Dwell Time Allocation Algorithm for Multiple Target Tracking in LPI Radar Network Based on Cooperative Game
To solve the problem of dwell time management for multiple target tracking in Low Probability of Intercept (LPI) radar network, a Nash bargaining solution (NBS) dwell time allocation algorithm based on cooperative game theory is proposed. This algorithm can achieve the desired low interception perfo...
Ausführliche Beschreibung
Autor*in: |
Chenyan Xue [verfasserIn] Ling Wang [verfasserIn] Daiyin Zhu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
low probability of intercept (LPI) |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 20(2020), 20, p 5944 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2020 ; number:20, p 5944 |
Links: |
---|
DOI / URN: |
10.3390/s20205944 |
---|
Katalog-ID: |
DOAJ022765808 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ022765808 | ||
003 | DE-627 | ||
005 | 20240412211852.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s20205944 |2 doi | |
035 | |a (DE-627)DOAJ022765808 | ||
035 | |a (DE-599)DOAJa4759cb5176d40138b79dc7e4373c748 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Chenyan Xue |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dwell Time Allocation Algorithm for Multiple Target Tracking in LPI Radar Network Based on Cooperative Game |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a To solve the problem of dwell time management for multiple target tracking in Low Probability of Intercept (LPI) radar network, a Nash bargaining solution (NBS) dwell time allocation algorithm based on cooperative game theory is proposed. This algorithm can achieve the desired low interception performance by optimizing the allocation of the dwell time of each radar under the constraints of the given target detection performance, minimizing the total dwell time of radar network. By introducing two variables, dwell time and target allocation indicators, we decompose the dwell time and target allocation into two subproblems. Firstly, combining the Lagrange relaxation algorithm with the Newton iteration method, we derive the iterative formula for the dwell time of each radar. The dwell time allocation of the radars corresponding to each target is obtained. Secondly, we use the fixed Hungarian algorithm to determine the target allocation scheme based on the dwell time allocation results. Simulation results show that the proposed algorithm can effectively reduce the total dwell time of the radar network, and hence, improve the LPI performance. | ||
650 | 4 | |a radar network | |
650 | 4 | |a low probability of intercept (LPI) | |
650 | 4 | |a cooperative game | |
650 | 4 | |a Nash bargaining solution (NBS) | |
650 | 4 | |a dwell time allocation | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Ling Wang |e verfasserin |4 aut | |
700 | 0 | |a Daiyin Zhu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 20(2020), 20, p 5944 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2020 |g number:20, p 5944 |
856 | 4 | 0 | |u https://doi.org/10.3390/s20205944 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a4759cb5176d40138b79dc7e4373c748 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/20/20/5944 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2020 |e 20, p 5944 |
author_variant |
c x cx l w lw d z dz |
---|---|
matchkey_str |
article:14248220:2020----::wltmalctoagrtmomliltretakniliaanto |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TP |
publishDate |
2020 |
allfields |
10.3390/s20205944 doi (DE-627)DOAJ022765808 (DE-599)DOAJa4759cb5176d40138b79dc7e4373c748 DE-627 ger DE-627 rakwb eng TP1-1185 Chenyan Xue verfasserin aut Dwell Time Allocation Algorithm for Multiple Target Tracking in LPI Radar Network Based on Cooperative Game 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To solve the problem of dwell time management for multiple target tracking in Low Probability of Intercept (LPI) radar network, a Nash bargaining solution (NBS) dwell time allocation algorithm based on cooperative game theory is proposed. This algorithm can achieve the desired low interception performance by optimizing the allocation of the dwell time of each radar under the constraints of the given target detection performance, minimizing the total dwell time of radar network. By introducing two variables, dwell time and target allocation indicators, we decompose the dwell time and target allocation into two subproblems. Firstly, combining the Lagrange relaxation algorithm with the Newton iteration method, we derive the iterative formula for the dwell time of each radar. The dwell time allocation of the radars corresponding to each target is obtained. Secondly, we use the fixed Hungarian algorithm to determine the target allocation scheme based on the dwell time allocation results. Simulation results show that the proposed algorithm can effectively reduce the total dwell time of the radar network, and hence, improve the LPI performance. radar network low probability of intercept (LPI) cooperative game Nash bargaining solution (NBS) dwell time allocation Chemical technology Ling Wang verfasserin aut Daiyin Zhu verfasserin aut In Sensors MDPI AG, 2003 20(2020), 20, p 5944 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:20, p 5944 https://doi.org/10.3390/s20205944 kostenfrei https://doaj.org/article/a4759cb5176d40138b79dc7e4373c748 kostenfrei https://www.mdpi.com/1424-8220/20/20/5944 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 20, p 5944 |
spelling |
10.3390/s20205944 doi (DE-627)DOAJ022765808 (DE-599)DOAJa4759cb5176d40138b79dc7e4373c748 DE-627 ger DE-627 rakwb eng TP1-1185 Chenyan Xue verfasserin aut Dwell Time Allocation Algorithm for Multiple Target Tracking in LPI Radar Network Based on Cooperative Game 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To solve the problem of dwell time management for multiple target tracking in Low Probability of Intercept (LPI) radar network, a Nash bargaining solution (NBS) dwell time allocation algorithm based on cooperative game theory is proposed. This algorithm can achieve the desired low interception performance by optimizing the allocation of the dwell time of each radar under the constraints of the given target detection performance, minimizing the total dwell time of radar network. By introducing two variables, dwell time and target allocation indicators, we decompose the dwell time and target allocation into two subproblems. Firstly, combining the Lagrange relaxation algorithm with the Newton iteration method, we derive the iterative formula for the dwell time of each radar. The dwell time allocation of the radars corresponding to each target is obtained. Secondly, we use the fixed Hungarian algorithm to determine the target allocation scheme based on the dwell time allocation results. Simulation results show that the proposed algorithm can effectively reduce the total dwell time of the radar network, and hence, improve the LPI performance. radar network low probability of intercept (LPI) cooperative game Nash bargaining solution (NBS) dwell time allocation Chemical technology Ling Wang verfasserin aut Daiyin Zhu verfasserin aut In Sensors MDPI AG, 2003 20(2020), 20, p 5944 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:20, p 5944 https://doi.org/10.3390/s20205944 kostenfrei https://doaj.org/article/a4759cb5176d40138b79dc7e4373c748 kostenfrei https://www.mdpi.com/1424-8220/20/20/5944 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 20, p 5944 |
allfields_unstemmed |
10.3390/s20205944 doi (DE-627)DOAJ022765808 (DE-599)DOAJa4759cb5176d40138b79dc7e4373c748 DE-627 ger DE-627 rakwb eng TP1-1185 Chenyan Xue verfasserin aut Dwell Time Allocation Algorithm for Multiple Target Tracking in LPI Radar Network Based on Cooperative Game 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To solve the problem of dwell time management for multiple target tracking in Low Probability of Intercept (LPI) radar network, a Nash bargaining solution (NBS) dwell time allocation algorithm based on cooperative game theory is proposed. This algorithm can achieve the desired low interception performance by optimizing the allocation of the dwell time of each radar under the constraints of the given target detection performance, minimizing the total dwell time of radar network. By introducing two variables, dwell time and target allocation indicators, we decompose the dwell time and target allocation into two subproblems. Firstly, combining the Lagrange relaxation algorithm with the Newton iteration method, we derive the iterative formula for the dwell time of each radar. The dwell time allocation of the radars corresponding to each target is obtained. Secondly, we use the fixed Hungarian algorithm to determine the target allocation scheme based on the dwell time allocation results. Simulation results show that the proposed algorithm can effectively reduce the total dwell time of the radar network, and hence, improve the LPI performance. radar network low probability of intercept (LPI) cooperative game Nash bargaining solution (NBS) dwell time allocation Chemical technology Ling Wang verfasserin aut Daiyin Zhu verfasserin aut In Sensors MDPI AG, 2003 20(2020), 20, p 5944 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:20, p 5944 https://doi.org/10.3390/s20205944 kostenfrei https://doaj.org/article/a4759cb5176d40138b79dc7e4373c748 kostenfrei https://www.mdpi.com/1424-8220/20/20/5944 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 20, p 5944 |
allfieldsGer |
10.3390/s20205944 doi (DE-627)DOAJ022765808 (DE-599)DOAJa4759cb5176d40138b79dc7e4373c748 DE-627 ger DE-627 rakwb eng TP1-1185 Chenyan Xue verfasserin aut Dwell Time Allocation Algorithm for Multiple Target Tracking in LPI Radar Network Based on Cooperative Game 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To solve the problem of dwell time management for multiple target tracking in Low Probability of Intercept (LPI) radar network, a Nash bargaining solution (NBS) dwell time allocation algorithm based on cooperative game theory is proposed. This algorithm can achieve the desired low interception performance by optimizing the allocation of the dwell time of each radar under the constraints of the given target detection performance, minimizing the total dwell time of radar network. By introducing two variables, dwell time and target allocation indicators, we decompose the dwell time and target allocation into two subproblems. Firstly, combining the Lagrange relaxation algorithm with the Newton iteration method, we derive the iterative formula for the dwell time of each radar. The dwell time allocation of the radars corresponding to each target is obtained. Secondly, we use the fixed Hungarian algorithm to determine the target allocation scheme based on the dwell time allocation results. Simulation results show that the proposed algorithm can effectively reduce the total dwell time of the radar network, and hence, improve the LPI performance. radar network low probability of intercept (LPI) cooperative game Nash bargaining solution (NBS) dwell time allocation Chemical technology Ling Wang verfasserin aut Daiyin Zhu verfasserin aut In Sensors MDPI AG, 2003 20(2020), 20, p 5944 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:20, p 5944 https://doi.org/10.3390/s20205944 kostenfrei https://doaj.org/article/a4759cb5176d40138b79dc7e4373c748 kostenfrei https://www.mdpi.com/1424-8220/20/20/5944 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 20, p 5944 |
allfieldsSound |
10.3390/s20205944 doi (DE-627)DOAJ022765808 (DE-599)DOAJa4759cb5176d40138b79dc7e4373c748 DE-627 ger DE-627 rakwb eng TP1-1185 Chenyan Xue verfasserin aut Dwell Time Allocation Algorithm for Multiple Target Tracking in LPI Radar Network Based on Cooperative Game 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To solve the problem of dwell time management for multiple target tracking in Low Probability of Intercept (LPI) radar network, a Nash bargaining solution (NBS) dwell time allocation algorithm based on cooperative game theory is proposed. This algorithm can achieve the desired low interception performance by optimizing the allocation of the dwell time of each radar under the constraints of the given target detection performance, minimizing the total dwell time of radar network. By introducing two variables, dwell time and target allocation indicators, we decompose the dwell time and target allocation into two subproblems. Firstly, combining the Lagrange relaxation algorithm with the Newton iteration method, we derive the iterative formula for the dwell time of each radar. The dwell time allocation of the radars corresponding to each target is obtained. Secondly, we use the fixed Hungarian algorithm to determine the target allocation scheme based on the dwell time allocation results. Simulation results show that the proposed algorithm can effectively reduce the total dwell time of the radar network, and hence, improve the LPI performance. radar network low probability of intercept (LPI) cooperative game Nash bargaining solution (NBS) dwell time allocation Chemical technology Ling Wang verfasserin aut Daiyin Zhu verfasserin aut In Sensors MDPI AG, 2003 20(2020), 20, p 5944 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:20, p 5944 https://doi.org/10.3390/s20205944 kostenfrei https://doaj.org/article/a4759cb5176d40138b79dc7e4373c748 kostenfrei https://www.mdpi.com/1424-8220/20/20/5944 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 20, p 5944 |
language |
English |
source |
In Sensors 20(2020), 20, p 5944 volume:20 year:2020 number:20, p 5944 |
sourceStr |
In Sensors 20(2020), 20, p 5944 volume:20 year:2020 number:20, p 5944 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
radar network low probability of intercept (LPI) cooperative game Nash bargaining solution (NBS) dwell time allocation Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Chenyan Xue @@aut@@ Ling Wang @@aut@@ Daiyin Zhu @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ022765808 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ022765808</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412211852.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s20205944</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ022765808</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa4759cb5176d40138b79dc7e4373c748</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chenyan Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dwell Time Allocation Algorithm for Multiple Target Tracking in LPI Radar Network Based on Cooperative Game</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To solve the problem of dwell time management for multiple target tracking in Low Probability of Intercept (LPI) radar network, a Nash bargaining solution (NBS) dwell time allocation algorithm based on cooperative game theory is proposed. This algorithm can achieve the desired low interception performance by optimizing the allocation of the dwell time of each radar under the constraints of the given target detection performance, minimizing the total dwell time of radar network. By introducing two variables, dwell time and target allocation indicators, we decompose the dwell time and target allocation into two subproblems. Firstly, combining the Lagrange relaxation algorithm with the Newton iteration method, we derive the iterative formula for the dwell time of each radar. The dwell time allocation of the radars corresponding to each target is obtained. Secondly, we use the fixed Hungarian algorithm to determine the target allocation scheme based on the dwell time allocation results. Simulation results show that the proposed algorithm can effectively reduce the total dwell time of the radar network, and hence, improve the LPI performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radar network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low probability of intercept (LPI)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cooperative game</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nash bargaining solution (NBS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dwell time allocation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ling Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daiyin Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">20(2020), 20, p 5944</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:20, p 5944</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s20205944</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a4759cb5176d40138b79dc7e4373c748</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/20/20/5944</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2020</subfield><subfield code="e">20, p 5944</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Chenyan Xue |
spellingShingle |
Chenyan Xue misc TP1-1185 misc radar network misc low probability of intercept (LPI) misc cooperative game misc Nash bargaining solution (NBS) misc dwell time allocation misc Chemical technology Dwell Time Allocation Algorithm for Multiple Target Tracking in LPI Radar Network Based on Cooperative Game |
authorStr |
Chenyan Xue |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 Dwell Time Allocation Algorithm for Multiple Target Tracking in LPI Radar Network Based on Cooperative Game radar network low probability of intercept (LPI) cooperative game Nash bargaining solution (NBS) dwell time allocation |
topic |
misc TP1-1185 misc radar network misc low probability of intercept (LPI) misc cooperative game misc Nash bargaining solution (NBS) misc dwell time allocation misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc radar network misc low probability of intercept (LPI) misc cooperative game misc Nash bargaining solution (NBS) misc dwell time allocation misc Chemical technology |
topic_browse |
misc TP1-1185 misc radar network misc low probability of intercept (LPI) misc cooperative game misc Nash bargaining solution (NBS) misc dwell time allocation misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
Dwell Time Allocation Algorithm for Multiple Target Tracking in LPI Radar Network Based on Cooperative Game |
ctrlnum |
(DE-627)DOAJ022765808 (DE-599)DOAJa4759cb5176d40138b79dc7e4373c748 |
title_full |
Dwell Time Allocation Algorithm for Multiple Target Tracking in LPI Radar Network Based on Cooperative Game |
author_sort |
Chenyan Xue |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Chenyan Xue Ling Wang Daiyin Zhu |
container_volume |
20 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Chenyan Xue |
doi_str_mv |
10.3390/s20205944 |
author2-role |
verfasserin |
title_sort |
dwell time allocation algorithm for multiple target tracking in lpi radar network based on cooperative game |
callnumber |
TP1-1185 |
title_auth |
Dwell Time Allocation Algorithm for Multiple Target Tracking in LPI Radar Network Based on Cooperative Game |
abstract |
To solve the problem of dwell time management for multiple target tracking in Low Probability of Intercept (LPI) radar network, a Nash bargaining solution (NBS) dwell time allocation algorithm based on cooperative game theory is proposed. This algorithm can achieve the desired low interception performance by optimizing the allocation of the dwell time of each radar under the constraints of the given target detection performance, minimizing the total dwell time of radar network. By introducing two variables, dwell time and target allocation indicators, we decompose the dwell time and target allocation into two subproblems. Firstly, combining the Lagrange relaxation algorithm with the Newton iteration method, we derive the iterative formula for the dwell time of each radar. The dwell time allocation of the radars corresponding to each target is obtained. Secondly, we use the fixed Hungarian algorithm to determine the target allocation scheme based on the dwell time allocation results. Simulation results show that the proposed algorithm can effectively reduce the total dwell time of the radar network, and hence, improve the LPI performance. |
abstractGer |
To solve the problem of dwell time management for multiple target tracking in Low Probability of Intercept (LPI) radar network, a Nash bargaining solution (NBS) dwell time allocation algorithm based on cooperative game theory is proposed. This algorithm can achieve the desired low interception performance by optimizing the allocation of the dwell time of each radar under the constraints of the given target detection performance, minimizing the total dwell time of radar network. By introducing two variables, dwell time and target allocation indicators, we decompose the dwell time and target allocation into two subproblems. Firstly, combining the Lagrange relaxation algorithm with the Newton iteration method, we derive the iterative formula for the dwell time of each radar. The dwell time allocation of the radars corresponding to each target is obtained. Secondly, we use the fixed Hungarian algorithm to determine the target allocation scheme based on the dwell time allocation results. Simulation results show that the proposed algorithm can effectively reduce the total dwell time of the radar network, and hence, improve the LPI performance. |
abstract_unstemmed |
To solve the problem of dwell time management for multiple target tracking in Low Probability of Intercept (LPI) radar network, a Nash bargaining solution (NBS) dwell time allocation algorithm based on cooperative game theory is proposed. This algorithm can achieve the desired low interception performance by optimizing the allocation of the dwell time of each radar under the constraints of the given target detection performance, minimizing the total dwell time of radar network. By introducing two variables, dwell time and target allocation indicators, we decompose the dwell time and target allocation into two subproblems. Firstly, combining the Lagrange relaxation algorithm with the Newton iteration method, we derive the iterative formula for the dwell time of each radar. The dwell time allocation of the radars corresponding to each target is obtained. Secondly, we use the fixed Hungarian algorithm to determine the target allocation scheme based on the dwell time allocation results. Simulation results show that the proposed algorithm can effectively reduce the total dwell time of the radar network, and hence, improve the LPI performance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
20, p 5944 |
title_short |
Dwell Time Allocation Algorithm for Multiple Target Tracking in LPI Radar Network Based on Cooperative Game |
url |
https://doi.org/10.3390/s20205944 https://doaj.org/article/a4759cb5176d40138b79dc7e4373c748 https://www.mdpi.com/1424-8220/20/20/5944 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Ling Wang Daiyin Zhu |
author2Str |
Ling Wang Daiyin Zhu |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s20205944 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T13:54:07.906Z |
_version_ |
1803566289162076160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ022765808</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412211852.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s20205944</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ022765808</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa4759cb5176d40138b79dc7e4373c748</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chenyan Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dwell Time Allocation Algorithm for Multiple Target Tracking in LPI Radar Network Based on Cooperative Game</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To solve the problem of dwell time management for multiple target tracking in Low Probability of Intercept (LPI) radar network, a Nash bargaining solution (NBS) dwell time allocation algorithm based on cooperative game theory is proposed. This algorithm can achieve the desired low interception performance by optimizing the allocation of the dwell time of each radar under the constraints of the given target detection performance, minimizing the total dwell time of radar network. By introducing two variables, dwell time and target allocation indicators, we decompose the dwell time and target allocation into two subproblems. Firstly, combining the Lagrange relaxation algorithm with the Newton iteration method, we derive the iterative formula for the dwell time of each radar. The dwell time allocation of the radars corresponding to each target is obtained. Secondly, we use the fixed Hungarian algorithm to determine the target allocation scheme based on the dwell time allocation results. Simulation results show that the proposed algorithm can effectively reduce the total dwell time of the radar network, and hence, improve the LPI performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radar network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low probability of intercept (LPI)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cooperative game</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nash bargaining solution (NBS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dwell time allocation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ling Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daiyin Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">20(2020), 20, p 5944</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:20, p 5944</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s20205944</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a4759cb5176d40138b79dc7e4373c748</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/20/20/5944</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2020</subfield><subfield code="e">20, p 5944</subfield></datafield></record></collection>
|
score |
7.401335 |