e0fc86b65e9163e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HE1-9990</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Perttu Anttila</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of vehicle properties and driving environment on fuel consumption and CO2 emissions of timber trucking based on data from fleet management system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study evaluated fuel consumption and CO2 emissions for 13 typical log trucks in operating conditions in Finland. The effects of season, transportation distance, mass, vehicle and road properties, and weather conditions on fuel consumption for driving were analyzed and modeled. The average fuel consumption and CO2 emission of the 76-t trucks when driving with a load was 0.013 l(t·km)−1 and 30.856 g(t·km)−1 respectively. The consumptions and emissions for the 68- and 76-tonners were found to be at the same level per tonne kilometer due to the overload of the former. The highest consumptions were measured in January (on average 57.5 l(100 km)−1), and the lowest in July (on average 48.7 l(100 km)−1). Machine learning was applied to predict fuel consumption with the above-mentioned factors for 73,686 road segments. Based on the developed models, driving speed was the most influential explanatory variable, in addition to road gradient, pavement, and sinuosity. Engine power and truck mass had minor importance. Wind effect was the only significant weather variable. The “big data” approach, as used in this study, enables the collection of a vast amount of data on very varying conditions in log transportation. However, higher resolution data than the fleet management system data used in this study will be needed to construct more accurate models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Log truck</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuel economy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Greenhouse gas emissions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CAN bus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation and communications</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tuomas Nummelin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kari Väätäinen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juha Laitila</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jari Ala-Ilomäki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antti Kilpeläinen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Transportation Research Interdisciplinary Perspectives</subfield><subfield code="d">Elsevier, 2020</subfield><subfield code="g">15(2022), Seite 100671-</subfield><subfield code="w">(DE-627)1690634936</subfield><subfield code="x">25901982</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:100671-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.trip.2022.100671</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/917746e6060c44518e0fc86b65e9163e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2590198222001312</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2590-1982</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="h">100671-</subfield></datafield></record></collection>
|
callnumber-first |
H - Social Science |
author |
Perttu Anttila |
spellingShingle |
Perttu Anttila misc HE1-9990 misc Log truck misc Fuel economy misc Greenhouse gas emissions misc CAN bus misc Machine learning misc Transportation and communications Effect of vehicle properties and driving environment on fuel consumption and CO2 emissions of timber trucking based on data from fleet management system |
authorStr |
Perttu Anttila |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1690634936 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
HE1-9990 |
illustrated |
Not Illustrated |
issn |
25901982 |
topic_title |
HE1-9990 Effect of vehicle properties and driving environment on fuel consumption and CO2 emissions of timber trucking based on data from fleet management system Log truck Fuel economy Greenhouse gas emissions CAN bus Machine learning |
topic |
misc HE1-9990 misc Log truck misc Fuel economy misc Greenhouse gas emissions misc CAN bus misc Machine learning misc Transportation and communications |
topic_unstemmed |
misc HE1-9990 misc Log truck misc Fuel economy misc Greenhouse gas emissions misc CAN bus misc Machine learning misc Transportation and communications |
topic_browse |
misc HE1-9990 misc Log truck misc Fuel economy misc Greenhouse gas emissions misc CAN bus misc Machine learning misc Transportation and communications |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Transportation Research Interdisciplinary Perspectives |
hierarchy_parent_id |
1690634936 |
hierarchy_top_title |
Transportation Research Interdisciplinary Perspectives |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1690634936 |
title |
Effect of vehicle properties and driving environment on fuel consumption and CO2 emissions of timber trucking based on data from fleet management system |
ctrlnum |
(DE-627)DOAJ022692436 (DE-599)DOAJ917746e6060c44518e0fc86b65e9163e |
title_full |
Effect of vehicle properties and driving environment on fuel consumption and CO2 emissions of timber trucking based on data from fleet management system |
author_sort |
Perttu Anttila |
journal |
Transportation Research Interdisciplinary Perspectives |
journalStr |
Transportation Research Interdisciplinary Perspectives |
callnumber-first-code |
H |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
100671 |
author_browse |
Perttu Anttila Tuomas Nummelin Kari Väätäinen Juha Laitila Jari Ala-Ilomäki Antti Kilpeläinen |
container_volume |
15 |
class |
HE1-9990 |
format_se |
Elektronische Aufsätze |
author-letter |
Perttu Anttila |
doi_str_mv |
10.1016/j.trip.2022.100671 |
author2-role |
verfasserin |
title_sort |
effect of vehicle properties and driving environment on fuel consumption and co2 emissions of timber trucking based on data from fleet management system |
callnumber |
HE1-9990 |
title_auth |
Effect of vehicle properties and driving environment on fuel consumption and CO2 emissions of timber trucking based on data from fleet management system |
abstract |
This study evaluated fuel consumption and CO2 emissions for 13 typical log trucks in operating conditions in Finland. The effects of season, transportation distance, mass, vehicle and road properties, and weather conditions on fuel consumption for driving were analyzed and modeled. The average fuel consumption and CO2 emission of the 76-t trucks when driving with a load was 0.013 l(t·km)−1 and 30.856 g(t·km)−1 respectively. The consumptions and emissions for the 68- and 76-tonners were found to be at the same level per tonne kilometer due to the overload of the former. The highest consumptions were measured in January (on average 57.5 l(100 km)−1), and the lowest in July (on average 48.7 l(100 km)−1). Machine learning was applied to predict fuel consumption with the above-mentioned factors for 73,686 road segments. Based on the developed models, driving speed was the most influential explanatory variable, in addition to road gradient, pavement, and sinuosity. Engine power and truck mass had minor importance. Wind effect was the only significant weather variable. The “big data” approach, as used in this study, enables the collection of a vast amount of data on very varying conditions in log transportation. However, higher resolution data than the fleet management system data used in this study will be needed to construct more accurate models. |
abstractGer |
This study evaluated fuel consumption and CO2 emissions for 13 typical log trucks in operating conditions in Finland. The effects of season, transportation distance, mass, vehicle and road properties, and weather conditions on fuel consumption for driving were analyzed and modeled. The average fuel consumption and CO2 emission of the 76-t trucks when driving with a load was 0.013 l(t·km)−1 and 30.856 g(t·km)−1 respectively. The consumptions and emissions for the 68- and 76-tonners were found to be at the same level per tonne kilometer due to the overload of the former. The highest consumptions were measured in January (on average 57.5 l(100 km)−1), and the lowest in July (on average 48.7 l(100 km)−1). Machine learning was applied to predict fuel consumption with the above-mentioned factors for 73,686 road segments. Based on the developed models, driving speed was the most influential explanatory variable, in addition to road gradient, pavement, and sinuosity. Engine power and truck mass had minor importance. Wind effect was the only significant weather variable. The “big data” approach, as used in this study, enables the collection of a vast amount of data on very varying conditions in log transportation. However, higher resolution data than the fleet management system data used in this study will be needed to construct more accurate models. |
abstract_unstemmed |
This study evaluated fuel consumption and CO2 emissions for 13 typical log trucks in operating conditions in Finland. The effects of season, transportation distance, mass, vehicle and road properties, and weather conditions on fuel consumption for driving were analyzed and modeled. The average fuel consumption and CO2 emission of the 76-t trucks when driving with a load was 0.013 l(t·km)−1 and 30.856 g(t·km)−1 respectively. The consumptions and emissions for the 68- and 76-tonners were found to be at the same level per tonne kilometer due to the overload of the former. The highest consumptions were measured in January (on average 57.5 l(100 km)−1), and the lowest in July (on average 48.7 l(100 km)−1). Machine learning was applied to predict fuel consumption with the above-mentioned factors for 73,686 road segments. Based on the developed models, driving speed was the most influential explanatory variable, in addition to road gradient, pavement, and sinuosity. Engine power and truck mass had minor importance. Wind effect was the only significant weather variable. The “big data” approach, as used in this study, enables the collection of a vast amount of data on very varying conditions in log transportation. However, higher resolution data than the fleet management system data used in this study will be needed to construct more accurate models. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Effect of vehicle properties and driving environment on fuel consumption and CO2 emissions of timber trucking based on data from fleet management system |
url |
https://doi.org/10.1016/j.trip.2022.100671 https://doaj.org/article/917746e6060c44518e0fc86b65e9163e http://www.sciencedirect.com/science/article/pii/S2590198222001312 https://doaj.org/toc/2590-1982 |
remote_bool |
true |
author2 |
Tuomas Nummelin Kari Väätäinen Juha Laitila Jari Ala-Ilomäki Antti Kilpeläinen |
author2Str |
Tuomas Nummelin Kari Väätäinen Juha Laitila Jari Ala-Ilomäki Antti Kilpeläinen |
ppnlink |
1690634936 |
callnumber-subject |
HE - Transportation and Communications |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.trip.2022.100671 |
callnumber-a |
HE1-9990 |
up_date |
2024-07-03T13:30:36.778Z |
_version_ |
1803564809486073856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ022692436</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307060810.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.trip.2022.100671</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ022692436</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ917746e6060c44518e0fc86b65e9163e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HE1-9990</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Perttu Anttila</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of vehicle properties and driving environment on fuel consumption and CO2 emissions of timber trucking based on data from fleet management system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study evaluated fuel consumption and CO2 emissions for 13 typical log trucks in operating conditions in Finland. The effects of season, transportation distance, mass, vehicle and road properties, and weather conditions on fuel consumption for driving were analyzed and modeled. The average fuel consumption and CO2 emission of the 76-t trucks when driving with a load was 0.013 l(t·km)−1 and 30.856 g(t·km)−1 respectively. The consumptions and emissions for the 68- and 76-tonners were found to be at the same level per tonne kilometer due to the overload of the former. The highest consumptions were measured in January (on average 57.5 l(100 km)−1), and the lowest in July (on average 48.7 l(100 km)−1). Machine learning was applied to predict fuel consumption with the above-mentioned factors for 73,686 road segments. Based on the developed models, driving speed was the most influential explanatory variable, in addition to road gradient, pavement, and sinuosity. Engine power and truck mass had minor importance. Wind effect was the only significant weather variable. The “big data” approach, as used in this study, enables the collection of a vast amount of data on very varying conditions in log transportation. However, higher resolution data than the fleet management system data used in this study will be needed to construct more accurate models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Log truck</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuel economy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Greenhouse gas emissions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CAN bus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation and communications</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tuomas Nummelin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kari Väätäinen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juha Laitila</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jari Ala-Ilomäki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antti Kilpeläinen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Transportation Research Interdisciplinary Perspectives</subfield><subfield code="d">Elsevier, 2020</subfield><subfield code="g">15(2022), Seite 100671-</subfield><subfield code="w">(DE-627)1690634936</subfield><subfield code="x">25901982</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:100671-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.trip.2022.100671</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/917746e6060c44518e0fc86b65e9163e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2590198222001312</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2590-1982</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="h">100671-</subfield></datafield></record></collection>
|
score |
7.4006395 |