Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening
This work presents an optimization strategy and the cost-optimal design of an off-grid building served by an energy system involving solar technologies, thermal and electrochemical storages. Independently from the multi-objective method (e.g., utility function) and algorithm used (e.g., genetic algo...
Ausführliche Beschreibung
Autor*in: |
Paolo Conti [verfasserIn] Giovanni Lutzemberger [verfasserIn] Eva Schito [verfasserIn] Davide Poli [verfasserIn] Daniele Testi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 12(2019), 15, p 3026 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2019 ; number:15, p 3026 |
Links: |
---|
DOI / URN: |
10.3390/en12153026 |
---|
Katalog-ID: |
DOAJ022755489 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ022755489 | ||
003 | DE-627 | ||
005 | 20230307061123.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en12153026 |2 doi | |
035 | |a (DE-627)DOAJ022755489 | ||
035 | |a (DE-599)DOAJ441ade427c6f42e599b80913e5e71b36 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Paolo Conti |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This work presents an optimization strategy and the cost-optimal design of an off-grid building served by an energy system involving solar technologies, thermal and electrochemical storages. Independently from the multi-objective method (e.g., utility function) and algorithm used (e.g., genetic algorithms), the optimization of this kind of systems is typically characterized by a high-dimensional variables space, computational effort and results uncertainty (e.g., local minimum solutions). Instead of focusing on advanced optimization tools to handle the design problem, the dimension of the full problem has been reduced, only considering the design variables with a high “effect” on the objective functions. An off-grid accommodation building is presented as test case: the original six-variable design problem consisting of about 300,000 possible configurations is reduced to a two-variable problem, after the analysis of 870 Monte Carlo simulations. The new problem includes only 220 possible design alternatives with a clear benefit for the multi-objective optimization algorithm. The energy-economy Pareto frontiers obtained by the original and the reduced problems overlap, showing the validity of the proposed methodology. The <i<No-RES</i< (no renewable energy sources) primary energy consumption can be reduced up to almost 0 kWh/(m<sup<2</sup<yr) and the net present value (<i<NPV</i<) after 20 years can reach 70 k€ depending on the number of photovoltaic panels and electrochemical storage size. The reduction of the problem also allows for a plain analysis of the results and the drawing of handy decision charts to help the investor/designer in finding the best design according to the specific investment availability and target performances. The configurations on the Pareto frontier are characterized by a notable electrical overproduction and a ratio between the two main design variables that goes from 4 to 8 h. A sensitivity analysis to the unitary price of the electrochemical storage reveals the robustness of the sizing criterion. | ||
650 | 4 | |a hybrid renewable energy systems | |
650 | 4 | |a off-grid buildings | |
650 | 4 | |a electrochemical storage | |
650 | 4 | |a dynamic simulation | |
650 | 4 | |a multi-objective optimization | |
650 | 4 | |a screening design methodology | |
650 | 4 | |a solar technologies | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Giovanni Lutzemberger |e verfasserin |4 aut | |
700 | 0 | |a Eva Schito |e verfasserin |4 aut | |
700 | 0 | |a Davide Poli |e verfasserin |4 aut | |
700 | 0 | |a Daniele Testi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 12(2019), 15, p 3026 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2019 |g number:15, p 3026 |
856 | 4 | 0 | |u https://doi.org/10.3390/en12153026 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/441ade427c6f42e599b80913e5e71b36 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/12/15/3026 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2019 |e 15, p 3026 |
author_variant |
p c pc g l gl e s es d p dp d t dt |
---|---|
matchkey_str |
article:19961073:2019----::utojciepiiainffgihbirnwbenryytmibidnsih |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.3390/en12153026 doi (DE-627)DOAJ022755489 (DE-599)DOAJ441ade427c6f42e599b80913e5e71b36 DE-627 ger DE-627 rakwb eng Paolo Conti verfasserin aut Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work presents an optimization strategy and the cost-optimal design of an off-grid building served by an energy system involving solar technologies, thermal and electrochemical storages. Independently from the multi-objective method (e.g., utility function) and algorithm used (e.g., genetic algorithms), the optimization of this kind of systems is typically characterized by a high-dimensional variables space, computational effort and results uncertainty (e.g., local minimum solutions). Instead of focusing on advanced optimization tools to handle the design problem, the dimension of the full problem has been reduced, only considering the design variables with a high “effect” on the objective functions. An off-grid accommodation building is presented as test case: the original six-variable design problem consisting of about 300,000 possible configurations is reduced to a two-variable problem, after the analysis of 870 Monte Carlo simulations. The new problem includes only 220 possible design alternatives with a clear benefit for the multi-objective optimization algorithm. The energy-economy Pareto frontiers obtained by the original and the reduced problems overlap, showing the validity of the proposed methodology. The <i<No-RES</i< (no renewable energy sources) primary energy consumption can be reduced up to almost 0 kWh/(m<sup<2</sup<yr) and the net present value (<i<NPV</i<) after 20 years can reach 70 k€ depending on the number of photovoltaic panels and electrochemical storage size. The reduction of the problem also allows for a plain analysis of the results and the drawing of handy decision charts to help the investor/designer in finding the best design according to the specific investment availability and target performances. The configurations on the Pareto frontier are characterized by a notable electrical overproduction and a ratio between the two main design variables that goes from 4 to 8 h. A sensitivity analysis to the unitary price of the electrochemical storage reveals the robustness of the sizing criterion. hybrid renewable energy systems off-grid buildings electrochemical storage dynamic simulation multi-objective optimization screening design methodology solar technologies Technology T Giovanni Lutzemberger verfasserin aut Eva Schito verfasserin aut Davide Poli verfasserin aut Daniele Testi verfasserin aut In Energies MDPI AG, 2008 12(2019), 15, p 3026 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:12 year:2019 number:15, p 3026 https://doi.org/10.3390/en12153026 kostenfrei https://doaj.org/article/441ade427c6f42e599b80913e5e71b36 kostenfrei https://www.mdpi.com/1996-1073/12/15/3026 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2019 15, p 3026 |
spelling |
10.3390/en12153026 doi (DE-627)DOAJ022755489 (DE-599)DOAJ441ade427c6f42e599b80913e5e71b36 DE-627 ger DE-627 rakwb eng Paolo Conti verfasserin aut Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work presents an optimization strategy and the cost-optimal design of an off-grid building served by an energy system involving solar technologies, thermal and electrochemical storages. Independently from the multi-objective method (e.g., utility function) and algorithm used (e.g., genetic algorithms), the optimization of this kind of systems is typically characterized by a high-dimensional variables space, computational effort and results uncertainty (e.g., local minimum solutions). Instead of focusing on advanced optimization tools to handle the design problem, the dimension of the full problem has been reduced, only considering the design variables with a high “effect” on the objective functions. An off-grid accommodation building is presented as test case: the original six-variable design problem consisting of about 300,000 possible configurations is reduced to a two-variable problem, after the analysis of 870 Monte Carlo simulations. The new problem includes only 220 possible design alternatives with a clear benefit for the multi-objective optimization algorithm. The energy-economy Pareto frontiers obtained by the original and the reduced problems overlap, showing the validity of the proposed methodology. The <i<No-RES</i< (no renewable energy sources) primary energy consumption can be reduced up to almost 0 kWh/(m<sup<2</sup<yr) and the net present value (<i<NPV</i<) after 20 years can reach 70 k€ depending on the number of photovoltaic panels and electrochemical storage size. The reduction of the problem also allows for a plain analysis of the results and the drawing of handy decision charts to help the investor/designer in finding the best design according to the specific investment availability and target performances. The configurations on the Pareto frontier are characterized by a notable electrical overproduction and a ratio between the two main design variables that goes from 4 to 8 h. A sensitivity analysis to the unitary price of the electrochemical storage reveals the robustness of the sizing criterion. hybrid renewable energy systems off-grid buildings electrochemical storage dynamic simulation multi-objective optimization screening design methodology solar technologies Technology T Giovanni Lutzemberger verfasserin aut Eva Schito verfasserin aut Davide Poli verfasserin aut Daniele Testi verfasserin aut In Energies MDPI AG, 2008 12(2019), 15, p 3026 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:12 year:2019 number:15, p 3026 https://doi.org/10.3390/en12153026 kostenfrei https://doaj.org/article/441ade427c6f42e599b80913e5e71b36 kostenfrei https://www.mdpi.com/1996-1073/12/15/3026 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2019 15, p 3026 |
allfields_unstemmed |
10.3390/en12153026 doi (DE-627)DOAJ022755489 (DE-599)DOAJ441ade427c6f42e599b80913e5e71b36 DE-627 ger DE-627 rakwb eng Paolo Conti verfasserin aut Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work presents an optimization strategy and the cost-optimal design of an off-grid building served by an energy system involving solar technologies, thermal and electrochemical storages. Independently from the multi-objective method (e.g., utility function) and algorithm used (e.g., genetic algorithms), the optimization of this kind of systems is typically characterized by a high-dimensional variables space, computational effort and results uncertainty (e.g., local minimum solutions). Instead of focusing on advanced optimization tools to handle the design problem, the dimension of the full problem has been reduced, only considering the design variables with a high “effect” on the objective functions. An off-grid accommodation building is presented as test case: the original six-variable design problem consisting of about 300,000 possible configurations is reduced to a two-variable problem, after the analysis of 870 Monte Carlo simulations. The new problem includes only 220 possible design alternatives with a clear benefit for the multi-objective optimization algorithm. The energy-economy Pareto frontiers obtained by the original and the reduced problems overlap, showing the validity of the proposed methodology. The <i<No-RES</i< (no renewable energy sources) primary energy consumption can be reduced up to almost 0 kWh/(m<sup<2</sup<yr) and the net present value (<i<NPV</i<) after 20 years can reach 70 k€ depending on the number of photovoltaic panels and electrochemical storage size. The reduction of the problem also allows for a plain analysis of the results and the drawing of handy decision charts to help the investor/designer in finding the best design according to the specific investment availability and target performances. The configurations on the Pareto frontier are characterized by a notable electrical overproduction and a ratio between the two main design variables that goes from 4 to 8 h. A sensitivity analysis to the unitary price of the electrochemical storage reveals the robustness of the sizing criterion. hybrid renewable energy systems off-grid buildings electrochemical storage dynamic simulation multi-objective optimization screening design methodology solar technologies Technology T Giovanni Lutzemberger verfasserin aut Eva Schito verfasserin aut Davide Poli verfasserin aut Daniele Testi verfasserin aut In Energies MDPI AG, 2008 12(2019), 15, p 3026 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:12 year:2019 number:15, p 3026 https://doi.org/10.3390/en12153026 kostenfrei https://doaj.org/article/441ade427c6f42e599b80913e5e71b36 kostenfrei https://www.mdpi.com/1996-1073/12/15/3026 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2019 15, p 3026 |
allfieldsGer |
10.3390/en12153026 doi (DE-627)DOAJ022755489 (DE-599)DOAJ441ade427c6f42e599b80913e5e71b36 DE-627 ger DE-627 rakwb eng Paolo Conti verfasserin aut Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work presents an optimization strategy and the cost-optimal design of an off-grid building served by an energy system involving solar technologies, thermal and electrochemical storages. Independently from the multi-objective method (e.g., utility function) and algorithm used (e.g., genetic algorithms), the optimization of this kind of systems is typically characterized by a high-dimensional variables space, computational effort and results uncertainty (e.g., local minimum solutions). Instead of focusing on advanced optimization tools to handle the design problem, the dimension of the full problem has been reduced, only considering the design variables with a high “effect” on the objective functions. An off-grid accommodation building is presented as test case: the original six-variable design problem consisting of about 300,000 possible configurations is reduced to a two-variable problem, after the analysis of 870 Monte Carlo simulations. The new problem includes only 220 possible design alternatives with a clear benefit for the multi-objective optimization algorithm. The energy-economy Pareto frontiers obtained by the original and the reduced problems overlap, showing the validity of the proposed methodology. The <i<No-RES</i< (no renewable energy sources) primary energy consumption can be reduced up to almost 0 kWh/(m<sup<2</sup<yr) and the net present value (<i<NPV</i<) after 20 years can reach 70 k€ depending on the number of photovoltaic panels and electrochemical storage size. The reduction of the problem also allows for a plain analysis of the results and the drawing of handy decision charts to help the investor/designer in finding the best design according to the specific investment availability and target performances. The configurations on the Pareto frontier are characterized by a notable electrical overproduction and a ratio between the two main design variables that goes from 4 to 8 h. A sensitivity analysis to the unitary price of the electrochemical storage reveals the robustness of the sizing criterion. hybrid renewable energy systems off-grid buildings electrochemical storage dynamic simulation multi-objective optimization screening design methodology solar technologies Technology T Giovanni Lutzemberger verfasserin aut Eva Schito verfasserin aut Davide Poli verfasserin aut Daniele Testi verfasserin aut In Energies MDPI AG, 2008 12(2019), 15, p 3026 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:12 year:2019 number:15, p 3026 https://doi.org/10.3390/en12153026 kostenfrei https://doaj.org/article/441ade427c6f42e599b80913e5e71b36 kostenfrei https://www.mdpi.com/1996-1073/12/15/3026 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2019 15, p 3026 |
allfieldsSound |
10.3390/en12153026 doi (DE-627)DOAJ022755489 (DE-599)DOAJ441ade427c6f42e599b80913e5e71b36 DE-627 ger DE-627 rakwb eng Paolo Conti verfasserin aut Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work presents an optimization strategy and the cost-optimal design of an off-grid building served by an energy system involving solar technologies, thermal and electrochemical storages. Independently from the multi-objective method (e.g., utility function) and algorithm used (e.g., genetic algorithms), the optimization of this kind of systems is typically characterized by a high-dimensional variables space, computational effort and results uncertainty (e.g., local minimum solutions). Instead of focusing on advanced optimization tools to handle the design problem, the dimension of the full problem has been reduced, only considering the design variables with a high “effect” on the objective functions. An off-grid accommodation building is presented as test case: the original six-variable design problem consisting of about 300,000 possible configurations is reduced to a two-variable problem, after the analysis of 870 Monte Carlo simulations. The new problem includes only 220 possible design alternatives with a clear benefit for the multi-objective optimization algorithm. The energy-economy Pareto frontiers obtained by the original and the reduced problems overlap, showing the validity of the proposed methodology. The <i<No-RES</i< (no renewable energy sources) primary energy consumption can be reduced up to almost 0 kWh/(m<sup<2</sup<yr) and the net present value (<i<NPV</i<) after 20 years can reach 70 k€ depending on the number of photovoltaic panels and electrochemical storage size. The reduction of the problem also allows for a plain analysis of the results and the drawing of handy decision charts to help the investor/designer in finding the best design according to the specific investment availability and target performances. The configurations on the Pareto frontier are characterized by a notable electrical overproduction and a ratio between the two main design variables that goes from 4 to 8 h. A sensitivity analysis to the unitary price of the electrochemical storage reveals the robustness of the sizing criterion. hybrid renewable energy systems off-grid buildings electrochemical storage dynamic simulation multi-objective optimization screening design methodology solar technologies Technology T Giovanni Lutzemberger verfasserin aut Eva Schito verfasserin aut Davide Poli verfasserin aut Daniele Testi verfasserin aut In Energies MDPI AG, 2008 12(2019), 15, p 3026 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:12 year:2019 number:15, p 3026 https://doi.org/10.3390/en12153026 kostenfrei https://doaj.org/article/441ade427c6f42e599b80913e5e71b36 kostenfrei https://www.mdpi.com/1996-1073/12/15/3026 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2019 15, p 3026 |
language |
English |
source |
In Energies 12(2019), 15, p 3026 volume:12 year:2019 number:15, p 3026 |
sourceStr |
In Energies 12(2019), 15, p 3026 volume:12 year:2019 number:15, p 3026 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hybrid renewable energy systems off-grid buildings electrochemical storage dynamic simulation multi-objective optimization screening design methodology solar technologies Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Paolo Conti @@aut@@ Giovanni Lutzemberger @@aut@@ Eva Schito @@aut@@ Davide Poli @@aut@@ Daniele Testi @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ022755489 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ022755489</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307061123.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en12153026</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ022755489</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ441ade427c6f42e599b80913e5e71b36</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Paolo Conti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work presents an optimization strategy and the cost-optimal design of an off-grid building served by an energy system involving solar technologies, thermal and electrochemical storages. Independently from the multi-objective method (e.g., utility function) and algorithm used (e.g., genetic algorithms), the optimization of this kind of systems is typically characterized by a high-dimensional variables space, computational effort and results uncertainty (e.g., local minimum solutions). Instead of focusing on advanced optimization tools to handle the design problem, the dimension of the full problem has been reduced, only considering the design variables with a high “effect” on the objective functions. An off-grid accommodation building is presented as test case: the original six-variable design problem consisting of about 300,000 possible configurations is reduced to a two-variable problem, after the analysis of 870 Monte Carlo simulations. The new problem includes only 220 possible design alternatives with a clear benefit for the multi-objective optimization algorithm. The energy-economy Pareto frontiers obtained by the original and the reduced problems overlap, showing the validity of the proposed methodology. The <i<No-RES</i< (no renewable energy sources) primary energy consumption can be reduced up to almost 0 kWh/(m<sup<2</sup<yr) and the net present value (<i<NPV</i<) after 20 years can reach 70 k€ depending on the number of photovoltaic panels and electrochemical storage size. The reduction of the problem also allows for a plain analysis of the results and the drawing of handy decision charts to help the investor/designer in finding the best design according to the specific investment availability and target performances. The configurations on the Pareto frontier are characterized by a notable electrical overproduction and a ratio between the two main design variables that goes from 4 to 8 h. A sensitivity analysis to the unitary price of the electrochemical storage reveals the robustness of the sizing criterion.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid renewable energy systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">off-grid buildings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrochemical storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamic simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-objective optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">screening design methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solar technologies</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giovanni Lutzemberger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eva Schito</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Davide Poli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniele Testi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">12(2019), 15, p 3026</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:15, p 3026</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en12153026</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/441ade427c6f42e599b80913e5e71b36</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/12/15/3026</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2019</subfield><subfield code="e">15, p 3026</subfield></datafield></record></collection>
|
author |
Paolo Conti |
spellingShingle |
Paolo Conti misc hybrid renewable energy systems misc off-grid buildings misc electrochemical storage misc dynamic simulation misc multi-objective optimization misc screening design methodology misc solar technologies misc Technology misc T Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening |
authorStr |
Paolo Conti |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening hybrid renewable energy systems off-grid buildings electrochemical storage dynamic simulation multi-objective optimization screening design methodology solar technologies |
topic |
misc hybrid renewable energy systems misc off-grid buildings misc electrochemical storage misc dynamic simulation misc multi-objective optimization misc screening design methodology misc solar technologies misc Technology misc T |
topic_unstemmed |
misc hybrid renewable energy systems misc off-grid buildings misc electrochemical storage misc dynamic simulation misc multi-objective optimization misc screening design methodology misc solar technologies misc Technology misc T |
topic_browse |
misc hybrid renewable energy systems misc off-grid buildings misc electrochemical storage misc dynamic simulation misc multi-objective optimization misc screening design methodology misc solar technologies misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening |
ctrlnum |
(DE-627)DOAJ022755489 (DE-599)DOAJ441ade427c6f42e599b80913e5e71b36 |
title_full |
Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening |
author_sort |
Paolo Conti |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Paolo Conti Giovanni Lutzemberger Eva Schito Davide Poli Daniele Testi |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Paolo Conti |
doi_str_mv |
10.3390/en12153026 |
author2-role |
verfasserin |
title_sort |
multi-objective optimization of off-grid hybrid renewable energy systems in buildings with prior design-variable screening |
title_auth |
Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening |
abstract |
This work presents an optimization strategy and the cost-optimal design of an off-grid building served by an energy system involving solar technologies, thermal and electrochemical storages. Independently from the multi-objective method (e.g., utility function) and algorithm used (e.g., genetic algorithms), the optimization of this kind of systems is typically characterized by a high-dimensional variables space, computational effort and results uncertainty (e.g., local minimum solutions). Instead of focusing on advanced optimization tools to handle the design problem, the dimension of the full problem has been reduced, only considering the design variables with a high “effect” on the objective functions. An off-grid accommodation building is presented as test case: the original six-variable design problem consisting of about 300,000 possible configurations is reduced to a two-variable problem, after the analysis of 870 Monte Carlo simulations. The new problem includes only 220 possible design alternatives with a clear benefit for the multi-objective optimization algorithm. The energy-economy Pareto frontiers obtained by the original and the reduced problems overlap, showing the validity of the proposed methodology. The <i<No-RES</i< (no renewable energy sources) primary energy consumption can be reduced up to almost 0 kWh/(m<sup<2</sup<yr) and the net present value (<i<NPV</i<) after 20 years can reach 70 k€ depending on the number of photovoltaic panels and electrochemical storage size. The reduction of the problem also allows for a plain analysis of the results and the drawing of handy decision charts to help the investor/designer in finding the best design according to the specific investment availability and target performances. The configurations on the Pareto frontier are characterized by a notable electrical overproduction and a ratio between the two main design variables that goes from 4 to 8 h. A sensitivity analysis to the unitary price of the electrochemical storage reveals the robustness of the sizing criterion. |
abstractGer |
This work presents an optimization strategy and the cost-optimal design of an off-grid building served by an energy system involving solar technologies, thermal and electrochemical storages. Independently from the multi-objective method (e.g., utility function) and algorithm used (e.g., genetic algorithms), the optimization of this kind of systems is typically characterized by a high-dimensional variables space, computational effort and results uncertainty (e.g., local minimum solutions). Instead of focusing on advanced optimization tools to handle the design problem, the dimension of the full problem has been reduced, only considering the design variables with a high “effect” on the objective functions. An off-grid accommodation building is presented as test case: the original six-variable design problem consisting of about 300,000 possible configurations is reduced to a two-variable problem, after the analysis of 870 Monte Carlo simulations. The new problem includes only 220 possible design alternatives with a clear benefit for the multi-objective optimization algorithm. The energy-economy Pareto frontiers obtained by the original and the reduced problems overlap, showing the validity of the proposed methodology. The <i<No-RES</i< (no renewable energy sources) primary energy consumption can be reduced up to almost 0 kWh/(m<sup<2</sup<yr) and the net present value (<i<NPV</i<) after 20 years can reach 70 k€ depending on the number of photovoltaic panels and electrochemical storage size. The reduction of the problem also allows for a plain analysis of the results and the drawing of handy decision charts to help the investor/designer in finding the best design according to the specific investment availability and target performances. The configurations on the Pareto frontier are characterized by a notable electrical overproduction and a ratio between the two main design variables that goes from 4 to 8 h. A sensitivity analysis to the unitary price of the electrochemical storage reveals the robustness of the sizing criterion. |
abstract_unstemmed |
This work presents an optimization strategy and the cost-optimal design of an off-grid building served by an energy system involving solar technologies, thermal and electrochemical storages. Independently from the multi-objective method (e.g., utility function) and algorithm used (e.g., genetic algorithms), the optimization of this kind of systems is typically characterized by a high-dimensional variables space, computational effort and results uncertainty (e.g., local minimum solutions). Instead of focusing on advanced optimization tools to handle the design problem, the dimension of the full problem has been reduced, only considering the design variables with a high “effect” on the objective functions. An off-grid accommodation building is presented as test case: the original six-variable design problem consisting of about 300,000 possible configurations is reduced to a two-variable problem, after the analysis of 870 Monte Carlo simulations. The new problem includes only 220 possible design alternatives with a clear benefit for the multi-objective optimization algorithm. The energy-economy Pareto frontiers obtained by the original and the reduced problems overlap, showing the validity of the proposed methodology. The <i<No-RES</i< (no renewable energy sources) primary energy consumption can be reduced up to almost 0 kWh/(m<sup<2</sup<yr) and the net present value (<i<NPV</i<) after 20 years can reach 70 k€ depending on the number of photovoltaic panels and electrochemical storage size. The reduction of the problem also allows for a plain analysis of the results and the drawing of handy decision charts to help the investor/designer in finding the best design according to the specific investment availability and target performances. The configurations on the Pareto frontier are characterized by a notable electrical overproduction and a ratio between the two main design variables that goes from 4 to 8 h. A sensitivity analysis to the unitary price of the electrochemical storage reveals the robustness of the sizing criterion. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
15, p 3026 |
title_short |
Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening |
url |
https://doi.org/10.3390/en12153026 https://doaj.org/article/441ade427c6f42e599b80913e5e71b36 https://www.mdpi.com/1996-1073/12/15/3026 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Giovanni Lutzemberger Eva Schito Davide Poli Daniele Testi |
author2Str |
Giovanni Lutzemberger Eva Schito Davide Poli Daniele Testi |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en12153026 |
up_date |
2024-07-03T13:50:52.130Z |
_version_ |
1803566083881304064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ022755489</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307061123.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en12153026</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ022755489</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ441ade427c6f42e599b80913e5e71b36</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Paolo Conti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work presents an optimization strategy and the cost-optimal design of an off-grid building served by an energy system involving solar technologies, thermal and electrochemical storages. Independently from the multi-objective method (e.g., utility function) and algorithm used (e.g., genetic algorithms), the optimization of this kind of systems is typically characterized by a high-dimensional variables space, computational effort and results uncertainty (e.g., local minimum solutions). Instead of focusing on advanced optimization tools to handle the design problem, the dimension of the full problem has been reduced, only considering the design variables with a high “effect” on the objective functions. An off-grid accommodation building is presented as test case: the original six-variable design problem consisting of about 300,000 possible configurations is reduced to a two-variable problem, after the analysis of 870 Monte Carlo simulations. The new problem includes only 220 possible design alternatives with a clear benefit for the multi-objective optimization algorithm. The energy-economy Pareto frontiers obtained by the original and the reduced problems overlap, showing the validity of the proposed methodology. The <i<No-RES</i< (no renewable energy sources) primary energy consumption can be reduced up to almost 0 kWh/(m<sup<2</sup<yr) and the net present value (<i<NPV</i<) after 20 years can reach 70 k€ depending on the number of photovoltaic panels and electrochemical storage size. The reduction of the problem also allows for a plain analysis of the results and the drawing of handy decision charts to help the investor/designer in finding the best design according to the specific investment availability and target performances. The configurations on the Pareto frontier are characterized by a notable electrical overproduction and a ratio between the two main design variables that goes from 4 to 8 h. A sensitivity analysis to the unitary price of the electrochemical storage reveals the robustness of the sizing criterion.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid renewable energy systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">off-grid buildings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrochemical storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamic simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-objective optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">screening design methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solar technologies</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giovanni Lutzemberger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eva Schito</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Davide Poli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniele Testi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">12(2019), 15, p 3026</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:15, p 3026</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en12153026</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/441ade427c6f42e599b80913e5e71b36</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/12/15/3026</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2019</subfield><subfield code="e">15, p 3026</subfield></datafield></record></collection>
|
score |
7.401005 |